Associations between Intra-Assessment Resting Metabolic Rate Variability and Health-Related Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Resting Indirect Calorimetry Assessments
2.3. Anthropometry and Body Composition Assessments
2.4. Cardiorespiratory Fitness Assessment
2.5. Circulating Cardiometabolic Risk Factors and Blood Pressure Assessments
2.6. Heart Rate and Heart Rate Variability Assessment
2.7. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burton, T.; Killen, S.S.; Armstrong, J.D.; Metcalfe, N.B. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc. R. Soc. B Biol. Sci. 2011, 278, 3465–3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speakman, J.R.; Król, E.; Johnson, M.S. The functional significance of individual variation in basal metabolic rate. Physiol. Biochem. Zool. 2004, 77, 900–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, C.R.; Kearney, M.R. Determinants of inter-specific variation in basal metabolic rate. J. Comp. Physiol. B 2013, 183, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Konarzewski, M.; Książek, A. Determinants of intra-specific variation in basal metabolic rate. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2013, 183, 27–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.Y.; Smith, S.; Ravussin, E.; Krakoff, J.; Plasqui, G.; Tanaka, S.; Murgatroyd, P.; Brychta, R.; Bock, C.; Carnero, E.; et al. Room Indirect Calorimetry Operating and Reporting Standards (RICORS 1.0): A Guide to Conducting and Reporting Human Whole-Room Calorimeter Studies. Obesity 2020, 28, 1613–1625. [Google Scholar] [CrossRef]
- Schoffelen, P.F.M.; Plasqui, G. Classical experiments in whole-body metabolism: Open-circuit respirometry—Diluted flow chamber, hood, or facemask systems. Eur. J. Appl. Physiol. 2018, 118, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Lam, Y.Y.; Ravussin, E. Indirect calorimetry: An indispensable tool to understand and predict obesity. Eur. J. Clin. Nutr. 2017, 71, 318–322. [Google Scholar] [CrossRef]
- Alcantara, J.M.A.; Galgani, J.E.; Jurado-Fasoli, L.; Dote-Montero, M.; Merchan-Ramirez, E.; Ravussin, E.; Ruiz, J.R.; Sanchez-Delgado, G. Validity of four commercially available metabolic carts for assessing resting metabolic rate and respiratory exchange ratio in non-ventilated humans. Clin. Nutr. 2022, 41, 746–754. [Google Scholar] [CrossRef]
- Donahoo, W.T.; Levine, J.A.; Melanson, E.L. Variability in energy expenditure and its components. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 599–605. [Google Scholar] [CrossRef]
- Nevill, A.; Holder, R.; Markovic, G. Scaling maximum oxygen uptake using lower leg muscle volume provides further insight into the pitfalls of whole body-mass power laws. J. Appl. Physiol. 2006, 101, 1006–1007. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Markovic, G.; Vucetic, V.; Holder, R. Can greater muscularity in larger individuals resolve the 3/4 power-law controversy when modelling maximum oxygen uptake? Ann. Hum. Biol. 2004, 31, 436–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolfrey, K.; Barker, A.; Thom, J.M.; Morse, C.I.; Narici, M.V.; Batterham, A.M. Scaling of maximal oxygen uptake by lower leg muscle volume in boys and men. J. Appl. Physiol. 2006, 100, 1851–1856. [Google Scholar] [CrossRef] [Green Version]
- Eliakim, A.; Barstow, T.J.; Brasel, J.A.; Ajie, H.; Lee, W.N.P.; Renslo, R.; Berman, N.; Cooper, D.M. Effect of exercise training on energy expenditure, muscle volume, and maximal oxygen uptake in female adolescents. J. Pediatrics 1996, 129, 537–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halsey, L.G.; Careau, V.; Pontzer, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Variability in energy expenditure is much greater in males than females. J. Hum. Evol. 2022, 171, 103229. [Google Scholar] [CrossRef]
- Fullmer, S.; Benson-Davies, S.; Earthman, C.P.; Frankenfield, D.C.; Gradwell, E.; Lee, P.S.P.; Piemonte, T.; Trabulsi, J. Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals. J. Acad. Nutr. Diet. 2015, 115, 1417–1446.e2. [Google Scholar] [CrossRef] [PubMed]
- Irving, C.J.; Eggett, D.L.; Fullmer, S. Comparing Steady State to Time Interval and Non-Steady State Measurements of Resting Metabolic Rate. Nutr. Clin. Pract. 2017, 32, 77–83. [Google Scholar] [CrossRef]
- Reeves, M.M.; Davies, P.S.W.; Bauer, J.; Battistutta, D. Reducing the time period of steady state does not affect the accuracy of energy expenditure measurements by indirect calorimetry. J. Appl. Physiol. 2004, 97, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Olejnik, L.A.; Peters, E.N.; Parrott, J.S.; Marcus, A.F.; Brody, R.A.; Hand, R.K.; Fiutem, J.J.; Byham-Gray, L.D. Abbreviated Steady State Intervals for Measuring Resting Energy Expenditure in Patients on Maintenance Hemodialysis. JPEN J. Parenter. Enter. Nutr. 2017, 41, 1348–1355. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, C.; Cooke, S.R.; Young, I.S. A reduced abbreviated indirect calorimetry protocol is clinically acceptable for use in spontaneously breathing patients with traumatic brain injury. Nutr. Clin. Pract. 2009, 24, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Mathisen, T.F.; Engen, K.M.; Sundgot-Borgen, J.; Stensrud, T. Evaluation of a short protocol for indirect calorimetry in females with eating disorders and healthy controls. Clin. Nutr. ESPEN 2017, 22, 28–35. [Google Scholar] [CrossRef]
- Frankenfield, D.C.; Sarson, G.Y.; Blosser, S.A.; Cooney, R.N.; Smith, J.S. Validation of a 5-minute steady state indirect calorimetry protocol for resting energy expenditure in critically ill patients. J. Am. Coll. Nutr. 1996, 15, 397–402. [Google Scholar] [CrossRef]
- Popp, C.; Butler, M.; Curran, M.; Illiano, P.; Sevick, M.A.; St-Jules, D. Evaluating steady-state resting energy expenditure using indirect calorimetry in adults with overweight and obesity. Clin. Nutr. 2019, 39, 2220–2226. [Google Scholar] [CrossRef]
- McClave, S.A.; Spain, D.A.; Skolnick, J.L.; Lowen, C.C.; Kleber, M.J.; Wickerham, P.S.; Vogt, J.R.; Looney, S.W. Achievement of steady state optimizes results when performing indirect calorimetry. J. Parenter. Enter. Nutr. 2003, 27, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Weissman, C.; Kemper, M.; Hyman, A.I. Variation in the resting metabolic rate of mechanically ventilated critically ill patients. Anesth. Analg. 1989, 68, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Delgado, G.; Alcantara, J.; Ortiz-Alvarez, L.; Xu, H.; Martinez-Tellez, B.; Labayen, I.; Ruiz, J. Reliability of resting metabolic rate measurements in young adults: Impact of methods for data analysis. Clin. Nutr. 2018, 37, 1618–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Delgado, G.; Martinez-Tellez, B.; Olza, J.; Aguilera, C.M.; Labayen, I.; Ortega, F.B.; Chillon, P.; Fernandez-Reguera, C.; Alcantara, J.M.A.; Martinez-Avila, W.D.; et al. Activating brown adipose tissue through exercise (ACTIBATE) in young adults: Rationale, design and methodology. Contemp. Clin. Trials 2015, 45, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Tellez, B.; Sanchez-Delgado, G.; Acosta, F.M.; Alcantara, J.M.A.; Amaro-Gahete, F.J.; Martinez-Avila, W.D.; Merchan-Ramirez, E.; Muñoz-Hernandez, V.; Osuna-Prieto, F.J.; Jurado-Fasoli, L.; et al. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat. Commun. 2022, 13, 5259. [Google Scholar] [CrossRef]
- Alcantara, J.M.A.; Sanchez-Delgado, G.; Martinez-Tellez, B.; Merchan-Ramirez, E.; Labayen, I.; Ruiz, J.R. Congruent validity and inter-day reliability of two breath by breath metabolic carts to measure resting metabolic rate in young adults. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 929–936. [Google Scholar] [CrossRef]
- Alcantara, J.M.A.; Delgado, G.S.; Gahete, F.J.A.; Galgani, J.E.; Ruiz, J.R. Impact of the Method Used to Select Gas Exchange Data for Estimating the Resting Metabolic Rate, as Supplied by Breath-by-Breath Metabolic Carts. Nutrients 2020, 12, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Weir, J.B.V. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Balke, B.; Ware, R. An experimental study of physical fitness of Air Force personnel. U. S. Armed Forces Med. J. 1959, 10, 675–688. [Google Scholar]
- Midgley, A.W.; McNaughton, L.R.; Polman, R.; Marchant, D. Criteria for determination of maximal oxygen uptake: A brief critique and recommendations for future research. Sports Med. 2007, 37, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Borg, E.; Kaijser, L. A comparison between three rating scales for perceived exertion and two different work tests. Scand. J. Med. Sci. Sports 2006, 16, 57–69. [Google Scholar] [CrossRef]
- Plaza-Florido, A.; Amaro-Gahete, F.J.; Acosta, F.M.; Sacha, J.; Alcantara, J.M.A. Heart rate rather than heart rate variability is better associated with cardiorespiratory fitness in adults. Eur. J. Sport Sci. 2022, 22, 836–845. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef]
- Plaza-Florido, A.; Alcantara, J.M.A.; Migueles, J.H.; Amaro-Gahete, F.J.; Acosta, F.M.; Mora-Gonzalez, J.; Sacha, J.; Ortega, F.B. Inter- and intra-researcher reproducibility of heart rate variability parameters in three human cohorts. Sci. Rep. 2020, 10, 11399. [Google Scholar] [CrossRef]
- Plaza-Florido, A.; Sacha, J.; Alcantara, J.M.A. Short-term heart rate variability in resting conditions: Methodological considerations. Kardiol. Pol. 2021, 79, 745–755. [Google Scholar] [CrossRef]
- Alcantara, J.M.A.; Plaza-florido, A.; Amaro-gahete, F.J.; Acosta, F.M.; Migueles, J.H.; Molina-garcia, P.; Sacha, J.; Sanchez-delgado, G.; Martinez-tellez, B. Impact of Using Different Levels of Threshold-Based Artefact Correction on the Quantification of Heart Rate Variability in Three Independent Human Cohorts. J. Clin. Med. 2020, 9, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Force, T. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381. [Google Scholar]
- Plaza-Florido, A.; Alcantara, J.M.A.; Amaro-Gahete, F.J.; Sacha, J.; Ortega, F.B. Cardiovascular Risk Factors and Heart Rate Variability: Impact of the Level of the Threshold-Based Artefact Correction Used to Process the Heart Rate Variability Signal. J. Med. Syst. 2020, 45, 2. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Childers, D.; Beetsch, J.; Allison, D.B.; Pietrobelli, A. Body size and human energy requirements: Reduced mass-specific resting energy expenditure in tall adults. J. Appl. Physiol. 2007, 103, 1543–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontzer, H.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Daily energy expenditure through the human life course. Science 2021, 373, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, A.M.; Murison, S.D.; Duncan, J.S.; Rance, K.A.; Speakman, J.R. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am. J. Clin. Nutr. 2005, 82, 941–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Verdejo, R.; Aguirre, C.; Galgani, J.E. Issues in Measuring and Interpreting Energy Balance and Its Contribution to Obesity. Curr. Obes. Rep. 2019, 8, 88–97. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Garatachea, N.; Berger, N.A.; Lucia, A. Exercise is the real polypill. Physiology 2013, 28, 330–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Althoff, T.; Sosič, R.; Hicks, J.L.; King, A.C.; Delp, S.L.; Leskovec, J. Large-scale physical activity data reveal worldwide activity inequality. Nature 2017, 547, 336–339. [Google Scholar] [CrossRef]
- Sarzynski, M.A.; Burton, J.; Rankinen, T.; Blair, S.N.; Church, T.S.; Després, J.P.; Hagberg, J.M.; Landers-Ramos, R.; Leon, A.S.; Mikus, C.R.; et al. The effects of exercise on the lipoprotein subclass profile: A meta-analysis of 10 interventions. Atherosclerosis 2015, 243, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Harrington, D.M.; Champagne, C.M.; Broyles, S.T.; Johnson, W.D.; Tudor-Locke, C.; Katzmarzyk, P.T. Cardiometabolic risk factor response to a lifestyle intervention: A randomized trial. Metab. Syndr. Relat. Disord. 2015, 13, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Florido, A.; Sacha, J.; Alcantara, J.M.A. Associations between different heart rate variability ratios and cardiometabolic risk factors in young adults. Am. J. Hum. Biol. 2022, e23797, (Online ahead of print). [Google Scholar] [CrossRef]
- La Rovere, M.T.; Pinna, G.D.; Maestri, R.; Mortara, A.; Capomolla, S.; Febo, O.; Ferrari, R.; Franchini, M.; Gnemmi, M.; Opasich, C.; et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 2003, 107, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Bigger, J.T.; Fleiss, J.L.; Steinman, R.C.; Rolnitzky, L.M.; Kleiger, R.E.; Rottman, J.N. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 1992, 85, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Kleiger, R.E.; Miller, J.P.; Bigger, J.T.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.C.; Murray, C.; Janse van Rensburg, D.C.; Fletcher, L. A comparison between heart rate and heart rate variability as indicators of cardiac health and fitness. Front. Physiol. 2013, 4, 337. [Google Scholar] [CrossRef] [Green Version]
- González-Acedo, A.; Plaza-Florido, A.; Amaro-Gahete, F.J.; Sacha, J.; Alcantara, J.M.A. Associations between heart rate variability and maximal fat oxidation in two different cohorts of healthy sedentary adults. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2338–2347. [Google Scholar] [CrossRef]
- Aune, D.; Sen, A.; ó’Hartaigh, B.; Janszky, I.; Romundstad, P.R.; Tonstad, S.; Vatten, L.J. Resting heart rate and the risk of cardiovascular disease, total cancer, and all-cause mortality—A systematic review and dose–response meta-analysis of prospective studies. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 504–517. [Google Scholar] [CrossRef]
- Galgani, J.E.; Fernández-Verdejo, R. Pathophysiological role of metabolic flexibility on metabolic health. Obes. Rev. 2021, 22, e13131. [Google Scholar] [CrossRef] [PubMed]
- Samra, J.S.; Clark, M.L.; Humphreys, S.M.; Macdonald, I.A.; Frayn, K.N. Regulation of lipid metabolism in adipose tissue during early starvation. Am. J. Physiol. 1996, 271, E541–E554. [Google Scholar] [CrossRef]
- Jastroch, M.; Divakaruni, A.S.; Mookerjee, S.; Treberg, J.R.; Brand, M.D. Mitochondrial proton and electron leaks. Essays Biochem. 2010, 47, 53–67. [Google Scholar] [PubMed] [Green Version]
- Speakman, J.R.; Talbot, D.A.; Selman, C.; Snart, S.; McLaren, J.S.; Redman, P.; Krol, E.; Jackson, D.M.; Johnson, M.S.; Brand, M.D. Uncoupled and surviving: Individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 2004, 3, 87–95. [Google Scholar] [CrossRef]
- Larsen, F.J.; Schiffer, T.A.; Sahlin, K.; Ekblom, B.; Weitzberg, E.; Lundberg, J.O. Mitochondrial oxygen affinity predicts basal metabolic rate in humans. FASEB J. 2011, 25, 2843–2852. [Google Scholar] [CrossRef]
- Daniele, S.; Scarfò, G.; Ceccarelli, L.; Fusi, J.; Zappelli, E.; Biagini, D.; Lomonaco, T.; Di Francesco, F.; Franzoni, F.; Martini, C. The Mediterranean Diet Positively Affects Resting Metabolic Rate and Salivary Microbiota in Human Subjects: A Comparison with the Vegan Regimen. Biology 2021, 10, 1292. [Google Scholar] [CrossRef] [PubMed]
- Belstrøm, D. The salivary microbiota in health and disease. J. Oral Microbiol. 2020, 12, 1723975. [Google Scholar] [CrossRef] [PubMed]
- Riedl, R.A.; Atkinson, S.N.; Burnett, C.M.L.; Grobe, J.L.; Kirby, J.R. The Gut Microbiome, Energy Homeostasis, and Implications for Hypertension. Curr. Hypertens. Rep. 2017, 19, 27. [Google Scholar] [CrossRef] [Green Version]
- Scheithauer, T.P.M.; Dallinga-Thie, G.M.; de Vos, W.M.; Nieuwdorp, M.; van Raalte, D.H. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol. Metab. 2016, 5, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.W.P.; Jarczok, M.N.; Ellis, R.J.; Hillecke, T.K.; Thayer, J.F.; Koenig, J. Two-week test-retest reliability of the Polar® RS800CXTM to record heart rate variability. Clin. Physiol. Funct. Imaging 2017, 37, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Tsitoglou, K.I.; Koutedakis, Y.; Dinas, P.C.; Hernando, A.; Nanomedicina, B.; Khadka, R.; Koirala, B. Validation of the Polar RS800CX for assessing heart rate variability during rest, moderate cycling and post-exercise recovery. F1000Research 2018, 7, 1501. [Google Scholar] [CrossRef]
Men (n = 35) | Women (n = 72) | ||||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p | |
Anthropometry and body composition parameters | |||||
Weight (kg) | 82 | 16 | 63 | 12 | <0.001 |
Height (cm) | 175 | 7 | 164 | 7 | <0.001 |
BMI (kg/m2) | 27 | 5 | 23 | 4 | <0.001 |
Fat mass (kg) | 25 | 11 | 24 | 8 | 0.558 |
Fat mass (%) | 30 | 7 | 38 | 6 | <0.001 |
Fat free mass (kg) | 55 | 7 | 38 | 5 | <0.001 |
Waist circumference (cm) | 89 | 14 | 76 | 11 | <0.001 |
Cardiorespiratory fitness parameters | |||||
CRF (ml/min) | 3745 | 710 | 2528 | 433 | <0.001 |
CRFBW (ml/[kg/BW]/min) | 46.2 | 8.9 | 40.7 | 5.9 | 0.002 |
CRFFFM (ml/[kg/FFM]/min) | 67.7 | 9.5 | 67.0 | 8.1 | 0.708 |
Circulating cardiometabolic risk factors and blood pressure parameters | |||||
Glucose (mg/dl) | 89 | 7 | 86 | 5 | 0.052 |
Insulin (UI/ml) | 9 | 6 | 7 | 3 | 0.257 |
HOMA index | 2 | 2 | 2 | 1 | 0.185 |
Total cholesterol (mg/dl) | 161 | 32 | 167 | 32 | 0.431 |
HDL-C (mg/dl) | 45 | 8 | 55 | 11 | <0.001 |
LDL-C (mg/dl) | 98 | 28 | 96 | 24 | 0.707 |
Triglycerides (mg/dl) | 88 | 45 | 77 | 42 | 0.256 |
Systolic BP (mm Hg) | 127 | 12 | 112 | 11 | <0.001 |
Diastolic BP (mm Hg) | 70 | 12 | 67 | 8 | 0.122 |
Cardiometabolic risk Z-score 1 | 0.60 | 0.70 | −0.30 | 0.50 | <0.001 |
Cardiometabolic risk Z-score 2 | 0.40 | 0.80 | −0.20 | 0.50 | 0.002 |
Heart rate and heart rate variability parameters | |||||
Mean HR (bpm) | 67 | 11 | 69 | 9 | 0.537 |
RMSSD (ms) | 59 | 34 | 62 | 32 | 0.694 |
SDNN (ms) | 54 | 25 | 53 | 23 | 0.888 |
pNN50 (%) | 33 | 23 | 36 | 21 | 0.513 |
HF (ms2) | 7 | 1 | 7 | 1 | 0.380 |
HRV Z-score | 0.01 | 1.00 | 0.10 | 1.00 | 0.700 |
CV for VO2 | CV for VCO2 | CV for RER | CV for REE | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Men | Women | Men | Women | Men | Women | |||||||||
β | p | β | p | β | p | β | p | β | p | β | p | β | p | β | p | |
Anthropometry and body composition parameters | ||||||||||||||||
Weight (kg) | −0.100 | 0.558 | 0.103 | 0.851 | −0.172 | 0.308 | 0.030 | 0.800 | −0.158 | 0.351 | −0.066 | 0.598 | −0.154 | 0.362 | −0.025 | 0.838 |
Height (cm) | 0.070 | 0.695 | 0.067 | 0.580 | 0.067 | 0.709 | −0.043 | 0.716 | 0.079 | 0.656 | −0.123 | 0.317 | 0.134 | 0.453 | −0.045 | 0.709 |
BMI (kg/m2) | −0.143 | 0.393 | 0.054 | 0.661 | −0.215 | 0.193 | 0.040 | 0.740 | −0.195 | 0.240 | −0.009 | 0.942 | −0.214 | 0.197 | −0.013 | 0.916 |
Fat mass (kg) | −0.190 | 0.272 | 0.117 | 0.336 | −0.244 | 0.155 | 0.064 | 0.594 | −0.109 | 0.530 | −0.065 | 0.603 | −0.218 | 0.205 | −0.022 | 0.855 |
Fat mass (%) | −0.210 | 0.231 | 0.081 | 0.508 | −0.235 | 0.177 | 0.083 | 0.493 | −0.061 | 0.729 | −0.037 | 0.769 | −0.228 | 0.192 | −0.021 | 0.865 |
Fat free mass (kg) | 0.093 | 0.585 | 0.040 | 0.745 | 0.010 | 0.953 | −0.033 | 0.784 | −0.177 | 0.291 | −0.040 | 0.751 | 0.012 | 0.943 | −0.033 | 0.783 |
Waist circumference (cm) | −0.086 | 0.613 | 0.126 | 0.301 | −0.167 | 0.320 | 0.032 | 0.794 | −0.257 | 0.122 | −0.161 | 0.195 | −0.256 | 0.125 | −0.091 | 0.453 |
Cardiorespiratory fitness parameters | ||||||||||||||||
CRF (mL/min) | 0.042 | 0.821 | −0.017 | 0.894 | −0.054 | 0.769 | −0.048 | 0.698 | −0.283 | 0.116 | −0.006 | 0.964 | −0.104 | 0.576 | −0.060 | 0.623 |
CRFBW (mL/[kg/BW]/min) | 0.082 | 0.650 | −0.135 | 0.273 | 0.068 | 0.706 | −0.085 | 0.489 | −0.112 | 0.530 | 0.084 | 0.507 | 0.063 | 0.728 | −0.038 | 0.758 |
CRFFFM (mL/[kg/FFM]/min) | 0.005 | 0.978 | −0.075 | 0.543 | −0.038 | 0.835 | −0.028 | 0.818 | −0.177 | 0.325 | 0.049 | 0.696 | −0.019 | 0.918 | −0.048 | 0.693 |
Circulating cardiometabolic risk factors and blood pressure parameters | ||||||||||||||||
Glucose (mg/dL) | −0.158 | 0.390 | 0.071 | 0.560 | −0.037 | 0.839 | −0.014 | 0.907 | 0.260 | 0.153 | −0.072 | 0.564 | −0.025 | 0.893 | −0.044 | 0.713 |
Insulin (UI/mL) | −0.185 | 0.299 | 0.199 | 0.096 | −0.253 | 0.150 | 0.098 | 0.408 | −0.017 | 0.925 | −0.020 | 0.872 | −0.277 | 0.123 | 0.081 | 0.499 |
HOMA index | −0.162 | 0.367 | 0.218 | 0.072 | −0.140 | 0.436 | 0.159 | 0.186 | 0.022 | 0.904 | −0.020 | 0.876 | −0.157 | 0.391 | 0.127 | 0.289 |
Total cholesterol (mg/dL) | 0.099 | 0.589 | 0.016 | 0.896 | 0.149 | 0.412 | 0.115 | 0.330 | −0.056 | 0.761 | 0.004 | 0.974 | 0.030 | 0.873 | 0.074 | 0.528 |
HDL-C (mg/dl) | 0.206 | 0.253 | −0.148 | 0.224 | 0.182 | 0.313 | −0.158 | 0.187 | −0.119 | 0.514 | −0.082 | 0.509 | 0.108 | 0.559 | −0.162 | 0.177 |
LDL-C (mg/dl) | 0.086 | 0.638 | −0.014 | 0.906 | 0.132 | 0.468 | 0.092 | 0.435 | −0.065 | 0.723 | 0.009 | 0.939 | 0.021 | 0.912 | 0.065 | 0.584 |
Triglycerides (mg/dl) | −0.002 | 0.990 | −0.057 | 0.640 | −0.051 | 0.781 | −0.067 | 0.575 | 0.091 | 0.623 | −0.043 | 0.728 | −0.083 | 0.659 | −0.140 | 0.240 |
Systolic BP (mm Hg) | 0.081 | 0.656 | 0.046 | 0.701 | −0.013 | 0.944 | 0.069 | 0.562 | −0.231 | 0.196 | 0.049 | 0.692 | −0.046 | 0.800 | 0.073 | 0.542 |
Diastolic BP (mm Hg) | −0.023 | 0.898 | 0.043 | 0.726 | −0.148 | 0.395 | −0.090 | 0.454 | −0.235 | 0.170 | −0.133 | 0.286 | −0.264 | 0.123 | −0.114 | 0.345 |
Cardiometabolic risk Z-score 1 | −0.097 | 0.600 | 0.066 | 0.588 | −0.152 | 0.409 | 0.046 | 0.701 | −0.090 | 0.628 | 0.010 | 0.934 | −0.229 | 0.218 | −0.046 | 0.702 |
Cardiometabolic risk Z-score 2 | −0.062 | 0.740 | 0.062 | 0.614 | −0.129 | 0.487 | 0.070 | 0.562 | −0.096 | 0.606 | 0.009 | 0.940 | −0.195 | 0.296 | −0.015 | 0.900 |
Heart rate and heart rate variability parameters | ||||||||||||||||
Mean HR (bpm) | −0.145 | 0.443 | −0.039 | 0.771 | −0.069 | 0.717 | 0.054 | 0.680 | 0.407 | 0.025 | 0.088 | 0.521 | 0.086 | 0.651 | 0.066 | 0.616 |
RMSSD (ms) | 0.085 | 0.643 | 0.030 | 0.823 | −0.015 | 0.933 | −0.012 | 0.928 | −0.364 | 0.039 | −0.071 | 0.602 | −0.040 | 0.828 | −0.021 | 0.873 |
SDNN (ms) | 0.070 | 0.702 | −0.046 | 0.730 | −0.023 | 0.900 | −0.028 | 0.834 | −0.330 | 0.062 | 0.071 | 0.606 | −0.074 | 0.686 | −0.028 | 0.833 |
pNN50 (%) | 0.121 | 0.503 | 0.120 | 0.362 | 0.010 | 0.955 | 0.023 | 0.862 | −0.376 | 0.031 | −0.082 | 0.550 | −0.047 | 0.795 | 0.036 | 0.787 |
HF (ms2) | 0.074 | 0.683 | 0.018 | 0.891 | −0.013 | 0.943 | −0.076 | 0.563 | −0.288 | 0.101 | −0.074 | 0.586 | −0.033 | 0.855 | −0.025 | 0.848 |
HRV Z-score | 0.047 | 0.800 | −0.008 | 0.949 | 0.002 | 0.989 | −0.044 | 0.737 | −0.231 | 0.201 | −0.070 | 0.611 | −0.003 | 0.988 | −0.026 | 0.844 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcantara, J.M.A.; Osuna-Prieto, F.J.; Plaza-Florido, A. Associations between Intra-Assessment Resting Metabolic Rate Variability and Health-Related Factors. Metabolites 2022, 12, 1218. https://doi.org/10.3390/metabo12121218
Alcantara JMA, Osuna-Prieto FJ, Plaza-Florido A. Associations between Intra-Assessment Resting Metabolic Rate Variability and Health-Related Factors. Metabolites. 2022; 12(12):1218. https://doi.org/10.3390/metabo12121218
Chicago/Turabian StyleAlcantara, Juan M. A., Francisco J. Osuna-Prieto, and Abel Plaza-Florido. 2022. "Associations between Intra-Assessment Resting Metabolic Rate Variability and Health-Related Factors" Metabolites 12, no. 12: 1218. https://doi.org/10.3390/metabo12121218
APA StyleAlcantara, J. M. A., Osuna-Prieto, F. J., & Plaza-Florido, A. (2022). Associations between Intra-Assessment Resting Metabolic Rate Variability and Health-Related Factors. Metabolites, 12(12), 1218. https://doi.org/10.3390/metabo12121218