Liraglutide Effectiveness in Type 2 Diabetes: Insights from a Real-World Cohort of Portuguese Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Overview, Setting, and Participants
2.2. Assessments and Endpoints
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Cohort Characterisation
3.2. Clinical Effectiveness
3.2.1. Glycaemic Control
3.2.2. Anthropometric Parameters
3.2.3. Cardiovascular Risk Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regufe, V.M.G.; Pinto, C.; Perez, P. Metabolic syndrome in type 2 diabetic patients: A review of current evidence. Porto Biomed. J. 2020, 5, e101. [Google Scholar] [CrossRef] [PubMed]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, J.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2012, 8, 728–742. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.; Cuthbertson, D.J.; Wilding, J.P. Newer GLP-1 receptor agonists and obesity-diabetes. Peptides 2018, 100, 61–67. [Google Scholar] [CrossRef]
- Sharma, D.; Verma, S.; Vaidya, S.; Kalia, K.; Tiwari, V. Recent updates on GLP-1 agonists: Current advancements & challenges. Biomed. Pharmacother. 2018, 108, 952–962. [Google Scholar] [CrossRef]
- Shyangdan, D.S.; Royle, P.; Clar, C.; Sharma, P.; Waugh, N.; Snaith, A. Glucagon-like peptide analogues for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2011, 2011, Cd006423. [Google Scholar] [CrossRef]
- Scott, L.J. Liraglutide: A review of its use in adult patients with type 2 diabetes mellitus. Drugs 2014, 74, 2161–2174. [Google Scholar] [CrossRef]
- Russell-Jones, D.; Vaag, A.; Schmitz, O.; Sethi, B.K.; Lalic, N.; Antic, S.; Zdravkovic, M.; Ravn, G.M.; Simó, R. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): A randomised controlled trial. Diabetologia 2009, 52, 2046–2055. [Google Scholar] [CrossRef] [Green Version]
- Zinman, B.; Gerich, J.; Buse, J.B.; Lewin, A.; Schwartz, S.; Raskin, P.; Hale, P.M.; Zdravkovic, M.; Blonde, L. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 2009, 32, 1224–1230. [Google Scholar] [CrossRef] [Green Version]
- Nauck, M.; Frid, A.; Hermansen, K.; Shah, N.S.; Tankova, T.; Mitha, I.H.; Zdravkovic, M.; Düring, M.; Matthews, D.R. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: The LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care 2009, 32, 84–90. [Google Scholar] [CrossRef]
- Marre, M.; Shaw, J.; Brändle, M.; Bebakar, W.M.; Kamaruddin, N.A.; Strand, J.; Zdravkovic, M.; Le Thi, T.D.; Colagiuri, S. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes (LEAD-1 SU). Diabet. Med. J. Br. Diabet. Assoc. 2009, 26, 268–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buse, J.B.; Rosenstock, J.; Sesti, G.; Schmidt, W.E.; Montanya, E.; Brett, J.H.; Zychma, M.; Blonde, L. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: A 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009, 374, 39–47. [Google Scholar] [CrossRef]
- Garber, A.; Henry, R.; Ratner, R.; Garcia-Hernandez, P.A.; Rodriguez-Pattzi, H.; Olvera-Alvarez, I.; Hale, P.M.; Zdravkovic, M.; Bode, B. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): A randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 2009, 373, 473–481. [Google Scholar] [CrossRef]
- Henry, R.R.; Buse, J.B.; Sesti, G.; Davies, M.J.; Jensen, K.H.; Brett, J.; Pratley, R.E. Efficacy of antihyperglycemic therapies and the influence of baseline hemoglobin A(1C): A meta-analysis of the liraglutide development program. Endocr. Pract. 2011, 17, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Chiefari, E.; Caroleo, P.; Arcidiacono, B.; Corigliano, D.M.; Giuliano, S.; Brunetti, F.S.; Tanyolaç, S.; Foti, D.P.; Puccio, L.; et al. Long-Term Effectiveness of Liraglutide for Weight Management and Glycemic Control in Type 2 Diabetes. Int. J. Environ. Res. Public Health 2020, 17, 207. [Google Scholar] [CrossRef] [Green Version]
- Mirabelli, M.; Chiefari, E.; Tocci, V.; Caroleo, P.; Giuliano, S.; Greco, E.; Luque, R.M.; Puccio, L.; Foti, D.P.; Aversa, A.; et al. Clinical Effectiveness and Safety of Once-Weekly GLP-1 Receptor Agonist Dulaglutide as Add-On to Metformin or Metformin Plus Insulin Secretagogues in Obesity and Type 2 Diabetes. J. Clin. Med. 2021, 10, 985. [Google Scholar] [CrossRef]
- Frison, V.; Simioni, N.; Marangoni, A.; Balzano, S.; Vinci, C.; Zenari, L.; De Moliner, L.; Tadiotto, F.; D’Ambrosio, M.; Confortin, L.; et al. Clinical Impact of 5 Years of Liraglutide Treatment on Cardiovascular Risk Factors in Patients with Type 2 Diabetes Mellitus in a Real-Life Setting in Italy: An Observational Study. Diabetes Ther. 2018, 9, 2201–2208. [Google Scholar] [CrossRef] [Green Version]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Matikainen, N.; Söderlund, S.; Björnson, E.; Pietiläinen, K.; Hakkarainen, A.; Lundbom, N.; Taskinen, M.R.; Borén, J. Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: A single-centre randomized controlled study. Diabetes Obes. Metab. 2019, 21, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Bain, S.C.; Buse, J.B.; Idorn, T.; Rasmussen, S.; Ørsted, D.D.; Nauck, M.A. Occurence of First and Recurrent Major Adverse Cardiovascular Events with Liraglutide Treatment among Patients with Type 2 Diabetes and High Risk of Cardiovascular Events: A Post Hoc Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2019, 4, 1214–1220. [Google Scholar] [CrossRef]
- Mann, J.F.E.; Ørsted, D.D.; Brown-Frandsen, K.; Marso, S.P.; Poulter, N.R.; Rasmussen, S.; Tornøe, K.; Zinman, B.; Buse, J.B. Liraglutide and Renal Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 839–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudsen, J.S.; Thomsen, R.W.; Pottegård, A.; Knop, F.K.; Sørensen, H.T. Differences between Randomized Clinical Trial Patients and Real-World Initiators of the Glucagon-Like Peptide 1 Receptor Agonist Liraglutide. Diabetes Care 2018, 41, e133–e135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, J.F.F.; Santos, P. Medication adherence in type 2 diabetes mellitus patients: A cross-sectional study. Rev. Port. Med. Geral E Fam. 2020, 36, 104–112. [Google Scholar] [CrossRef]
- Falcão, I.M.; Pinto, C.; Santos, J.; Fernandes, M.D.L.; Ramalho, L.; Paixão, E.; Falcão, J.M. Estudo da prevalência da diabetes e das suas complicações numa coorte de diabéticos portugueses: Um estudo na rede médicos-sentinela. Rev. Port. Med. Geral E Fam. 2008, 24, 679–692. [Google Scholar] [CrossRef]
- Li, Q.; Chitnis, A.; Hammer, M.; Langer, J. Real-world clinical and economic outcomes of liraglutide versus sitagliptin in patients with type 2 diabetes mellitus in the United States. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2014, 5, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Ostawal, A.; Mocevic, E.; Kragh, N.; Xu, W. Clinical Effectiveness of Liraglutide in Type 2 Diabetes Treatment in the Real-World Setting: A Systematic Literature Review. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2016, 7, 411–438. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.; McEwan, P.; O’Shea, R.; George, L. A retrospective, case-note survey of type 2 diabetes patients prescribed incretin-based therapies in clinical practice. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2013, 4, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Rondinelli, M.; Rossi, A.; Gandolfi, A.; Saponaro, F.; Bucciarelli, L.; Adda, G.; Molinari, C.; Montefusco, L.; Specchia, C.; Chiara Rossi, M.; et al. Use of Liraglutide in the Real World and Impact at 36 Months on Metabolic Control, Weight, Lipid Profile, Blood Pressure, Heart Rate, and Renal Function. Clin. Ther. 2017, 39, 159–169. [Google Scholar] [CrossRef]
- Mezquita-Raya, P.; Reyes-Garcia, R.; Moreno-Perez, O.; Escalada-San Martin, J.; Ángel Rubio Herrera, M.; Lopez de la Torre Casares, M. Clinical Effects of Liraglutide in a Real-World Setting in Spain: eDiabetes-Monitor SEEN Diabetes Mellitus Working Group Study. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2015, 6, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Troncoso, I.; Carollo-Limeres, C.; Rios-Prego, M.; Guler, I.; Cadarso-Suárez, C.; F-Mariño, A. Liraglutide in a real-world setting: Joint modeling of metabolic response, prediction of efficacy, and cardiovascular risk. Endocrinol. Diabetes Y Nutr. 2019, 66, 376–384. [Google Scholar] [CrossRef]
- Feher, M.; Vega-Hernandez, G.; Mocevic, E.; Buysse, B.; Myland, M.; Power, G.S.; Nystrup Husemoen, L.L.; Kim, J.; Witte, D.R. Effectiveness of Liraglutide and Lixisenatide in the Treatment of Type 2 Diabetes: Real-World Evidence from The Health Improvement Network (THIN) Database in the United Kingdom. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2017, 8, 417–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadini, G.P.; Simioni, N.; Frison, V.; Dal Pos, M.; Bettio, M.; Rocchini, P.; Avogaro, A. Independent glucose and weight-reducing effects of Liraglutide in a real-world population of type 2 diabetic outpatients. Acta Diabetol. 2013, 50, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Peralta, F.; Lecube, A.; Fernández-Mariño, A.; Alonso Troncoso, I.; Morales, C.; Morales-Pérez, F.M.; Guler, I.; Cadarso-Suárez, C. Interindividual differences in the clinical effectiveness of liraglutide in Type 2 diabetes: A real-world retrospective study conducted in Spain. Diabet. Med. J. Br. Diabet. Assoc. 2018, 35, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Mirani, M.; Favacchio, G.; Serone, E.; Lucisano, G.; Rossi, M.C.; Berra, C.C. Liraglutide and cardiovascular outcomes in a real world type 2 diabetes cohort. Pharm. Res 2018, 137, 270–279. [Google Scholar] [CrossRef]
- Overbeek, J.A.; Heintjes, E.M.; Huisman, E.L.; Tikkanen, C.K.; van Diermen, A.W.; Penning-van Beest, F.J.A.; Herings, R.M.C. Clinical effectiveness of liraglutide vs basal insulin in a real-world setting: Evidence of improved glycaemic and weight control in obese people with type 2 diabetes. Diabetes Obes. Metab. 2018, 20, 2093–2102. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [Green Version]
Median (IQR) 1 | ||
---|---|---|
Sex, n (%) | female | 116 (60.7%) |
male | 75 (39.3%) | |
Age (years) 2 | 59.0 (52.0; 65.0) | |
Disease duration (years) 2 | 12.0 (6.0; 17.0) | |
HbA1c (%) | 8.3 (7.3, 9.2) | |
Body weight (Kg) | 95.0 (84.1, 105.2) | |
BMI (Kg/m2) | 35.6 (31.7; 39.5) | |
Body fat mass (%) | 41.0 (32.0, 46.0) | |
Waist diameter (cm) | 113.0 (106.0, 123.0) | |
Systolic BP (mmHg) | 140.0 (128.0, 156.0) | |
Diastolic BP (mmHg) | 82.0 (72.0–90.0) | |
Total cholesterol (mg/dL) | 162.0 (139.0–196.0) | |
HDL-c (mg/dL) | 42.0 (36.0–50.0) | |
LDL-c (mg/dL) | 95.0 (76.0–125.0) | |
TG (mg/dL) | 142.0 (106.3–191.8) |
Baseline (n = 191) | 6 Months (n = 182) | 12 Months (n = 191) | 24 Months (n = 134) | |
---|---|---|---|---|
HbA1c ≤ 6.5% | 18 (9.4%) | 33 (18.1%) | 35 (18.3%) | 27 (20.1%) |
p = 0.001 | p < 0.001 | p = 0.001 | ||
HbA1c ≤ 7.0% | 42 (22.0%) | 64 (35.2%) | 69 (36.1%) | 48 (35.8%) |
p < 0.001 | p < 0.001 | p = 0.010 | ||
HbA1c ≤ 7.5% | 61 (31.9%) | 93 (51.1%) | 100 (52.4%) | 67 (50.0%) |
p < 0.001 | p < 0.001 | p = 0.003 |
Baseline | 6 Months | 12 Months | 24 Months | |
---|---|---|---|---|
Weight (Kg) | 95.0 (84.1; 105.2) | 92.8 (80.7; 103.5) | 92.0 (80.0; 103.7) | 92.5 (81.3; 101.3) |
n = 191 | p < 0.001, n = 184 | p < 0.001, n = 191 | p < 0.001, n = 136 | |
BMI (Kg/m2) | 35.6 (31.7; 39.5) | 34.4 (30.8; 39.0) | 34.2 (30.4; 38.1) | 34.0 (30.8; 38.7) |
n = 182 | p < 0.001, n = 176 | p < 0.001; n = 182 | p < 0.001; n = 133 | |
Body fat mass (%) | 41.0 (32.0; 46.0) | 39.0 (32.0; 46.3) | 39.0 (31.0; 45.0) | 35.0 (29.0; 43.0) |
n = 59 | p = 0.010, n = 58 | p < 0.001, n = 55 | p = 0.002, n = 36 | |
Waist circumference (cm) | 113.0 (106.0; 123.0) | 112.0 (103.0; 118.5) | 111.0 (104.5; 119.0) | 111.0 (104.0; 118.0) |
n = 111 | p = 0.002, n = 101 | p = 0.001, n = 97 | p = 0.513, n = 67 |
Baseline | 6 Months | 12 Months | 24 Months | |
---|---|---|---|---|
Systolic BP (mmHg) | 137.0 (127.0–150.0) | 136.0 (125.0–148.0) | 138.5 (125.0–155.0) | 136.0 (127.0–149.5) |
n = 115 | p = 0.175, n = 107 | p = 0.779, n = 114 | p = 0.467, n = 81 | |
Diastolic BP (mmHg) | 81.0 (71.0–88.0) | 80.0 (74.0–86.0) | 80.0 (74.0–89.0) | 79.0 (71.5–87.5) |
n = 115 | p = 0.083, n = 107 | p = 0.629, n = 115 | p = 0.201, n = 81 | |
Total cholesterol (mg/dL) | 154.0 (135.0–182.0) | 148.5 (129.8–174.0) | 155.0 (135.5–172.5) | 154.0 (129.3–170.3) |
n = 75 | p = 0.122, n = 68 | p = 0.221, n = 73 | p = 0.091, n = 56 | |
HDL-c (mg/dL) | 42.0 (36.0–48.0) | 42.0 (34.0–50.0) | 40.0 (34.0–50.0) | 43.0 (36.5–52.5) |
n = 76 | p = 0.068, n = 68 | p = 0.983, n = 70 | p = 0.038, n = 57 | |
LDL-c (mg/dL) | 92.0 (74.0–115.0) | 86.0 (62.0–108.5) | 86.0 (67.3–110.8) | 85.0 (63.0–104.0) |
n = 75 | p = 0.242, n = 73 | p = 0.100, n = 72 | p = 0.033, n = 59 | |
TG (mg/dL) | 137.0 (99.0–173.5) | 122.0 (87.3–186.0) | 125.0 (99.0–182.0) | 137.0 (86.0–201.0) |
n = 77 | p = 0.062, n = 72 | p = 0.061, n = 75 | p = 0.585, n = 59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Nunes, J.; Nascimento, E.; Louro, J.; Dores, J.; Laginha, T.; Gonçalves-Ferreira, A.; Alves, M.; Souto, S.B.; Cunha, N.; Pina, E.; et al. Liraglutide Effectiveness in Type 2 Diabetes: Insights from a Real-World Cohort of Portuguese Patients. Metabolites 2022, 12, 1121. https://doi.org/10.3390/metabo12111121
Silva-Nunes J, Nascimento E, Louro J, Dores J, Laginha T, Gonçalves-Ferreira A, Alves M, Souto SB, Cunha N, Pina E, et al. Liraglutide Effectiveness in Type 2 Diabetes: Insights from a Real-World Cohort of Portuguese Patients. Metabolites. 2022; 12(11):1121. https://doi.org/10.3390/metabo12111121
Chicago/Turabian StyleSilva-Nunes, José, Edite Nascimento, Joana Louro, Jorge Dores, Teresa Laginha, Ana Gonçalves-Ferreira, Marta Alves, Selma B. Souto, Nelson Cunha, Elsa Pina, and et al. 2022. "Liraglutide Effectiveness in Type 2 Diabetes: Insights from a Real-World Cohort of Portuguese Patients" Metabolites 12, no. 11: 1121. https://doi.org/10.3390/metabo12111121
APA StyleSilva-Nunes, J., Nascimento, E., Louro, J., Dores, J., Laginha, T., Gonçalves-Ferreira, A., Alves, M., Souto, S. B., Cunha, N., Pina, E., Duarte, R., & Raposo, J. F. (2022). Liraglutide Effectiveness in Type 2 Diabetes: Insights from a Real-World Cohort of Portuguese Patients. Metabolites, 12(11), 1121. https://doi.org/10.3390/metabo12111121