Effects of the Protein Concentration and Quality in a Canned Diet on the Fecal Microbiota of Healthy Adult Cats
Abstract
:1. Introduction
2. Results
2.1. Fecal Microbiota
2.2. Fecal Microbial Metabolites
3. Discussion
4. Material and Methods
4.1. Study Design
4.2. Analysis of the Microbiota and Bacterial Metabolites in the Fecal Samples
4.3. Statistical Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salaun, F.; Blanchard, G.; Le Paih, L.; Roberti, F.; Niceron, C. Impact of macronutrient composition and palatability in wet diets on food selection in cats. J. Anim. Physiol. Anim. Nutr. 2017, 101, 320–328. [Google Scholar] [CrossRef]
- Pilla, R.; Suchodolski, J.S. The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 605–621. [Google Scholar] [CrossRef]
- Bermingham, E.N.; Kittelmann, S.; Young, W.; Kerr, K.R.; Swanson, K.S.; Roy, N.C.; Thomas, D.G. Post-Weaning diet affects faecal microbial composition but not selected adipose gene expression in the cat (Felis catus). PLoS ONE 2013, 8, e80992. [Google Scholar] [CrossRef] [Green Version]
- Bermingham, E.N.; Young, W.; Kittelmann, S.; Kerr, K.R.; Swanson, K.S.; Roy, N.C.; Thomas, D.G. Dietary format alters fecal bacterial populations in the domestic cat (Felis catus). Microbiologyopen 2013, 2, 173–181. [Google Scholar] [CrossRef]
- Hooda, S.; Vester Boler, B.M.; Kerr, K.R.; Dowd, S.E.; Swanson, K.S. The gut microbiome of kittens is affected by dietary protein:carbohydrate ratio and associated with blood metabolite and hormone concentrations. Br. J. Nutr. 2013, 109, 1637–1646. [Google Scholar] [CrossRef] [Green Version]
- Young, W.; Moon, C.D.; Thomas, D.G.; Cave, N.J.; Bermingham, E.N. Pre- and post-weaning diet alters the faecal metagenome in the cat with differences in vitamin and carbohydrate metabolism gene abundances. Sci. Rep. 2016, 6, 34668. [Google Scholar] [CrossRef] [Green Version]
- Butowski, C.F.; Thomas, D.G.; Young, W.; Cave, N.J.; McKenzie, C.M.; Rosendale, D.I.; Bermingham, E.N. Addition of plant dietary fibre to a raw red meat high protein, high fat diet, alters the faecal bacteriome and organic acid profiles of the domestic cat (Felis catus). PLoS ONE 2019, 14, e0216072. [Google Scholar] [CrossRef] [PubMed]
- Badri, D.V.; Jackson, M.I.; Jewell, D.E. Dietary Protein and Carbohydrate Levels Affect the Gut Microbiota and Clinical Assessment in Healthy Adult Cats. J. Nutr. 2021, 151, 3637–3650. [Google Scholar] [CrossRef]
- Paßlack, N.; Burmeier, H.; Brenten, T.; Neumann, K.; Zentek, J. Relevance of dietary protein concentration and quality as risk factors for the formation of calcium oxalate stones in cats. J. Nutr. Sci. 2014, 3, e51. [Google Scholar] [CrossRef] [Green Version]
- Paßlack, N.; Kohn, B.; Doherr, M.G.; Zentek, J. Influence of protein concentration and quality in a canned diet on urine composition, apparent nutrient digestibility and energy supply in adult cats. BMC Vet. Res. 2018, 14, 225. [Google Scholar] [CrossRef]
- Oldenhage, S. Einfluss der Proteinversorgung auf Einige Mikrobielle Metaboliten im Darmlumen und Harn Sowie Die Histologie des Kolons bei Katzen. Ph.D. Thesis, Tierärztliche Hochschule Hannover, Hannover, Germany, 2003. [Google Scholar]
- Darragh, A.J.; Hodgkinson, S.M. Quantifying the digestibility of dietary protein. J. Nutr. 2000, 130, 1850S–1856S. [Google Scholar] [CrossRef] [Green Version]
- Ma, N.; Tian, Y.; Wu, Y.; Ma, X. Contributions of the Interaction between Dietary Protein and Gut Microbiota to Intestinal Health. Curr. Protein Pept. Sci. 2017, 18, 795–808. [Google Scholar] [CrossRef]
- Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of Dietary Protein and Peptides by Intestinal Microbes and their Impacts on Gut. Curr. Protein Pept. Sci. 2015, 16, 646–654. [Google Scholar] [CrossRef]
- Pinna, C.; Stefanelli, C.; Biagi, G. In Vitro effect of dietary protein level and nondigestible oligosaccharides on feline fecal microbiota. J. Anim. Sci. 2014, 92, 5593–5602. [Google Scholar] [CrossRef] [Green Version]
- Funaba, M.; Oka, Y.; Kobayashi, S.; Kaneko, M.; Yamamoto, H.; Namikawa, K.; Iriki, T.; Hatano, Y.; Abe, M. Evaluation of meat meal, chicken meal, and corn gluten meal as dietary sources of protein in dry cat food. Can. J. Vet. Res. 2005, 69, 299–304. [Google Scholar]
- Golder, C.; Weemhoff, J.L.; Jewell, D.E. Cats Have Increased Protein Digestibility as Compared to Dogs and Improve Their Ability to Absorb Protein as Dietary Protein Intake Shifts from Animal to Plant Sources. Animals 2020, 10, 541. [Google Scholar] [CrossRef] [Green Version]
- Reilly, L.M.; He, F.; Rodriguez-Zas, S.L.; Southey, B.R.; Hoke, J.M.; Davenport, G.M.; de Godoy, M.R.C. Effects of graded inclusion levels of raw garbanzo beans on apparent total tract digestibility, fecal quality, and fecal fermentative end-products and microbiota in extruded feline diets. J. Anim. Sci. 2021, 99, skab297. [Google Scholar] [CrossRef]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium species as probiotics: Potentials and challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Plantinga, E.A.; Bosch, G.; Hendriks, W.H. Estimation of the dietary nutrient profile of free-roaming feral cats: Possible implications for nutrition of domestic cats. Br. J. Nutr. 2011, 106, S35–S48. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, A.; Massy, Z.A.; Meijers, B.; Evenepoel, P.; Vanholder, R.; Raj, D.S. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am. J. Kidney Dis. 2016, 67, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Hughes, K.L.; Slater, M.R.; Geller, S.; Burkholder, W.J.; Fitzgerald, C. Diet and lifestyle variables as risk factors for chronic renal failure in pet cats. Prev. Vet. Med. 2002, 55, 1–15. [Google Scholar] [CrossRef]
- Böswald, L.F.; Kienzle, E.; Dobenecker, B. Observation about phosphorus and protein supply in cats and dogs prior to the diagnosis of chronic kidney disease. J. Anim. Physiol. Anim. Nutr. (Berl.) 2018, 102, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Polzin, D.J.; Osborne, C.A.; Ross, S.; Jacob, F. Dietary management of feline chronic renal failure: Where are we now? In what direction are we headed? J. Feline Med. Surg. 2000, 2, 75–82. [Google Scholar] [CrossRef]
- Schauf, S.; Coltherd, J.C.; Atwal, J.; Gilham, M.; Carvell-Miller, L.J.; Renfrew, H.; Elliott, J.; Elliott, D.; Bijsmans, E.S.; Biourge, V.C.; et al. Clinical progression of cats with early-stage chronic kidney disease fed diets with varying protein and phosphorus contents and calcium to phosphorus ratios. J. Vet. Intern. Med. 2021, 35, 2797–2811. [Google Scholar] [CrossRef]
- Paßlack, N.; Kohn, B.; Doherr, M.G.; Zentek, J. Impact of Dietary Protein Concentration and Quality on Immune Function of Cats. PLoS ONE 2017, 12, e0169822. [Google Scholar] [CrossRef] [Green Version]
- Cline, M.G.; Burns, K.M.; Coe, J.B.; Downing, R.; Durzi, T.; Murphy, M.; Parker, V. 2021 AAHA Nutrition and Weight Management Guidelines for Dogs and Cats. J. Am. Anim. Hosp. Assoc. 2021, 57, 153–178. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Dogs and Cats; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Paßlack, N.; Kohn, B.; Vahjen, W.; Zentek, J. Effects of dietary cellobiose on the intestinal microbiota and excretion of nitrogen metabolites in healthy adult dogs. J. Anim. Physiol. Anim. Nutr. 2021, 105, 569–578. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef] [Green Version]
- Paßlack, N.; Vahjen, W.; Zentek, J. Dietary inulin affects the intestinal microbiota in sows and their suckling piglets. BMC Vet. Res. 2015, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Paßlack, N.; Zentek, J.; Larsen, J.A.; Westropp, J.L.; Fascetti, A.J. Impact of hyperlipidaemia on intermediary metabolism, faecal microbial metabolites and urinary characteristics of lipoprotein lipase deficient vs. normal cats. J. Anim. Physiol. Anim. Nutr. 2018, 102, e139–e146. [Google Scholar] [CrossRef] [Green Version]
Low Protein Quality | High Protein Quality | SEM | p Value (Polynomial Contrasts) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inter-action | Low Protein Quality | High Protein Quality | Protein Concentration | Protein Quality | |||||||||||
36.7 | 45.0 | 56.1 | 36.2 | 43.3 | 54.9 | Lin 1 | Quadr 1 | Lin 1 | Quadr 1 | Lin 1 | Quadr 1 | ||||
CHAO1 index | 21.0 | 26.0 | 25.0 | 30.1 | 23.7 | 26.4 | 1.40 | 0.091 | - | - | - | - | 0.805 | 0.801 | 0.197 |
Shannon index | 4.68 | 4.81 | 4.79 | 4.80 | 4.55 | 4.72 | 0.04 | 0.179 | - | - | - | - | 0.993 | 0.433 | 0.526 |
Evenness | 0.56 | 0.56 | 0.55 | 0.54 | 0.53 | 0.55 | 0.00 | 0.597 | - | - | - | - | 0.707 | 0.401 | 0.015 |
Low Protein Quality | High Protein Quality | SEM | p Value (Polynomial Contrasts) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inter-action | Low Protein Quality | High Protein Quality | Protein Concentra-tion | Protein Quality | |||||||||||||||||
36.7 | n 1 | 45.0 | n | 56.1 | n | 36.2 | n | 43.3 | n | 54.9 | n | Lin | Quadr | Lin | Quadr | Lin | Quadr | ||||
Actinobacteria | 7.68 | 10 | 3.87 | 10 | 8.15 | 10 | 5.75 | 10 | 6.94 | 10 | 6.93 | 10 | 0.50 | 0.138 | - | - | - | - | 0.429 | 0.168 | 0.979 |
Bacteria2 | 1.27 | 10 | 3.49 | 10 | 1.57 | 10 | 2.09 | 10 | 0.91 | 10 | 1.41 | 10 | 0.33 | 0.064 | - | - | - | - | 0.800 | 0.497 | 0.366 |
Bacteroidetes | 8.47 | 10 | 13.9 | 10 | 6.80 | 10 | 6.46 | 10 | 4.83 | 10 | 5.34 | 10 | 0.79 | 0.169 | - | - | - | - | 0.205 | 0.104 | 0.008 |
Firmicutes | 79.8 | 10 | 71.1 | 10 | 75.1 | 10 | 82.5 | 10 | 84.3 | 10 | 79.2 | 10 | 1.12 | 0.102 | - | - | - | - | 0.092 | 0.633 | <0.001 |
Fusobacteria | 2.22 | 10 | 5.96 | 10 | 7.96 | 10 | 2.09 | 10 | 2.65 | 10 | 5.90 | 10 | 0.62 | 0.422 | - | - | - | - | 0.006 | 0.881 | 0.040 |
Proteobacteria | 0.57 | 10 | 1.67 | 10 | 0.38 | 10 | 1.14 | 10 | 0.33 | 10 | 1.23 | 10 | 0.16 | 0.039 | 0.540 | 0.032 | 0.913 | 0.022 | - | - | - |
Low Protein Quality | High Protein Quality | SEM | p Value (Polynomial Contrasts) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inter-action | Low Protein Quality | High Protein Quality | Protein Concentration | Protein Quality | |||||||||||||||||
36.7 | n 1 | 45.0 | n | 56.1 | n | 36.2 | n | 43.3 | n | 54.9 | n | Lin | Quadr | Lin | Quadr | Lin | Quadr | ||||
Alistipes | 0.04 | 5 | 0.23 | 7 | 0.13 | 9 | 0.03 | 5 | 0.03 | 5 | 0.72 | 6 | 0.11 | * | * | * | * | * | * | * | * |
Alkaliphilus | 1.52 | 10 | 0.97 | 10 | 1.15 | 10 | 0.42 | 9 | 2.76 | 10 | 0.69 | 10 | 0.34 | 0.285 | - | - | - | - | 0.900 | 0.495 | 0.904 |
Anaerobiospirillum | 0.46 | 8 | 1.12 | 10 | 0.30 | 9 | 0.70 | 8 | 0.27 | 6 | 0.53 | 8 | 0.13 | 0.264 | - | - | - | - | 0.181 | 0.380 | 0.135 |
Atopobium | 3.29 | 3 | 1.29 | 3 | 3.23 | 5 | 1.67 | 3 | 1.76 | 3 | 1.45 | 3 | 0.28 | * | * | * | * | * | * | * | * |
Bacillus | 0.40 | 6 | 0.23 | 5 | 0.05 | 7 | 0.88 | 8 | 0.05 | 9 | 0.27 | 6 | 0.17 | * | * | * | * | * | * | * | * |
Bacteria 2 | 1.27 | 10 | 3.49 | 10 | 1.57 | 10 | 2.09 | 10 | 0.91 | 10 | 1.41 | 10 | 0.33 | 0.064 | - | - | - | - | 0.800 | 0.497 | 0.366 |
Bacteroides | 1.10 | 10 | 3.49 | 10 | 3.18 | 10 | 2.13 | 10 | 1.76 | 8 | 2.67 | 10 | 0.29 | 0.289 | - | - | - | - | 0.020 | 0.320 | 0.475 |
Blautia | 20.7 | 10 | 14.8 | 10 | 13.0 | 10 | 19.1 | 10 | 19.0 | 10 | 17.4 | 10 | 1.10 | 0.489 | - | - | - | - | 0.070 | 0.704 | 0.247 |
Butyricicoccus | 1.12 | 10 | 1.08 | 9 | 1.59 | 10 | 0.78 | 9 | 0.88 | 10 | 0.89 | 10 | 0.10 | 0.071 | - | - | - | - | 0.110 | 0.539 | 0.099 |
Butyrivibrio | 0.51 | 10 | 0.55 | 10 | 0.48 | 10 | 0.88 | 9 | 0.72 | 9 | 0.36 | 10 | 0.09 | 0.611 | - | - | - | - | 0.258 | 0.704 | 0.507 |
Campylobacter | 0.02 | 2 | 0.68 | 5 | 0.13 | 3 | 0.05 | 3 | 0.01 | 2 | 0.01 | 1 | 0.20 | * | * | * | * | * | * | * | * |
Clostridiales 2 | 1.00 | 9 | 0.95 | 10 | 0.69 | 10 | 0.76 | 10 | 0.56 | 10 | 0.64 | 10 | 0.12 | 0.770 | - | - | - | - | 0.660 | 0.978 | 0.224 |
Clostridium | 17.6 | 10 | 21.6 | 10 | 16.2 | 10 | 21.2 | 10 | 25.3 | 10 | 19.7 | 10 | 1.22 | 0.988 | - | - | - | - | 0.587 | 0.133 | 0.142 |
Collinsella | 5.32 | 10 | 2.64 | 10 | 5.05 | 10 | 4.45 | 10 | 4.59 | 10 | 5.21 | 10 | 0.37 | 0.277 | - | - | - | - | 0.788 | 0.165 | 0.513 |
Enterococcus | 0.19 | 9 | 0.28 | 10 | 0.14 | 10 | 0.40 | 10 | 0.10 | 9 | 0.61 | 6 | 0.07 | 0.389 | - | - | - | - | 0.719 | 0.524 | 0.559 |
Ethanoligenens | 0.96 | 10 | 1.19 | 10 | 1.63 | 10 | 0.56 | 10 | 0.34 | 10 | 0.93 | 10 | 0.10 | 0.434 | - | - | - | - | 0.056 | 0.087 | 0.015 |
Erysipelotrichaceae2 | 6.09 | 10 | 1.86 | 10 | 1.73 | 10 | 3.16 | 10 | 1.57 | 10 | 1.56 | 10 | 0.36 | 0.178 | - | - | - | - | 0.002 | 0.011 | 0.111 |
Erysipelothrix | 1.35 | 6 | 0.83 | 4 | 0.87 | 7 | 0.66 | 6 | 1.23 | 5 | 0.46 | 5 | 0.14 | 0.388 | - | - | - | - | 0.966 | 0.925 | 0.334 |
Eubacterium | 3.95 | 10 | 4.10 | 10 | 5.11 | 10 | 2.66 | 10 | 2.75 | 10 | 4.36 | 10 | 0.34 | 0.855 | - | - | - | - | 0.138 | 0.447 | 0.119 |
Faecalibacterium | 2.44 | 10 | 1.18 | 10 | 0.95 | 10 | 2.00 | 10 | 0.82 | 10 | 0.53 | 10 | 0.15 | 0.960 | - | - | - | - | 0.001 | 0.119 | 0.166 |
Fusobacterium | 2.22 | 10 | 5.96 | 10 | 7.96 | 10 | 2.09 | 10 | 2.65 | 10 | 5.90 | 10 | 0.62 | 0.422 | - | - | - | - | 0.006 | 0.881 | 0.039 |
Gordonibacter | 1.18 | 10 | 0.70 | 10 | 1.16 | 10 | 0.43 | 10 | 1.71 | 10 | 0.86 | 10 | 0.21 | 0.263 | - | - | - | - | 0.711 | 0.516 | 0.965 |
Hespellia | 0.61 | 7 | 0.87 | 6 | 1.35 | 10 | 1.53 | 8 | 0.16 | 8 | 0.46 | 7 | 0.20 | 0.147 | - | - | - | - | 0.808 | 0.107 | 0.634 |
Lachnospiraceae2 | 0.17 | 6 | 0.96 | 7 | 0.34 | 8 | 0.71 | 5 | 0.29 | 8 | 0.48 | 5 | 0.11 | * | * | * | * | * | * | * | * |
Lactococcus | 0.61 | 6 | 0.19 | 7 | 1.17 | 7 | 1.23 | 8 | 2.39 | 8 | 0.75 | 9 | 0.25 | 0.554 | - | - | - | - | 0.231 | 0.143 | 0.908 |
Leuconostoc | 0.88 | 6 | 0.16 | 1 | 0.05 | 3 | 0.53 | 6 | 0.68 | 6 | 2.08 | 3 | 0.30 | * | * | * | * | * | * | * | * |
Megamonas | 0.76 | 7 | 0.29 | 8 | 0.11 | 6 | 0.06 | 6 | 0.10 | 4 | 0.10 | 4 | 0.12 | * | * | * | * | * | * | * | * |
Oxobacter | - | 0 | 1.49 | 1 | 0.02 | 2 | 0.06 | 5 | 0.11 | 2 | 0.69 | 2 | 0.15 | * | * | * | * | * | * | * | * |
Parabacteroides | 0.11 | 10 | 0.32 | 10 | 0.19 | 10 | 0.22 | 9 | 0.21 | 7 | 0.28 | 9 | 0.04 | 0.649 | - | - | - | - | 0.029 | 0.167 | 0.537 |
Peptococcus | 0.49 | 6 | 0.77 | 6 | 1.17 | 9 | 1.22 | 9 | 0.94 | 10 | 1.15 | 8 | 0.14 | 0.910 | - | - | - | - | 0.702 | 0.759 | 0.443 |
Peptostreptococca- ceae2 | 10.0 | 10 | 9.30 | 10 | 13.8 | 10 | 12.5 | 10 | 14.2 | 10 | 15.4 | 10 | 0.86 | 0.647 | - | - | - | - | 0.097 | 0.555 | 0.089 |
Peptostreptococcus | 1.53 | 5 | 0.23 | 8 | 0.13 | 6 | 2.19 | 7 | 0.03 | 7 | 0.09 | 6 | 0.43 | * | * | * | * | * | * | * | * |
Phascolarcto- bacterium | 0.68 | 10 | 0.60 | 10 | 0.33 | 10 | 0.54 | 10 | 0.20 | 10 | 0.24 | 10 | 0.07 | 0.513 | - | - | - | - | 0.004 | 0.767 | 0.183 |
Prevotella | 6.99 | 10 | 9.36 | 10 | 2.87 | 10 | 3.81 | 10 | 2.91 | 10 | 1.63 | 10 | 0.62 | 0.160 | - | - | - | - | 0.011 | 0.064 | 0.011 |
Propionibacterium | 0.05 | 2 | 0.22 | 2 | 0.04 | 3 | 0.03 | 1 | 0.04 | 3 | 0.53 | 1 | 0.05 | * | * | * | * | * | * | * | * |
Raoultella | 0.19 | 1 | 0.01 | 1 | 0.07 | 1 | 1.62 | 2 | 0.15 | 4 | 1.62 | 1 | 0.33 | * | * | * | * | * | * | * | * |
Robinsoniella | 1.98 | 10 | 2.50 | 10 | 5.12 | 10 | 3.64 | 10 | 4.11 | 10 | 1.96 | 10 | 0.36 | 0.031 | 0.003 | 0.240 | 0.044 | 0.368 | - | - | - |
Roseburia | 2.30 | 10 | 3.19 | 10 | 3.66 | 10 | 2.98 | 10 | 2.75 | 9 | 3.10 | 10 | 0.36 | 0.738 | - | - | - | - | 0.463 | 0.863 | 0.570 |
Ruminococcus | 1.61 | 10 | 1.48 | 10 | 1.75 | 10 | 1.13 | 10 | 1.84 | 9 | 1.79 | 10 | 0.16 | 0.584 | - | - | - | - | 0.355 | 0.720 | 0.679 |
Selenomonas | 2.82 | 8 | 2.46 | 10 | 2.91 | 9 | 2.39 | 10 | 2.62 | 8 | 3.04 | 10 | 0.22 | 0.454 | - | - | - | - | 0.746 | 0.434 | 0.979 |
Vagococcus | 0.03 | 6 | 0.19 | 2 | 0.73 | 3 | 0.07 | 7 | 0.05 | 8 | 4.04 | 6 | 0.74 | * | * | * | * | * | * | * | * |
Low Protein Quality | High Protein Quality | SEM | p Value (Polynomial Contrasts) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inter-action | Low Protein Quality | High Protein Quality | Protein Concentra-tion | Protein Quali-ty | |||||||||||||||||
36.7 | n 1 | 45.0 | n | 56.1 | n | 36.2 | n | 43.3 | n | 54.9 | n | Lin | Quadr | Lin | Quadr | Lin | Quadr | ||||
Bacteroides/ Prevotella/ Porphyromonas | 10.5 | 10 | 10.8 | 10 | 10.2 | 10 | 10.2 | 10 | 9.83 | 10 | 10.1 | 10 | 0.08 | 0.016 | 0.114 | 0.119 | 0.829 | 0.174 | - | - | - |
Bifidobacterium spp. | 7.63 | 3 | 7.21 | 5 | 6.72 | 6 | 6.90 | 4 | 6.82 | 2 | 6.84 | 3 | 0.10 | * | * | * | * | * | * | * | * |
Clostridioides difficile | 4.62 | 9 | 5.75 | 10 | 5.36 | 8 | 5.64 | 10 | 5.17 | 9 | 5.27 | 10 | 0.11 | 0.010 | 0.209 | 0.005 | 0.357 | 0.435 | - | - | - |
Clostridium cluster I | 9.51 | 10 | 9.95 | 10 | 9.57 | 10 | 9.35 | 10 | 9.48 | 10 | 9.55 | 10 | 0.06 | 0.217 | - | - | - | - | 0.266 | 0.104 | 0.068 |
Clostridium coccoides cluster XIVa | 10.0 | 10 | 10.4 | 10 | 9.91 | 10 | 9.68 | 10 | 9.61 | 10 | 9.86 | 10 | 0.08 | 0.105 | - | - | - | - | 0.801 | 0.488 | 0.011 |
Clostridium leptum cluster IV | 9.36 | 10 | 9.60 | 10 | 9.10 | 10 | 8.97 | 10 | 8.71 | 10 | 8.93 | 10 | 0.08 | 0.032 | 0.166 | 0.111 | 0.842 | 0.317 | - | - | - |
Clostridium perfringens | 9.25 | 10 | 9.54 | 10 | 9.32 | 10 | 9.15 | 10 | 9.33 | 10 | 9.28 | 10 | 0.05 | 0.605 | - | - | - | - | 0.308 | 0.079 | 0.215 |
Enterobacteria-ceae | 7.74 | 10 | 7.84 | 10 | 7.31 | 8 | 7.36 | 8 | 7.50 | 8 | 7.52 | 9 | 0.06 | 0.151 | - | - | - | - | 0.776 | 0.113 | 0.112 |
Escherichia coli/ Hafnia/Shigella | 8.16 | 8 | 8.15 | 5 | 6.91 | 3 | 7.24 | 8 | 7.61 | 4 | 7.24 | 6 | 0.13 | * | * | * | * | * | * | * | * |
Lactobacillus spp. | 7.98 | 8 | 6.76 | 9 | 6.47 | 9 | 7.35 | 8 | 7.31 | 10 | 7.07 | 7 | 0.17 | 0.394 | - | - | - | - | 0.429 | 0.849 | 0.509 |
Salmonella spp. | - | 1 | 5.04 | 6 | 4.74 | 2 | - | 1 | - | 1 | 4.66 | 2 | 0.11 | * | * | * | * | * | * | * | * |
Low ProteinQuality | High Protein Quality | SEM | p Value (Polynomial Contrasts) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inter-action | Low Protein Quality | High Protein Quality | Protein Concentration | Protein Quality | |||||||||||
36.7 | 45.0 | 56.1 | 36.2 | 43.3 | 54.9 | Lin | Quadr | Lin | Quadr | Lin | Quadr | ||||
µmol/g | |||||||||||||||
Ammonium | 48.3 | 54.1 | 75.3 | 47.7 | 52.5 | 75.2 | 3.64 | 0.972 | - | - | - | - | 0.030 | 0.086 | 0.906 |
L-lactate | 0.25 | 0.17 | 0.13 | 0.12 | 0.12 | 0.20 | 0.02 | 0.334 | - | - | - | - | 0.719 | 0.316 | 0.382 |
D-lactate | 0.03 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.00 | 0.536 | - | - | - | - | 0.691 | 0.732 | 0.415 |
Acetic acid | 54.9 | 60.6 | 77.3 | 59.7 | 60.3 | 71.5 | 4.45 | 0.809 | - | - | - | - | 0.086 | 0.335 | 0.971 |
Propionic acid | 21.3 | 21.5 | 23.2 | 24.3 | 20.9 | 23.0 | 1.26 | 0.674 | - | - | - | - | 0.909 | 0.309 | 0.843 |
i-butyric acid | 3.63 | 4.06 | 4.28 | 3.66 | 3.84 | 5.01 | 0.21 | 0.485 | - | - | - | - | 0.089 | 0.522 | 0.674 |
n-butyric acid | 13.3 | 14.5 | 15.0 | 13.6 | 12.8 | 15.2 | 0.71 | 0.679 | - | - | - | - | 0.249 | 0.675 | 0.844 |
i-valeric acid | 6.62 | 7.35 | 8.43 | 6.62 | 6.94 | 9.12 | 0.35 | 0.630 | - | - | - | - | 0.043 | 0.242 | 0.869 |
n-valeric acid | 5.14 | 6.23 | 6.80 | 4.86 | 5.33 | 6.83 | 0.28 | 0.656 | - | - | - | - | 0.020 | 0.777 | 0.602 |
Total SCFA | 105 | 114 | 135 | 113 | 110 | 131 | 6.74 | 0.831 | - | - | - | - | 0.108 | 0.329 | 0.992 |
% of total SCFA | |||||||||||||||
Acetic acid | 49.7 | 52.1 | 54.7 | 51.1 | 53.1 | 52.8 | 1.08 | 0.765 | - | - | - | - | 0.143 | 0.726 | 0.917 |
Propionic acid | 20.3 | 19.0 | 17.5 | 21.4 | 18.7 | 17.6 | 0.29 | 0.378 | - | - | - | - | <0.001 | 0.319 | 0.391 |
i-butyric acid | 3.65 | 3.64 | 3.37 | 3.46 | 3.75 | 4.02 | 0.12 | 0.149 | - | - | - | - | 0.572 | 0.685 | 0.422 |
n-butyric acid | 14.1 | 13.0 | 11.9 | 12.9 | 12.3 | 12.5 | 0.56 | 0.838 | - | - | - | - | 0.322 | 0.817 | 0.473 |
i-valeric acid | 6.91 | 6.65 | 6.84 | 6.45 | 6.87 | 7.50 | 0.27 | 0.520 | - | - | - | - | 0.287 | 0.637 | 0.801 |
n-valeric acid | 5.30 | 5.67 | 5.69 | 4.66 | 5.29 | 5.65 | 0.23 | 0.850 | - | - | - | - | 0.033 | 0.601 | 0.126 |
µmol/g | |||||||||||||||
Putrescine | 0.34 | 0.19 | 0.34 | 0.96 | 0.19 | 0.11 | 0.08 | 0.145 | - | - | - | - | 0.056 | 0.098 | 0.258 |
Histamine | 0.53 | 0.25 | 0.08 | 0.24 | 0.18 | 0.12 | 0.04 | 0.088 | - | - | - | - | 0.024 | 0.367 | 0.118 |
Cadaverine | 2.17 | 2.12 | 1.41 | 2.48 | 1.80 | 0.93 | 0.20 | 0.619 | - | - | - | - | 0.025 | 0.471 | 0.529 |
Spermidine | 0.36 | 0.33 | 0.33 | 0.45 | 0.39 | 0.32 | 0.02 | 0.605 | - | - | - | - | 0.165 | 0.997 | 0.345 |
Tyramine | 0.08 | 0.15 | 0.06 | 0.08 | 0.08 | 0.11 | 0.02 | 0.523 | - | - | - | - | 0.871 | 0.565 | 0.955 |
Spermine | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.985 | - | - | - | - | 0.558 | 0.426 | 0.181 |
Total biogenic amines | 3.50 | 3.06 | 2.23 | 4.22 | 2.66 | 1.60 | 0.30 | 0.512 | - | - | - | - | 0.017 | 0.945 | 0.768 |
Low Protein Quality, Protein Concentration 1 | High Protein Quality, Protein Concentration 2 | |||||
---|---|---|---|---|---|---|
36.7% | 45.0% | 56.1% | 36.2% | 43.3% | 54.9% | |
DM (g/kg) | 200 | 189 | 204 | 216 | 203 | 193 |
g/kg DM | ||||||
Crude protein | 367 | 450 | 561 | 362 | 433 | 549 |
Hydroxyproline | 3.76 | 8.45 | 9.44 | 2.56 | 3.76 | 4.45 |
Crude fat | 284 | 296 | 271 | 294 | 318 | 262 |
Crude fiber 3 | 3.14 | 7.05 | 10.5 | 6.75 | 4.46 | 6.78 |
Crude ash | 77.2 | 73.8 | 83.4 | 68.3 | 68.9 | 75.2 |
Nitrogen-free extracts (calculated) | 269 | 173 | 74.7 | 269 | 176 | 107 |
Calcium | 11.2 | 11.4 | 12.6 | 10.7 | 11.2 | 11.8 |
Phosphorus | 8.79 | 8.34 | 8.88 | 7.73 | 8.23 | 8.71 |
Sodium | 5.83 | 5.75 | 8.20 | 4.88 | 5.78 | 6.74 |
Potassium | 11.1 | 9.35 | 12.4 | 8.75 | 8.58 | 8.67 |
Magnesium | 0.48 | 0.48 | 0.47 | 0.45 | 0.47 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paßlack, N.; Thies, L.V.; Vahjen, W.; Zentek, J. Effects of the Protein Concentration and Quality in a Canned Diet on the Fecal Microbiota of Healthy Adult Cats. Metabolites 2022, 12, 105. https://doi.org/10.3390/metabo12020105
Paßlack N, Thies LV, Vahjen W, Zentek J. Effects of the Protein Concentration and Quality in a Canned Diet on the Fecal Microbiota of Healthy Adult Cats. Metabolites. 2022; 12(2):105. https://doi.org/10.3390/metabo12020105
Chicago/Turabian StylePaßlack, Nadine, Louisa Verena Thies, Wilfried Vahjen, and Jürgen Zentek. 2022. "Effects of the Protein Concentration and Quality in a Canned Diet on the Fecal Microbiota of Healthy Adult Cats" Metabolites 12, no. 2: 105. https://doi.org/10.3390/metabo12020105
APA StylePaßlack, N., Thies, L. V., Vahjen, W., & Zentek, J. (2022). Effects of the Protein Concentration and Quality in a Canned Diet on the Fecal Microbiota of Healthy Adult Cats. Metabolites, 12(2), 105. https://doi.org/10.3390/metabo12020105