Reduced Steroid Metabolites Identify Infection-Prone Children in Two Independent Pre-Birth Cohorts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Clinical Outcomes
2.3. Analysis of Steroid Metabolite Profiles and Infection Proneness
2.4. Assessment of Asthma and Respiratory Infection Proneness Comorbidities
3. Results
3.1. VDAART and COPSAC Populations
3.2. Reduced Steroid Metabolite Levels Were Associated with Higher Infection Proneness
3.3. Reduced Steroid Metabolite Relationships Remained in ICS and OCS Non-Users
3.4. Infection-Prone Children Were More Likely to Be Diagnosed with Asthma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mulholland, K. Global burden of acute respiratory infections in children: Implications for interventions. Pediatr. Pulmonol. 2003, 36, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Zar, H.J.; Ferkol, T.W. The global burden of respiratory disease-impact on child health. Pediatr. Pulmonol. 2014, 49, 430–434. [Google Scholar] [CrossRef]
- Shaheen, S.O.; Barker, D.J.; Holgate, S.T. Do lower respiratory tract infections in early childhood cause chronic obstructive pulmonary disease? Am. J. Respir. Crit. Care Med. 1995, 151, 1649–1651. [Google Scholar] [CrossRef] [PubMed]
- Welliver, R.C.; Duffy, L. The relationship of RSV-specific immunoglobulin E antibody responses in infancy, recurrent wheezing, and pulmonary function at age 7-8 years. Pediatr. Pulmonol. 1993, 15, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, M.E.; Chapman, T.J.; Bajorski, P. Pneumonia, Sinusitis, Influenza and Other Respiratory Illnesses in Acute Otitis Media-Prone Children. Pediatr. Infect. Dis. J. 2021, 40, 975–980. [Google Scholar] [CrossRef]
- Lloyd, C.M.; Marsland, B.J. Lung Homeostasis: Influence of Age, Microbes, and the Immune System. Immunity 2017, 46, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Bisgaard, H.; Hermansen, M.N.; Buchvald, F.; Loland, L.; Halkjaer, L.B.; Bønnelykke, K.; Brasholt, M.; Heltberg, A.; Vissing, N.H.; Thorsen, S.V.; et al. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 2007, 357, 1487–1495. [Google Scholar] [CrossRef]
- Tazinya, A.A.; Halle-Ekane, G.E.; Mbuagbaw, L.T.; Abanda, M.; Atashili, J.; Obama, M.T. Risk factors for acute respiratory infections in children under five years attending the Bamenda Regional Hospital in Cameroon. BMC Pulm. Med. 2018, 18, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Pramanik, J.; Mahata, B. Revisiting steroidogenesis and its role in immune regulation with the advanced tools and technologies. Genes Immun. 2021, 22, 125–140. [Google Scholar] [CrossRef]
- Pichichero, M.E. Immunologic dysfunction contributes to the otitis prone condition. J. Infect. 2020, 80, 614–622. [Google Scholar] [CrossRef]
- Kollmann, T.R.; Kampmann, B.; Mazmanian, S.K.; Marchant, A.; Levy, O. Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. Immunity 2017, 46, 350–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taves, M.D.; Ashwell, J.D. Glucocorticoids in T cell development, differentiation and function. Nat. Rev. Immunol. 2021, 21, 233–243. [Google Scholar] [CrossRef]
- Silverman, M.N.; Pearce, B.D.; Biron, C.A.; Miller, A.H. Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral. Immunol. 2005, 18, 41–78. [Google Scholar] [CrossRef]
- Solano, M.E.; Arck, P.C. Steroids, Pregnancy and Fetal Development. Front. Immunol. 2019, 10, 3017. [Google Scholar] [CrossRef] [Green Version]
- Quatrini, L.; Ricci, B.; Ciancaglini, C.; Tumino, N.; Moretta, L. Regulation of the Immune System Development by Glucocorticoids and Sex Hormones. Front. Immunol. 2021, 12, 672853. [Google Scholar] [CrossRef]
- Rubinow, K.B. An intracrine view of sex steroids, immunity, and metabolic regulation. Mol. Metab. 2018, 15, 92–103. [Google Scholar] [CrossRef]
- Kelly, R.S.; Bayne, H.; Spiro, A., 2nd; Vokonas, P.; Sparrow, D.; Weiss, S.T.; Schwartz, J.; Nassan, F.L.; Lee-Sarwar, K.; Huang, M.; et al. Metabolomic signatures of lead exposure in the VA Normative Aging Study. Environ. Res. 2020, 190, 110022. [Google Scholar] [CrossRef]
- Sippell, W.G.; Dorr, H.G.; Bidlingmaier, F.; Knorr, D. Plasma levels of aldosterone, corticosterone, 11-deoxycorticosterone, progesterone, 17-hydroxyprogesterone, cortisol, and cortisone during infancy and childhood. Pediatr. Res. 1980, 14, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.K.; Hollander, G.A.; McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 2015, 282, 20143085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.O.; Lemanske, R.F., Jr.; Jackson, D.J. Infections and their role in childhood asthma inception. Pediatr. Allergy Immunol. 2014, 25, 122–128. [Google Scholar] [CrossRef]
- Litonjua, A.A.; Lange, N.E.; Carey, V.J.; Brown, S.; Laranjo, N.; Harshfield, B.J.; O’Connor, G.T.; Sandel, M.; Strunk, R.C.; Bacharier, L.B.; et al. The Vitamin D Antenatal Asthma Reduction Trial (VDAART): Rationale, design, and methods of a randomized, controlled trial of vitamin D supplementation in pregnancy for the primary prevention of asthma and allergies in children. Contemp. Clin. Trials 2014, 38, 37–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisgaard, H.; Vissing, N.H.; Carson, C.G.; Bischoff, A.L.; Folsgaard, N.V.; Kreiner-Moller, E.; Chawes, B.L.; Stokholm, J.; Pedersen, L.; Bjarnadottir, E.; et al. Deep phenotyping of the unselected COPSAC2010 birth cohort study. Clin. Exp. Allergy 2013, 43, 1384–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rago, D.; Rasmussen, M.A.; Lee-Sarwar, K.A.; Weiss, S.T.; Lasky-Su, J.; Stokholm, J.; Bønnelykke, K.; Chawes, B.L.; Bisgaard, H. Fish-oil supplementation in pregnancy, child metabolomics and asthma risk. EBioMedicine 2019, 46, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Kelly, R.S.; Chu, S.H.; Kachroo, P.; Gürdeniz, G.; Chawes, B.L.; Bisgaard, H.; Weiss, S.T.; Lasky-Su, J. Maternal Metabolome in Pregnancy and Childhood Asthma or Recurrent Wheeze in the Vitamin D Antenatal Asthma Reduction Trial. Metabolites 2021, 11, 65. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Demirdag, Y.; Fuleihan, R.; Orange, J.S.; Yu, J.E. New primary immunodeficiencies 2021 context and future. Curr. Opin. Pediatr. 2021, 33, 657–675. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Topete, D.; Cidlowski, J.A. One hormone, two actions: Anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 2015, 22, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Liberman, A.C.; Budziñski, M.L.; Sokn, C.; Gobbini, R.P.; Steininger, A.; Arzt, E. Regulatory and Mechanistic Actions of Glucocorticoids on T and Inflammatory Cells. Front. Endocrinol. 2018, 9, 235. [Google Scholar] [CrossRef]
- Chalubinski, M.; Kowalski, M.L. Endocrine disrupters--potential modulators of the immune system and allergic response. Allergy 2006, 61, 1326–1335. [Google Scholar] [CrossRef]
- Hansbro, P.M.; Starkey, M.R.; Mattes, J.; Horvat, J.C. Pulmonary immunity during respiratory infections in early life and the development of severe asthma. Ann. Am. Thorac. Soc. 2014, 11 Suppl. 5, S297–S302. [Google Scholar] [CrossRef]
- Bereshchenko, O.; Bruscoli, S.; Riccardi, C. Glucocorticoids, Sex Hormones, and Immunity. Front. Immunol. 2018, 9, 1332. [Google Scholar] [CrossRef]
- Fleshner, M.; Deak, T.; Nguyen, K.T.; Watkins, L.R.; Maier, S.F. Endogenous glucocorticoids play a positive regulatory role in the anti-keyhole limpet hemocyanin in vivo antibody response. J. Immunol. 2001, 166, 3813–3819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- McKeever, T.; Harrison, T.W.; Hubbard, R.; Shaw, D. Inhaled corticosteroids and the risk of pneumonia in people with asthma: A case-control study. Chest 2013, 144, 1788–1794. [Google Scholar] [CrossRef]
- Guilbert, T.W.; Denlinger, L.C. Role of infection in the development and exacerbation of asthma. Expert Rev. Respir. Med. 2010, 4, 71–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busse, W.W.; Lemanske, R.F.; Gern, J.E. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 2010, 376, 826–834. [Google Scholar] [CrossRef]
- Pelaia, G.; Vatrella, A.; Gallelli, L.; Renda, T.; Cazzola, M.; Maselli, R.; Marsico, S.A. Respiratory infections and asthma. Respir. Med. 2006, 100, 775–784. [Google Scholar] [CrossRef]
- Ramadan, A.A.; Gaffin, J.M.; Israel, E.; Phipatanakul, W. Asthma and Corticosteroid Responses in Childhood and Adult Asthma. Clin. Chest. Med. 2019, 40, 163–177. [Google Scholar] [CrossRef]
- Commins, S.P.; Borish, L.; Steinke, J.W. Immunologic messenger molecules: Cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 2010, 125, S53–S72. [Google Scholar] [CrossRef]
- Payne, A.H.; Hales, D.B. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr. Rev. 2004, 25, 947–970. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.M.; DeHaven, C.D.; Barrett, T.; Mitchell, M.; Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal. Chem. 2009, 81, 6656–6667. [Google Scholar] [CrossRef]
Discovery Cohort: VDAART | ||
---|---|---|
Number of subjects | Age 1 Year (n = 449) | Age 6 Years (n = 421) |
BMI kg/m2, mean (SD) | 17.4 (2.2) | 16.9 (2.8) |
Sex, n (%) | ||
Female | 205 (45.7) | 192 (45.6) |
Male | 244 (54.3) | 229 (54.4) |
Race, n (%) | ||
Black | 220 (49.0) | 207 (49.2) |
White | 143 (31.8) | 133 (31.6) |
Other | 86 (19.2) | 81 (19.2) |
Ethnicity, n (%) | ||
Hispanic or Latino | 159 (35.4) | 146 (34.7) |
Not Hispanic or Latino | 290 (64.6) | 275 (65.3) |
Study site, n (%) | ||
Boston | 139 (31.0) | 123 (29.2) |
San Diego | 149 (33.2) | 144 (34.2) |
St. Louis | 161 (35.9) | 154 (36.6) |
Oral/Inhaled Corticosteroid Use, n (%) | 40 (8.9) | 115 (27.3) |
Asthma Diagnosis by Age 6, n (%) | 121 (26.9) | 106 (25.2) |
Total Infection Count to Age 6, mean (SD) | 28.3 (13.3) | 28.3 (12.9) |
Replication cohort: COPSAC | ||
Number of subjects | Age 18 Mos. (n = 494) | Age 6 Years (n = 481) |
BMI kg/m2, mean (SD) | 16.4 (2.2) | 15.4 (1.3) |
Sex, n (%) | ||
Female | 240 (48.6) | 224 (46.6) |
Male | 254 (51.4) | 257 (53.4) |
Oral/Inhaled Corticosteroid Use, n (%) | 76 (15.4) | 153 (31.8) |
Asthma Diagnosis by Age 6, n (%) | 119 (24.1) | 105 (21.8) |
Total Infection Count to Age 3, mean (SD) | 15.2 (9.0) | 14.9 (9.2) |
Discovery Population: VDAART | ||||
---|---|---|---|---|
Infection Proneness Quartile | Odds Ratio | 95%CI | p-Value | % Asthmatics (Total Number) |
Quartile 1 | - | - | - | 13.2 (14) |
Quartile 2 | 1.06 | (1.05, 1.06) | 0.323 | 22.6 (24) |
Quartile 3 | 1.05 | (1.04, 1.05) | 0.448 | 19.8 (21) |
Quartile 4 | 1.32 | (1.31, 1.33) | 3.71 × 10−6 | 44.3 (47) |
Replication Population: COPSAC | ||||
Infection Proneness Quartile | Odds Ratio | 95%CI | p-Value | % Asthmatics (Total Number) |
Quartile 1 | - | - | - | 3.8 (4) |
Quartile 2 | 1.06 | (1.06, 1.07) | 0.219 | 16.2 (17) |
Quartile 3 | 1.19 | (1.18, 1.19) | 1.65 × 10−3 | 23.8 (25) |
Quartile 4 | 1.49 | (1.49, 1.50) | 1.44 × 10−13 | 56.2 (59) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prince, N.; Kim, M.; Kelly, R.S.; Diray-Arce, J.; Bønnelykke, K.; Chawes, B.L.; Huang, M.; Levy, O.; Litonjua, A.A.; Stokholm, J.; et al. Reduced Steroid Metabolites Identify Infection-Prone Children in Two Independent Pre-Birth Cohorts. Metabolites 2022, 12, 1108. https://doi.org/10.3390/metabo12111108
Prince N, Kim M, Kelly RS, Diray-Arce J, Bønnelykke K, Chawes BL, Huang M, Levy O, Litonjua AA, Stokholm J, et al. Reduced Steroid Metabolites Identify Infection-Prone Children in Two Independent Pre-Birth Cohorts. Metabolites. 2022; 12(11):1108. https://doi.org/10.3390/metabo12111108
Chicago/Turabian StylePrince, Nicole, Min Kim, Rachel S. Kelly, Joann Diray-Arce, Klaus Bønnelykke, Bo L. Chawes, Mengna Huang, Ofer Levy, Augusto A. Litonjua, Jakob Stokholm, and et al. 2022. "Reduced Steroid Metabolites Identify Infection-Prone Children in Two Independent Pre-Birth Cohorts" Metabolites 12, no. 11: 1108. https://doi.org/10.3390/metabo12111108
APA StylePrince, N., Kim, M., Kelly, R. S., Diray-Arce, J., Bønnelykke, K., Chawes, B. L., Huang, M., Levy, O., Litonjua, A. A., Stokholm, J., Wheelock, C. E., Bisgaard, H., Weiss, S. T., & Lasky-Su, J. A. (2022). Reduced Steroid Metabolites Identify Infection-Prone Children in Two Independent Pre-Birth Cohorts. Metabolites, 12(11), 1108. https://doi.org/10.3390/metabo12111108