The Association of Peptide Hormones with Glycemia, Dyslipidemia, and Obesity in Lebanese Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Anthropometric Measurements
2.4. Biochemichal Measurements
2.4.1. Glycemia
2.4.2. Insulin
2.4.3. Homeostatic Model Assessment for Insulin Resistance (HOMA-IR)
2.4.4. Blood Lipids (Total Cholesterol (TC), Low Density Lipoprotein Cholesterol (LDL-C), High Density Lipoprotein Cholesterol (HDL-C), and Triglyceride (TG))
2.4.5. GLP-1, GLP-2, PYY, CCK, Ghrelin, Leptin, and Leptin/Ghrelin Ratio
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Biochemical and Gut Peptide Analyses
3.3. Percent Body Fat and Gut Peptide Differences between the Sexes
3.4. Gut Peptides, Obesity Markers, Lipid Profile, and Glucose Homeostasis Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, A.K.; Dubey, V.; Ghosh, A.R. Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism 2016, 65, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Alhabeeb, H.; AlFaiz, A.; Kutbi, E.; AlShahrani, D.; Alsuhail, A.; AlRajhi, S.; Alotaibi, N.; Alotaibi, K.; AlAmri, S.; Alghamdi, S.; et al. Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients 2021, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- World Obesity Federation. Prevalence of Adult Overweight & Oesity 2017. Available online: https://data.worldobesity.org/tables/prevalence-of-adult-overweight-obesity-2/ (accessed on 8 March 2022).
- Musaiger, A.O. Overweight and obesity in eastern mediterranean region: Prevalence and possible causes. J. Obes. 2011, 2011, 407237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlAbdulKader, A.M.; Tuwairqi, K.; Rao, G. Obesity and Cardiovascular Risk in the Arab Gulf States. Curr. Cardiovasc. Risk Rep. 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Ministry of Public Health—Lebanon; World Health Organization. WHO Stepwise Approach for Non-Communicable Diseases Risk Factor Surveillance Lebanon, 2016–2017. 2017. Available online: https://cdn.who.int/media/docs/default-source/ncds/ncd-surveillance/data-reporting/lebanon/steps/lebanon-steps-report-2016-2017.pdf?sfvrsn=b67a627f_3&download=true (accessed on 8 March 2022).
- World Obesity Federation; The Gulf & Lebanon Recommendations Expert Group. Regional Recommendations for the Treatment and Management of Adult Obesity in the Gulf & Lebanon. 2020. Available online: https://www.worldobesity.org/resources/resource-library/gulf-lebanon-regional-recommendations (accessed on 8 March 2022).
- Neary, N.M.; Goldstone, A.P.; Bloom, S.R. Appetite regulation: From the gut to the hypothalamus. Clin. Endocrinol. 2004, 60, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Simpson, K.A.; Minnion, J.S.; Shillito, J.C.; Bloom, S.R. The role of gut hormones and the hypothalamus in appetite regulation. Endocr. J. 2010, 57, 359–372. [Google Scholar] [CrossRef] [Green Version]
- Aukan, M.I.; Nymo, S.; Haagensli Ollestad, K.; Akersveen Boyesen, G.; DeBenedictis, J.N.; Rehfeld, J.F.; Coutinho, S.; Martins, C. Differences in gastrointestinal hormones and appetite ratings among obesity classes. Appetite 2022, 171, 105940. [Google Scholar] [CrossRef]
- Kumar, R.; Mal, K.; Razaq, M.K.; Magsi, M.; Memon, M.K.; Memon, S.; Afroz, M.N.; Siddiqui, H.F.; Rizwan, A. Association of Leptin With Obesity and Insulin Resistance. Cureus 2020, 12, e12178. [Google Scholar] [CrossRef]
- Paz-Filho, G.; Mastronardi, C.; Wong, M.-L.; Licinio, J. Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J. Endocrinol. Metab. 2012, 16, S549–S555. [Google Scholar] [CrossRef]
- Alexiadou, K.; Anyiam, O.; Tan, T. Cracking the combination: Gut hormones for the treatment of obesity and diabetes. J. Neuroendocr. 2018, 31, e12664. [Google Scholar] [CrossRef]
- Damms-Machado, A.; Mitra, S.; Schollenberger, A.E.; Kramer, K.M.; Meile, T.; Königsrainer, A.; Huson, D.H.; Bischoff, S.C. Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption. BioMed Res. Int. 2015, 2015, 806248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou-Samra, M. The Effect of Bariatric Procedure on Gut Microbiota and Energy Metabolism in Obese Individuals in Lebanon. 2022; Manuscript in preparation. [Google Scholar]
- Snetselaar, L.G.; de Jesus, J.M.; DeSilva, D.M.; Stoody, E.E. Dietary Guidelines for Americans, 2020–2025: Understanding the Scientific Process, Guidelines, and Key Recommendations. Nutr. Today 2021, 56, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome-a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Gibson, S.; Ashwell, M. A simple cut-off for waist-to-height ratio (0.5) can act as an indicator for cardiometabolic risk: Recent data from adults in the Health Survey for England. Br. J. Nutr. 2020, 123, 681–690. [Google Scholar] [CrossRef] [PubMed]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef]
- Hurt, R.T.; Ebbert, J.O.; Croghan, I.; Nanda, S.; Ms, D.R.S.; Teigen, L.M.; Velapati, S.R.; Mundi, M.S. The Comparison of Segmental Multifrequency Bioelectrical Impedance Analysis and Dual-Energy X-ray Absorptiometry for Estimating Fat Free Mass and Percentage Body Fat in an Ambulatory Population. J. Parenter. Enter. Nutr. 2020, 45, 1231–1238. [Google Scholar] [CrossRef]
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Vaccaro, O.; Masulli, M.; Cuomo, V.; Rivellese, A.A.; Uusitupa, M.; Vessby, B.; Hermansen, K.; Tapsell, L.; Riccardi, G. Comparative evaluation of simple indices of insulin resistance. Metabolism 2004, 53, 1522–1526. [Google Scholar] [CrossRef]
- Chedid, R.; Gannage-Yared, M.H.; Khalife, S.; Halaby, G.; Zoghbi, F. Impact of different metabolic syndrome classifications on the metabolic syndrome prevalence in a young Middle Eastern population. Metabolism 2009, 58, 746–752. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Noncommunicable Diseases; WHO: Geneva, Switzerland, 2014; Available online: https://apps.who.int/iris/handle/10665/148114 (accessed on 8 March 2022).
- Ali Ahmad, M.; Karavetian, M.; Moubareck, C.A.; Wazz, G.; Mahdy, T.; Venema, K. The Association between Peptide Hormones with Obesity and Insulin Resistance Markers in Lean and Obese Individuals in the United Arab Emirates. Nutrients 2022, 14, 1271. [Google Scholar] [CrossRef]
- English, P.J.; Ghatei, M.A.; Malik, I.A.; Bloom, S.R.; Wilding, J.P.H. Food Fails to Suppress Ghrelin Levels in Obese Humans. J. Clin. Endocrinol. Metab. 2002, 87, 2984. [Google Scholar] [CrossRef] [PubMed]
- Shiiya, T.; Nakazato, M.; Mizuta, M.; Date, Y.; Mondal, M.S.; Tanaka, M.; Nozoe, S.-I.; Hosoda, H.; Kangawa, K.; Matsukura, S. Plasma Ghrelin Levels in Lean and Obese Humans and the Effect of Glucose on Ghrelin Secretion. J. Clin. Endocrinol. Metab. 2002, 87, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Tschöp, M.; Weyer, C.; Tataranni, P.A.; Devanarayan, V.; Ravussin, E.; Heiman, M.L. Circulating Ghrelin Levels Are Decreased in Human Obesity. Diabetes 2001, 50, 707–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, D.E. Roles for Ghrelin in the Regulation of Appetite and Body Weight. Arch. Surg. 2003, 138, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, J.J.; Turpin, A.A.; Wiebke, G.; Hunt, S.C.; Adams, T.D. Pre- and post- prandial appetite hormone levels in normal weight and severely obese women. Nutr. Metab. (Lond) 2009, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Pöykkö, S.M.; Kellokoski, E.; Hörkkö, S.; Kauma, H.; Kesäniemi, Y.A.; Ukkola, O. Low Plasma Ghrelin Is Associated With Insulin Resistance, Hypertension, and the Prevalence of Type 2 Diabetes. Diabetes 2003, 52, 2546–2553. [Google Scholar] [CrossRef]
- Ikezaki, A.; Hosoda, H.; Ito, K.; Iwama, S.; Miura, N.; Matsuoka, H.; Kondo, C.; Kojima, M.; Kangawa, K.; Sugihara, S. Fasting Plasma Ghrelin Levels Are Negatively Correlated With Insulin Resistance and PAI-1, but Not With Leptin, in Obese Children and Adolescents. Diabetes 2002, 51, 3408–3411. [Google Scholar] [CrossRef] [Green Version]
- Banks, W.A.; Burney, B.O.; Robinson, S.M. Effects of triglycerides, obesity, and starvation on ghrelin transport across the blood–brain barrier. Peptides 2008, 29, 2061–2065. [Google Scholar] [CrossRef] [Green Version]
- Mells, J.E.; Anania, F.A. The Role of Gastrointestinal Hormones in Hepatic Lipid Metabolism. Semin. Liver Dis. 2013, 33, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Mulvihill, E.E. Regulation of intestinal lipid and lipoprotein metabolism by the proglucagon-derived peptides glucagon like peptide 1 and glucagon like peptide 2. Curr. Opin. Lipidol. 2018, 29, 95–103. [Google Scholar] [CrossRef]
- Ranganath, L.R.; Beety, J.M.; Morgan, L.M.; Wright, J.W.; Howland, R.; Marks, V. Attenuated GLP-1 secretion in obesity: Cause or consequence? Gut 1996, 38, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stinson, S.E.; Jonsson, A.E.; Lund, M.A.V.; Frithioff-Bojsoe, C.; Aas Holm, L.; Pedersen, O.; Angquist, L.; Sorensen, T.I.A.; Holst, J.J.; Christiansen, M.; et al. Fasting Plasma GLP-1 Is Associated With Overweight/Obesity and Cardiometabolic Risk Factors in Children and Adolescents. J. Clin. Endocrinol. Metab. 2021, 106, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, T.I.; Virtue, S.; Vidal-Puig, A. Obesity as a clinical and public health problem: Is there a need for a new definition based on lipotoxicity effects? Biochim. Biophys. Acta 2010, 1801, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, G.D.; Maratou, E.; Kountouri, A.; Board, M.; Lambadiari, V. Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients 2021, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Batterham, R.L.; Heffron, H.; Kapoor, S.; Chivers, J.E.; Chandarana, K.; Herzog, H.; Le Roux, C.W.; Thomas, E.L.; Bell, J.D.; Withers, D.J. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 2006, 4, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Ma, L.; Enriori, P.J.; Koska, J.; Franks, P.W.; Brookshire, T.; Cowley, M.A.; Salbe, A.D.; Delparigi, A.; Tataranni, P.A. Physiological Evidence for the Involvement of Peptide YY in the Regulation of Energy Homeostasis in Humans. Obesity 2006, 14, 1562–1570. [Google Scholar] [CrossRef]
- Batterham, R.L.; Cohen, M.A.; Ellis, S.M.; Le Roux, C.W.; Withers, D.J.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R. Inhibition of Food Intake in Obese Subjects by Peptide YY3–36. N. Engl. J. Med. 2003, 349, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Sloth, B.; Davidsen, L.; Holst, J.J.; Flint, A.; Astrup, A. Effect of subcutaneous injections of PYY1-36 and PYY3-36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese males. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E604–E609. [Google Scholar] [CrossRef] [Green Version]
- Cahill, F.; Ji, Y.; Wadden, D.; Amini, P.; Randell, E.; Vasdev, S.; Gulliver, W.; Sun, G. The Association of Serum Total Peptide YY (PYY) with Obesity and Body Fat Measures in the CODING Study. PLoS ONE 2014, 9, e95235. [Google Scholar] [CrossRef] [Green Version]
- Cahill, F.; Shea, J.L.; Randell, E.; Vasdev, S.; Sun, G. Serum peptide YY in response to short-term overfeeding in young men. Am. J. Clin. Nutr. 2011, 93, 741–747. [Google Scholar] [CrossRef]
- Cooper, J.A. Factors affecting circulating levels of peptide YY in humans: A comprehensive review. Nutr. Res. Rev. 2014, 27, 186–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lean, M.E.J.; Malkova, D. Altered gut and adipose tissue hormones in overweight and obese individuals: Cause or consequence? Int. J. Obes. 2015, 40, 622–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellström, L.; Wahrenberg, H.; Hruska, K.; Reynisdottir, S.; Arner, P. Mechanisms behind gender differences in circulating leptin levels. J. Intern. Med. 2000, 247, 457–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Jaramillo, P.; Gomez-Arbelaez, D.; Lopez-Lopez, J.; Lopez-Lopez, C.; Martinez-Ortega, J.; Gomez-Rodriguez, A.; Triana-Cubillos, S. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm. Mol. Biol. Clin. Investig. 2014, 18, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Adamska-Patruno, E.; Ostrowska, L.; Goscik, J.; Pietraszewska, B.; Kretowski, A.; Gorska, M. The relationship between the leptin/ghrelin ratio and meals with various macronutrient contents in men with different nutritional status: A randomized crossover study. Nutr. J. 2018, 17, 118. [Google Scholar] [CrossRef] [Green Version]
- Sitar-Taut, A.V.; Cozma, A.; Fodor, A.; Coste, S.C.; Orasan, O.H.; Negrean, V.; Pop, D.; Sitar-Taut, D.A. New Insights on the Relationship between Leptin, Ghrelin, and Leptin/Ghrelin Ratio Enforced by Body Mass Index in Obesity and Diabetes. Biomedicines 2021, 9, 1657. [Google Scholar] [CrossRef]
- Sadiq, C.H.; Hussein, R.H.; Maulood, I.M. Ghrelin and Leptin and Their Relations with Insulin Resistance in Diabetes Mellitus Type 2 Patients. Baghdad Sci. J. 2022, 19, 0033. [Google Scholar] [CrossRef]
Normal Weight | Obese | p | |
---|---|---|---|
N | 21 | 16 | |
Age (M ± SD) | 39.10 ± 9.86 | 35.66 ± 10.37 | 0.31 |
Female (n (%)) | 15 (71.4) | 12 (70.6) | 0.81 |
Anthropometric data | |||
BMI (kg/m2) (M ± SD) | 22.07 ± 1.81 | 38.79 ± 3.72 | <0.001 * |
WC (cm) (M ± SD) † | 82.14 ± 9.39 | 117.34 ± 7.88 | <0.001 * |
WtHR (M ± SD) † | 0.37 ± 0.04 | 0.64 ± 0.06 | <0.001 * |
Percent Body Fat (%) (M ± SD) | 24.38 ± 6.18 | 45.75 ± 5.88 | <0.001 * |
Energy Intake (Kcal) (M ± SD) | 1641.95 ± 522.96 | 2042.67 ± 884.40 | 0.123 |
(a) | |||
---|---|---|---|
Variable | NW (M ± SD) n = 21 | OB (M ± SD) n = 16 | p |
Leptin (ng/mL) | 14.28 ± 8.64 | 64.03 ± 32.79 | <0.001 * |
Ghrelin (pg/mL) | 449.40 ± 203.11 | 246.82 ± 150.85 | 0.002 * |
PYY (pg/mL) | 60.42 ± 31.48 | 74.22 ± 47.51 | 0.296 |
GLP-1 (pM) | 24.95 ± 9.59 | 30.98 ± 11.84 | 0.096 |
GLP-2 (ng/mL) | 3.41 ± 1.37 | 3.89 ± 1.21 | 0.273 |
HDL-C (mg/dL) | 61.38 ± 16.61 | 44.69 ± 9.75 | 0.001 * |
TG (mg/dL) | 105.43 ± 50.38 | 149.81 ± 57.65 | 0.017 * |
(b) | |||
Variable | NW (Median (IQR)) n = 21 | OB (Median (IQR)) n = 16 | p |
Leptin/Ghrelin ratio | 24.26 (10.79–142.76) | 320.10 (81.41–908.36) | <0.001 * |
CCK (pg/mL) | 36.54 (21.20–152.45) | 38.05 (20.40–66.68) | 0.927 |
Glucose (mg/dL) | 97.00 (80–116) | 98.50 (93–119) | 0.133 |
Insulin (µU/mL) | 7.77 (4.46–13.35) | 20.15 (7.74–44.15) | <0.001 * |
HOMA-IR | 1.85 (1.05–3.82) | 4.78 (1.97–11.77) | <0.001 * |
TC (mg/dL) | 182.00 (131–364) | 179.00 (133–358) | 0.902 |
LDL-C (mg/dL) | 101.00 (50–299) | 109.00 (70–290) | 0.462 |
Variable | Females Lean (M ± SD) n = 15 | Males Lean (M ± SD) n = 6 | p | Females Obese (M ± SD) n = 12 | Males Obese (M ± SD) n = 4 | p |
---|---|---|---|---|---|---|
%BF | 26.44 ± 6.09 | 19.22 ± 2.07 | 0.001 * | 48.10 ± 3.51 | 38.70 ± 6.28 | 0.002 * |
Leptin (ng/mL) | 17.21 ± 8.43 | 6.98 ± 3.10 | 0.001 * | 77.55 ± 25.05 | 23.47 ± 12.22 | 0.001 * |
Insulin | Leptin | GLP1 | GLP2 | PYY | CCK | Ghrelin | Leptin/Ghrelin Ratio | ||
---|---|---|---|---|---|---|---|---|---|
BMI | r | 0.664 b | 0.800 a | 0.365 a | 0.229 a | 0.333 a | 0.111 b | −0.521 a | 0.809 b |
p | <0.001 ** | <0.001 ** | 0.026 * | 0.172 | 0.044 * | 0.514 | 0.001 ** | <0.001 ** | |
WC | r | 0.757 b | 0.664 a | 0.363 a | 0.296 a | 0.279 a | −0.117 b | −0.575 a | 0.813 b |
p | <0.001 ** | <0.001 ** | 0.027 * | 0.075 | 0.094 | 0.490 | <0.001 ** | <0.001 ** | |
WtHR | r | 0.664 b | 0.753 a | 0.334 a | 0.219 a | 0.306 a | 0.042 b | −0.530 a | 0.764 b |
p | <0.001 ** | <0.001 ** | 0.043 * | 0.192 | 0.065 | 0.806 | 0.001 ** | <0.001 ** | |
%BF | r | 0.734 b | 0.874 a | 0.277 a | 0.199 a | 0.303 a | 0.043 b | −0.362 a | 0.871 b |
p | <0.001 ** | <0.001 ** | 0.097 | 0.238 | 0.068 | 0.802 | 0.028 * | <0.001 ** | |
Glucose | r | 0.334 b | 0.217 a | 0.142 a | −0.013 a | 0.281 a | −0.083 b | −0.423 a | 0.402 b |
p | 0.043 * | 0.196 | 0.400 | 0.940 | 0.092 | 0.624 | 0.009 ** | 0.014 * | |
Insulin | r | − | 0.653 b | 0.382 b | 0.269 b | 0.333 b | −0.092 b | −0.554 b | 0.762 b |
p | − | <0.001 ** | 0.020 * | 0.108 | 0.044 * | 0.589 | <0.001 ** | <0.001 ** | |
HOMA-IR | r | 0.991 b | 0.658 b | 0.355 b | 0.232 b | 0.364 b | −0.104 b | −0.582 b | 0.787 b |
p | <0.001 ** | <0.001 ** | 0.031 * | 0.166 | 0.027 * | 0.542 | <0.001 ** | <0.001 ** | |
TC | r | 0.107 b | −0.039 b | 0.086 b | 0.212 b | −0.122 b | −0.128 b | 0.044 b | −0.707 b |
p | 0.529 | 0.820 | 0.611 | 0.208 | 0.471 | 0.452 | 0.794 | 0.679 | |
LDL-C | r | 0.163 b | −0.044 b | 0.112 b | 0.217 b | −0.148 b | −0.038 b | −0.011 b | −0.034 b |
p | 0.334 | 0.797 | 0.509 | 0.197 | 0.382 | 0.821 | 0.949 | 0.843 | |
HDL-C | r | −0.475 b | −0.294 a | −0.365 a | −0.293 a | −0.186 a | −0.085 b | 0.537 a | −0.460 b |
p | 0.003 ** | 0.078 | 0.026 * | 0.079 | 0.271 | 0.618 | 0.001 ** | 0.004 ** | |
TG | r | 0.363 b | 0.266 a | 0.315 a | 0.404 a | 0.234 a | −0.127 b | −0.346 a | 0.310 b |
p | 0.027 * | 0.111 | 0.058 | 0.013 * | 0.163 | 0.452 | 0.036 * | 0.062 |
Logistic Regression | Predictors | OR | p | R2 | 95% CI |
---|---|---|---|---|---|
HOMA-IR a | Leptin Ghrelin | 1.056 0.991 | 0.027 0.007 | 0.652 | 1.006–1.108 0.984–0.998 |
Weight status a | Leptin | 1.219 | 0.036 | 0.882 | 1.013–1.467 |
WC a | Leptin Ghrelin | 1.151 0.987 | 0.021 0.020 | 0.818 | 1.022–1.297 0.976–0.998 |
WtHR b | Leptin | 1.139 | 0.006 | 0.759 | 1.038–1.251 |
%BF a | Leptin | 1.202 | 0.017 | 0.816 | 1.034–1.398 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abou-Samra, M.; Venema, K.; Ayoub Moubareck, C.; Karavetian, M. The Association of Peptide Hormones with Glycemia, Dyslipidemia, and Obesity in Lebanese Individuals. Metabolites 2022, 12, 1051. https://doi.org/10.3390/metabo12111051
Abou-Samra M, Venema K, Ayoub Moubareck C, Karavetian M. The Association of Peptide Hormones with Glycemia, Dyslipidemia, and Obesity in Lebanese Individuals. Metabolites. 2022; 12(11):1051. https://doi.org/10.3390/metabo12111051
Chicago/Turabian StyleAbou-Samra, Murielle, Koen Venema, Carole Ayoub Moubareck, and Mirey Karavetian. 2022. "The Association of Peptide Hormones with Glycemia, Dyslipidemia, and Obesity in Lebanese Individuals" Metabolites 12, no. 11: 1051. https://doi.org/10.3390/metabo12111051
APA StyleAbou-Samra, M., Venema, K., Ayoub Moubareck, C., & Karavetian, M. (2022). The Association of Peptide Hormones with Glycemia, Dyslipidemia, and Obesity in Lebanese Individuals. Metabolites, 12(11), 1051. https://doi.org/10.3390/metabo12111051