Build, Share and Remix: 3D Printing for Speeding Up the Innovation Cycles in Ambient Ionisation Mass Spectrometry (AIMS)
Abstract
:1. Introduction
2. AIMS and 3D Printing Technology
2.1. Part Design
2.2. Polymers
Device | Polymers | Solvents | Applications | References |
---|---|---|---|---|
Ion sources and sample separation | ||||
Cone spray | ESD-safe PETG | Methanol with formic acid | Detection of per- and polyfluoroalkyl substances (PFAS) from soil. | [26,27] |
DESI source | PLA | Acetonitrile:water 1:1 (v/v), methanol:water 9:1 (v/v), with 0.1% formic acid | Analysis of rat brain tissue and lipid profiles. | [23,28] |
DESI support | PLA/PMMA | Acetonitrile:water 1:1 (v/v) | Analysis of gentamicin sulfate, insulin and chitosan. | [29] |
LTP probe | PLA/ABS/PC | NA | In vivo monitoring of biosynthesis, direct and multimodal imaging of biological tissues and TLC plates. | [24,30,31] |
MasSpec Pen | PDMS | Water | In vivo analysis of tissues. | [32] |
PSI cartridge | PLA/PP/photopolymer | Solvent mixtures of methanol, water and acetonitrile with 0.1% of formic acid | Analysis of lidocaine and drugs. | [33,34,35,36,37] |
PSI cartridge | POM | Methanol:water (1:1) | Direct analysis of complex biological samples. | [38] |
PSI cassette | PLA/ABS | Acetonitrile, water, methanol | Monitoring of enzyme reaction for the BuchE detection, two dimensional chromatographic separation for detecting drugs. | [39] |
PSI microfluidic device | ABS | Methanol with 0.1% formic acid | Analysis of standard solutions of caffeine, xylose and lysozyme. | [40] |
Thread-based electrofluidic device | PMMA | NA | Purification and enrichment of insulin; detection of alkaloids in urine. | [41,42] |
Adapters and holders | ||||
Chassis of EWOD-based DMF–MS interface | ABS | NA | Chemical reaction monitoring. | [43] |
Coupling of DMF to HPLC-MS | NA | Methanol, acetonitrile with acetic acid | On-chip steroid derivatization and automated bioanalyses. | [44] |
LTP probe adapter for DESI-MS platform | PLA | NA | Ambient MS imaging of biological samples. | unpublished |
PIRL fibre adapter, slice holder, and fibre cleaning channel for a DESI-MS platform | PLA | Water | Dual mode imaging with DESI-MS and PIRL-MS. | [45] |
Ion manipulation and ion mobility spectrometry | ||||
Drift tube | PLA/PHA/conductive PLA/PETG/ESD-safe PETG | ACN | Detection of tetraalkyl ammonium salts and 2,6-di-tert-butylpyridine. | [25,46] |
Electrodes | Conductive carbon nanotube doped polymer | NA | Analysing mixtures of tetraalkyl ammonium bromide salts. | [47] |
IMS | PLA/PHA/PETG-CNT/electrically conductive composite PLA | Acetonitrile, Methanol | Detection of tetraalkyl ammonium salts, angiotensin II and bradykinin acetate salts, amphetamines, fentanyls, benzylamines and ketones. | [22,48,49] |
Ion funnel | ABS | NA | Proof-of-concept. | [50] |
Plastic device for ion separation | PLA/conductive ABS | Acetonitrile, Methanol | Detection and separation of cyclohexylamine, DMPP, tetraalkyl ammonium salts. | [51] |
Robots | ||||
Open-port probe | PLA | Methanol | Analysis of solid and liquid samples for nebulization gas-based ion sources. | [52] |
Purdue Make-It System: Custom plastic plate carriers for DESI-MS platform | ND | NA | High-throughput screening of organic reactions. | [53] |
RAMSAY and RAMSAY-2, and sample vials | ABS | Ethanol, acetic acid, water, hydrogen peroxide | Reaction monitoring. | [54,55] |
RoSA-MS | ND | NA | Support for robotic surface analysis coupled to an open port sampling interface (OPSI). | [56] |
Rotatory multispray holder for nESI | PLA | NA | Reaction monitoring. | [57] |
3. Ambient Ionisation Sources
3.1. Desorption Electrospray Ionisation (DESI)
3.2. Paper-Spray Ionisation (PSI)
3.3. Low-Temperature Plasma (LTP) Probe
4. Sampling for Ambient Ionisation Mass Spectrometry (AIMS)
5. Ion Transfer and Ion Mobility Spectrometry (IMS)
6. Robotics and Imaging
7. Retrofitting of Existing Platforms
8. Sustainability of 3D Printing
9. Current State and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
ABS | acrylonitrile butadiene styrene |
AIMS | ambient ionisation mass spectrometry |
AIMSI | ambient ionisation mass spectrometry imaging |
CW | continuous wave |
CWAs | chemical warfare agents |
DART | direct analysis in real-time |
DC | direct current |
DESI | desorption electrospray ionisation |
DIY | do-it-yourself |
DMF | digital microfluidics |
ER-PS | enzyme reactor paper-spray |
ESD | electronic discharge |
ESI | electrospray |
ESSI | electrosonic spray ionisation |
EWOD | electrowetting on dielectric |
FT-ICR | Fourier-transform ion cyclotron resonance |
FDM | fused deposition modelling |
HPLC | high-performance liquid chromatography |
HUPO | human proteome organization |
IMS | ion mobility spectrometry |
ionCCD | ion detection charge couple device |
IR | infrared |
LD | laser desorption |
LTP | low-temperature plasma |
MALDI | matrix-assisted laser desorption/ionisation |
MA | methamphetamine |
MDEA | 3,4-methylenedioxy-N-ethylamphetamine |
MI | membrane-inlet |
MS | mass spectrometry |
MSI | mass spectrometry imaging |
OPP | open-port probe |
PC | polycarbonate |
PDMS | polydimethylsiloxane |
PEEK | poly ether ether ketone |
PETG | polyethene terephthalate glycol-modified polymer |
PETG-CNT | polyethene terephthalate glycol-modified polymer, |
doped with multi-walled carbon nanotubes | |
PHA | polyhydroxyalkanoate |
PIRL | picosecond infrared laser |
PLA | polylactic acid |
PMMA | polymethylmethacrylate |
PSI | paper-spray ionisation |
PTFE | polytetrafluoroethylene |
PTR | proton-transfer-reaction |
RAMSAY | robotics-assisted mass spectrometry assay |
SIFT | selected-ion flow-tube |
SLA | stereolithography |
SPE | solid-phase extraction |
SPME | solid-phase microextraction |
TLC | thin-layer chromatography |
UV | ultraviolet |
V-EASI | Venturi easy ambient sonic-spray ionisation |
VOC | volatile organic compound |
References
- Takáts, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef] [Green Version]
- Takáts, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure. Anal. Chem. 2004, 76, 4050–4058. [Google Scholar] [CrossRef]
- Cody, R.B.; Laramée, J.A.; Durst, H.D. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 2005, 77, 2297–2302. [Google Scholar] [CrossRef]
- Venter, A.; Nefliu, M.; Graham Cooks, R. Ambient desorption ionization mass spectrometry. TrAC Trends Anal. Chem. 2008, 27, 284–290. [Google Scholar] [CrossRef]
- Chen, H.; Gamez, G.; Zenobi, R. What can we learn from ambient ionization techniques? J. Am. Soc. Mass Spectrom. 2009, 20, 1947–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feider, C.L.; Krieger, A.; DeHoog, R.J.; Eberlin, L.S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91, 4266–4290. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.H.; Dutkiewicz, E.P.; Pei, J.; Hsu, C.C. Ambient Ionization Mass Spectrometry Today and Tomorrow: Embracing Challenges and Opportunities. Anal. Chem. 2020, 92, 2353–2363. [Google Scholar] [CrossRef] [PubMed]
- Albert, A.; Engelhard, C. Characteristics of Low-Temperature Plasma Ionization for Ambient Mass Spectrometry Compared to Electrospray Ionization and Atmospheric Pressure Chemical Ionization. Anal. Chem. 2012, 84, 10657–10664. [Google Scholar] [CrossRef] [PubMed]
- Gamboa-Becerra, R.; Ramírez-Chávez, E.; Molina-Torres, J.; Winkler, R.; Ramírez-Chávez, E.; Molina-Torres, J.; Winkler, R. MSI.R scripts reveal volatile and semi-volatile features in low-temperature plasma mass spectrometry imaging (LTP-MSI) of chilli (Capsicum annuum). Anal. Bioanal. Chem. 2015, 407, 5673–5684. [Google Scholar] [CrossRef]
- Ketola, R.A.; Lauritsen, F.R. Membrane Inlet Mass Spectrometry (MIMS) in Historical Perspective. In The Encyclopedia of Mass Spectrometry; Gross, M.L., Caprioli, R.M., Eds.; Elsevier: Boston, MA, USA, 2016; pp. 143–148. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom. Rev. 2005, 24, 661–700. [Google Scholar] [CrossRef] [PubMed]
- Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W. Proton transfer reaction mass spectrometry: On-line trace gas analysis at the ppb level. Int. J. Mass Spectrom. Ion Process. 1995, 149–150, 609–619. [Google Scholar] [CrossRef]
- Clendinen, C.S.; Monge, M.E.; Fernández, F.M. Ambient Mass Spectrometry in Metabolomics. Analyst 2017, 142, 3101–3117. [Google Scholar] [CrossRef]
- Martínez-Jarquín, S.; Moreno-Pedraza, A.; Cázarez-García, D.; Winkler, R. Automated chemical fingerprinting of Mexican spirits derived from: Agave (tequila and mezcal) using direct-injection electrospray ionisation (DIESI) and low-temperature plasma (LTP) mass spectrometry. Anal. Methods 2017, 9, 5023–5028. [Google Scholar] [CrossRef]
- Molina-Díaz, A.; Beneito-Cambra, M.; Moreno-González, D.; Gilbert-López, B. Ambient mass spectrometry from the point of view of Green Analytical Chemistry. Curr. Opin. Green Sustain. Chem. 2019, 19, 50–60. [Google Scholar] [CrossRef]
- Perez, C.J.; Bagga, A.K.; Prova, S.S.; Taemeh, M.Y.; Ifa, D.R. Review and perspectives on the applications of mass spectrometry imaging under ambient conditions. Rapid Commun. Mass Spectrom. 2019, 33, 27–53. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Nie, H.; Jiang, L.; Ruan, G.; Du, F.; Liu, H. Recent advances of ambient ionization mass spectrometry imaging in clinical research. J. Sep. Sci. 2020, 43, 3146–3163. [Google Scholar] [CrossRef] [PubMed]
- Guillén-Alonso, H.; Rosas-Román, I.; Winkler, R. The emerging role of 3D-printing in ion mobility spectrometry and mass spectrometry. Anal. Methods 2021, 13, 852–861. [Google Scholar] [CrossRef]
- Rosas-Román, I.; Ovando-Vázquez, C.; Moreno-Pedraza, A.; Guillén-Alonso, H.; Winkler, R. Open LabBot and RmsiGUI: Community development kit for sampling automation and ambient imaging. Microchem. J. 2020, 152, 104343. [Google Scholar] [CrossRef]
- Grajewski, M.; Hermann, M.; Oleschuk, R.D.; Verpoorte, E.; Salentijn, G.I. Leveraging 3D printing to enhance mass spectrometry: A review. Anal. Chim. Acta 2021, 1166, 338332. [Google Scholar] [CrossRef]
- Gordon, S.D.; Osterwalder, A. 3D-Printed Beam Splitter for Polar Neutral Molecules. Phys. Rev. Appl. 2017, 7, 044022. [Google Scholar] [CrossRef] [Green Version]
- Drees, C.; Höving, S.; Vautz, W.; Franzke, J.; Brandt, S. 3D-printing of a complete modular ion mobility spectrometer. Mater. Today 2021, 44, 58–68. [Google Scholar] [CrossRef]
- Zemaitis, K.J.; Wood, T.D. Integration of 3D-printing for a desorption electrospray ionization source for mass spectrometry. Rev. Sci. Instrum. 2020, 91, 104102. [Google Scholar] [CrossRef]
- Martínez-Jarquín, S.; Moreno-Pedraza, A.; Guillén-Alonso, H.; Winkler, R. Template for 3D Printing a Low-Temperature Plasma Probe. Anal. Chem. 2016, 88, 6976–6980. [Google Scholar] [CrossRef]
- Hauck, B.C.; Ruprecht, B.R.; Riley, P.C.; Strauch, L.D. Reproducible 3D-printed unibody drift tubes for ion mobility spectrometry. Sens. Actuators B Chem. 2020, 323, 128671. [Google Scholar] [CrossRef]
- Brown, H.M.; Fedick, P.W. Rapid, low-cost, and in situ analysis of per- and polyfluoroalkyl substances in soils and sediments by ambient 3D-printed cone spray ionization mass spectrometry. Chemosphere 2021, 272, 129708. [Google Scholar] [CrossRef]
- Brown, H.M.; McDaniel, T.J.; Doppalapudi, K.R.; Mulligan, C.C.; Fedick, P.W. Rapid, In Situ detection of chemical warfare agent simulants and hydrolysis products in bulk soils by low-cost 3D-printed cone spray ionization mass spectrometry. Analyst 2021, 146, 3127–3136. [Google Scholar] [CrossRef]
- Zemaitis, K.J.; Izydorczak, A.M.; Thompson, A.C.; Wood, T.D. Streamlined Multimodal DESI and MALDI Mass Spectrometry Imaging on a Singular Dual-Source FT-ICR Mass Spectrometer. Metabolites 2021, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Elviri, L.; Foresti, R.; Bianchera, A.; Silvestri, M.; Bettini, R. 3D-printed polylactic acid supports for enhanced ionization efficiency in desorption electrospray mass spectrometry analysis of liquid and gel samples. Talanta 2016, 155, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Pedraza, A.; Rosas-Román, I.; Garcia-Rojas, N.S.; Guillén-Alonso, H.; Ovando-Vázquez, C.; Díaz-Ramírez, D.; Cuevas-Contreras, J.; Vergara, F.; Marsch-Martínez, N.; Molina-Torres, J.; et al. Elucidating the Distribution of Plant Metabolites from Native Tissues with Laser Desorption Low-Temperature Plasma Mass Spectrometry Imaging. Anal. Chem. 2019, 91, 2734–2743. [Google Scholar] [CrossRef]
- García-Rojas, N.S.; Moreno-Pedraza, A.; Rosas-Román, I.; Ramírez-Chávez, E.; Molina-Torres, J.; Winkler, R. Mass spectrometry imaging of thin-layer chromatography plates using laser desorption/low-temperature plasma ionisation. Analyst 2020, 145, 3885–3891. [Google Scholar] [CrossRef]
- Keating, M.F.; Zhang, J.; Feider, C.L.; Retailleau, S.; Reid, R.; Antaris, A.; Hart, B.; Tan, G.; Milner, T.E.; Miller, K.; et al. Integrating the MasSpec Pen to the da Vinci Surgical System for In Vivo Tissue Analysis during a Robotic Assisted Porcine Surgery. Anal. Chem. 2020, 92, 11535–11542. [Google Scholar] [CrossRef] [PubMed]
- Salentijn, G.I.; Permentier, H.P.; Verpoorte, E. 3D-Printed Paper Spray Ionization Cartridge with Fast Wetting and Continuous Solvent Supply Features. Anal. Chem. 2014, 86, 11657–11665. [Google Scholar] [CrossRef]
- Salentijn, G.I.; Oleschuk, R.D.; Verpoorte, E. 3D-Printed Paper Spray Ionization Cartridge with Integrated Desolvation Feature and Ion Optics. Anal. Chem. 2017, 89, 11419–11426. [Google Scholar] [CrossRef] [PubMed]
- Bills, B.J.; Kinkade, J.; Ren, G.; Manicke, N.E. The impacts of paper properties on matrix effects during paper spray mass spectrometry analysis of prescription drugs, fentanyl and synthetic cannabinoids. Forensic Chem. 2018, 11, 15–22. [Google Scholar] [CrossRef]
- Zhang, C.; Bills, B.J.; Manicke, N.E. Rapid prototyping using 3D printing in bioanalytical research. Bioanalysis 2017, 9, 329–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bills, B.J.; Manicke, N.E. Chapter Twelve-Using sesame seed oil to preserve and concentrate cannabinoids for paper spray mass spectrometry. In Comprehensive Analytical Chemistry; Analysis of Cannabis; Ferrer, I., Thurman, E.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 90, pp. 367–395. [Google Scholar] [CrossRef]
- Li, L.; Chen, T.C.; Ren, Y.; Hendricks, P.I.; Cooks, R.G.; Ouyang, Z. Mini 12, miniature mass spectrometer for clinical and other applications–introduction and characterization. Anal. Chem. 2014, 86, 2909–2916. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, H.; Chen, Z.; Wu, T.; Jiang, Z.; Tong, L.; Tang, B. A Simple 3D-Printed Enzyme Reactor Paper Spray Mass Spectrometry Platform for Detecting BuChE Activity in Human Serum. Anal. Chem. 2019, 91, 12874–12881. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.C.; Carvalho, T.C.d.; Lobo-Júnior, E.O.; Abdelnur, P.V.; Vaz, B.G.; Coltro, W.K.T. 3D printing of microfluidic devices for paper-assisted direct spray ionization mass spectrometry. Anal. Methods 2016, 8, 496–503. [Google Scholar] [CrossRef]
- Chen, L.; Cabot, J.M.; Rodriguez, E.S.; Ghiasvand, A.; Innis, P.C.; Paull, B. Thread-based isoelectric focusing coupled with desorption electrospray ionization mass spectrometry. Analyst 2020, 145, 6928–6936. [Google Scholar] [CrossRef]
- Chen, L.; Ghiasvand, A.; Lam, S.C.; Rodriguez, E.S.; Innis, P.C.; Paull, B. Thread-based isotachophoresis coupled with desorption electrospray ionization mass spectrometry for clean-up, preconcentration, and determination of alkaloids in biological fluids. Anal. Chim. Acta 2021, 338810, in press. [Google Scholar] [CrossRef]
- Hu, J.B.; Chen, T.R.; Chang, C.H.; Cheng, J.Y.; Chen, Y.C.; Urban, P.L. A compact 3D-printed interface for coupling open digital microchips with Venturi easy ambient sonic-spray ionization mass spectrometry. Analyst 2015, 140, 1495–1501. [Google Scholar] [CrossRef]
- Liu, C.; Choi, K.; Kang, Y.; Kim, J.; Fobel, C.; Seale, B.; Campbell, J.L.; Covey, T.R.; Wheeler, A.R. Direct Interface between Digital Microfluidics and High Performance Liquid Chromatography–Mass Spectrometry. Anal. Chem. 2015, 87, 11967–11972. [Google Scholar] [CrossRef]
- Katz, L.; Woolman, M.; Talbot, F.; Amara-Belgadi, S.; Wu, M.; Tortorella, S.; Das, S.; Ginsberg, H.J.; Zarrine-Afsar, A. Dual Laser and Desorption Electrospray Ionization Mass Spectrometry Imaging Using the Same Interface. Anal. Chem. 2020, 92, 6349–6357. [Google Scholar] [CrossRef]
- Schrader, R.L.; Marsh, B.M.; Cooks, R.G. Temporal distribution of ions in ambient pressure drift tubes with turns. Int. J. Mass Spectrom. 2020, 456, 116391. [Google Scholar] [CrossRef]
- Iyer, K.; Marsh, B.M.; Capek, G.O.; Schrader, R.L.; Tichy, S.; Cooks, R.G. Ion Manipulation in Open Air Using 3D-Printed Electrodes. J. Am. Soc. Mass Spectrom. 2019, 30, 2584–2593. [Google Scholar] [CrossRef] [PubMed]
- Hollerbach, A.; Baird, Z.; Cooks, R.G. Ion Separation in Air Using a Three-Dimensional Printed Ion Mobility Spectrometer. Anal. Chem. 2017, 89, 5058–5065. [Google Scholar] [CrossRef] [PubMed]
- Hollerbach, A.; Fedick, P.W.; Cooks, R.G. Ion Mobility—Mass Spectrometry Using a Dual-Gated 3D Printed Ion Mobility Spectrometer. Anal. Chem. 2018, 90, 13265–13272. [Google Scholar] [CrossRef] [PubMed]
- Tridas, E.M.; Allemang, C.; Mast, F.; Anthony, J.M.; Schlaf, R. High transmission 3D printed flex-PCB-based ion funnel. J. Mass Spectrom. 2015, 50, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Baird, Z.; Wei, P.; Cooks, R.G. Ion creation, ion focusing, ion/molecule reactions, ion separation, and ion detection in the open air in a small plastic device. Analyst 2015, 140, 696–700. [Google Scholar] [CrossRef]
- Sosnowski, P.; Hopfgartner, G. Application of 3D printed tools for customized open port probe-electrospray mass spectrometry. Talanta 2020, 215, 120894. [Google Scholar] [CrossRef]
- Sobreira, T.J.P.; Avramova, L.; Szilagyi, B.; Logsdon, D.L.; Loren, B.P.; Jaman, Z.; Hilger, R.T.; Hosler, R.S.; Ferreira, C.R.; Koswara, A.; et al. High-throughput screening of organic reactions in microdroplets using desorption electrospray ionization mass spectrometry (DESI-MS): Hardware and software implementation. Anal. Methods 2020, 12, 3654–3669. [Google Scholar] [CrossRef]
- Chen, C.L.; Chen, T.R.; Chiu, S.H.; Urban, P.L. Dual robotic arm “production line” mass spectrometry assay guided by multiple Arduino-type microcontrollers. Sens. Actuators B Chem. 2017, 239, 608–616. [Google Scholar] [CrossRef]
- Chiu, S.H.; Urban, P.L. Robotics-assisted mass spectrometry assay platform enabled by open-source electronics. Biosens. Bioelectron. 2015, 64, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Paine, M.R.L.; Zambrzycki, S.; Stryffeler, R.B.; Wu, J.; Bouza, M.; Huckaby, J.; Chang, C.Y.; Kumar, M.; Mukhija, P.; et al. Robotic Surface Analysis Mass Spectrometry (RoSA-MS) of Three-Dimensional Objects. Anal. Chem. 2018, 90, 3981–3986. [Google Scholar] [CrossRef] [PubMed]
- Pulliam, C.J.; Bain, R.M.; Osswald, H.L.; Snyder, D.T.; Fedick, P.W.; Ayrton, S.T.; Flick, T.G.; Cooks, R.G. Simultaneous Online Monitoring of Multiple Reactions Using a Miniature Mass Spectrometer. Anal. Chem. 2017, 89, 6969–6975. [Google Scholar] [CrossRef]
- Wiseman, J.M.; Puolitaival, S.M.; Takáts, Z.; Cooks, R.G.; Caprioli, R.M. Mass Spectrometric Profiling of Intact Biological Tissue by Using Desorption Electrospray Ionization. Angew. Chem. Int. Ed. 2005, 44, 7094–7097. [Google Scholar] [CrossRef] [PubMed]
- Roach, P.J.; Laskin, J.; Laskin, A. Nanospray desorption electrospray ionization: An ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 2010, 135, 2233–2236. [Google Scholar] [CrossRef] [PubMed]
- Eberlin, L.S.; Ferreira, C.R.; Dill, A.L.; Ifa, D.R.; Cooks, R.G. Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2011, 1811, 946–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venter, A.; Sojka, P.E.; Cooks, R.G. Droplet Dynamics and Ionization Mechanisms in Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 8549–8555. [Google Scholar] [CrossRef]
- Rossi, A.; Castrati, L.; Colombo, P.; Flammini, L.; Barocelli, E.; Bettini, R.; Elviri, L. Development and validation of a DESI-HRMS/MS method for the fast profiling of esomeprazole and its metabolites in rat plasma: A pharmacokinetic study. Drug Test. Anal. 2016, 8, 208–213. [Google Scholar] [CrossRef]
- Schwab, N.V.; Ore, M.O.; Eberlin, M.N.; Morin, S.; Ifa, D.R. Functionalized Porous Silicon Surfaces as DESI-MS Substrates for Small Molecules Analysis. Anal. Chem. 2014, 86, 11722–11726. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Manicke, N.E.; Lin, J.M.; Cooks, R.G.; Ouyang, Z. Development, characterization, and application of paper spray ionization. Anal. Chem. 2010, 82, 2463–2471. [Google Scholar] [CrossRef]
- Rankin-Turner, S.; Heaney, L.M. Applications of ambient ionization mass spectrometry in 2020: An annual review. Anal. Sci. Adv. 2021, 2, 193–212. [Google Scholar] [CrossRef]
- Skaggs, C.; Kirkpatrick, L.; Wichert, W.R.A.; Skaggs, N.; Manicke, N.E. A statistical approach to optimizing paper spray mass spectrometry parameters. Rapid Commun. Mass Spectrom. 2020, 34, e8601. [Google Scholar] [CrossRef] [PubMed]
- Bare, R.O.; Miller, R.D.; Pacala, T.J.; Payne, T.J.; Hertig, J.C.; Manicke, N.E.; Sistiabudi, R.; Yang, Q.; Ouyang, Z. Cassettes, Systems, and Methods for Ion Generation Using Wetted Porous Materials. Patent WO2012170301A1, 13 December 2012. [Google Scholar]
- Zhang, C.; Manicke, N.E. Development of a Paper Spray Mass Spectrometry Cartridge with Integrated Solid Phase Extraction for Bioanalysis. Anal. Chem. 2015, 87, 6212–6219. [Google Scholar] [CrossRef]
- Li, Y.C.; Cheng, M.H.; Lin, C.H. High-Performance Paper-Based Fluidic Cassette for Mass Spectrometry Analyzing Caffeine and Nicotine Metabolites. In Proceedings of the 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), Vancouver, BC, Canada, 18–22 January 2020; pp. 98–101. [Google Scholar] [CrossRef]
- Salentijn, G.I.; Grajewski, M.; Verpoorte, E. Reinventing (Bio)chemical Analysis with Paper. Anal. Chem. 2018, 90, 13815–13825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, J.D.; Charipar, N.A.; Mulligan, C.C.; Zhang, X.; Cooks, R.G.; Ouyang, Z. Low-temperature plasma probe for ambient desorption ionization. Anal. Chem. 2008, 80, 9097–9104. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Lin, Z.; He, M.; Han, G.; Yang, C.; Xing, Z.; Zhang, S.; Zhang, X. Imaging mass spectrometry with a low-temperature plasma probe for the analysis of works of art. Angew. Chem. Int. Ed. 2010, 49, 4435–4437. [Google Scholar] [CrossRef]
- Campbell, D.; Dalgleish, J.; Cotte-Rodriguez, I.; Maeno, S.; Graham Cooks, R. Chemical analysis and chemical imaging of fragrances and volatile compounds by low-temperature plasma ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1828–1836. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Torres, M.; López-Hernández, J.F.; Jiménez-Sandoval, P.; Winkler, R. ‘Plug and Play’ assembly of a low-temperature plasma ionization mass spectrometry imaging (LTP-MSI) system. J. Proteom. 2014, 102C, 60–65. [Google Scholar] [CrossRef]
- Martínez-Jarquín, S.; Winkler, R. Low-temperature plasma (LTP) jets for mass spectrometry (MS): Ion processes, instrumental set-ups, and application examples. TrAC Trends Anal. Chem. 2017, 89, 133–145. [Google Scholar] [CrossRef]
- Martínez-Jarquín, S.; Herrera-Ubaldo, H.; de Folter, S.; Winkler, R. In Vivo monitoring of nicotine biosynthesis in tobacco leaves by low-temperature plasma mass spectrometry. Talanta 2018, 185, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rector, J.; Lin, J.Q.; Young, J.H.; Sans, M.; Katta, N.; Giese, N.; Yu, W.; Nagi, C.; Suliburk, J.; et al. Nondestructive tissue analysis for Ex Vivo and In Vivo cancer diagnosis using a handheld mass spectrometry system. Sci. Transl. Med. 2017, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, M.T. Low-Temperature Plasma Ionization Ion Mobility Spectrometry. Anal. Chem. 2011, 83, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Lian, R.; Wu, Z.; Lv, X.; Rao, Y.; Li, H.; Li, J.; Wang, R.; Ni, C.; Zhang, Y. Rapid screening of abused drugs by direct analysis in real time (DART) coupled to time-of-flight mass spectrometry (TOF-MS) combined with ion mobility spectrometry (IMS). Forensic Sci. Int. 2017, 279, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Cumeras, R.; Figueras, E.; Davis, C.E.; Baumbach, J.I.; Gràcia, I. Review on Ion Mobility Spectrometry. Part 1: Current instrumentation. Analyst 2015, 140, 1376–1390. [Google Scholar] [CrossRef] [Green Version]
- Mehl, A.; Schwack, W.; Morlock, G.E. On-surface autosampling for liquid chromatography-mass spectrometry. J. Chromatogr. A 2021, 1651, 462334. [Google Scholar] [CrossRef]
- Nørgaard, A.W.; Vibenholt, A.; Benassi, M.; Clausen, P.A.; Wolkoff, P. Study of ozone-initiated limonene reaction products by low temperature plasma ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 1090–1096. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, Q.; Zhang, Y.; Li, T.; Zhang, H.C. Sustainability of 3D Printing: A Critical Review and Recommendations; American Society of Mechanical Engineers Digital Collection: Little Falls, NJ, USA, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Zhang, B.; Kowsari, K.; Serjouei, A.; Dunn, M.L.; Ge, Q. Reprocessable thermosets for sustainable three-dimensional printing. Nat. Commun. 2018, 9, 1831. [Google Scholar] [CrossRef] [Green Version]
- Maines, E.M.; Porwal, M.K.; Ellison, C.J.; Reineke, T.M. Sustainable advances in SLA/DLP 3D printing materials and processes. Green Chem. 2021, 23, 6863–6897. [Google Scholar] [CrossRef]
- Zhao, P.; Rao, C.; Gu, F.; Sharmin, N.; Fu, J. Close-looped recycling of polylactic acid used in 3D printing: An experimental investigation and life cycle assessment. J. Clean. Prod. 2018, 197, 1046–1055. [Google Scholar] [CrossRef]
- Analytical Methods Committee AMCTB No. 81. A ‘Periodic Table’ of mass spectrometry instrumentation and acronyms. Anal. Methods 2017, 9, 5086–5090. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Rojas, N.S.; Guillén-Alonso, H.; Martínez-Jarquín, S.; Moreno-Pedraza, A.; Soto-Rodríguez, L.D.; Winkler, R. Build, Share and Remix: 3D Printing for Speeding Up the Innovation Cycles in Ambient Ionisation Mass Spectrometry (AIMS). Metabolites 2022, 12, 185. https://doi.org/10.3390/metabo12020185
García-Rojas NS, Guillén-Alonso H, Martínez-Jarquín S, Moreno-Pedraza A, Soto-Rodríguez LD, Winkler R. Build, Share and Remix: 3D Printing for Speeding Up the Innovation Cycles in Ambient Ionisation Mass Spectrometry (AIMS). Metabolites. 2022; 12(2):185. https://doi.org/10.3390/metabo12020185
Chicago/Turabian StyleGarcía-Rojas, Nancy Shyrley, Héctor Guillén-Alonso, Sandra Martínez-Jarquín, Abigail Moreno-Pedraza, Leonardo D. Soto-Rodríguez, and Robert Winkler. 2022. "Build, Share and Remix: 3D Printing for Speeding Up the Innovation Cycles in Ambient Ionisation Mass Spectrometry (AIMS)" Metabolites 12, no. 2: 185. https://doi.org/10.3390/metabo12020185
APA StyleGarcía-Rojas, N. S., Guillén-Alonso, H., Martínez-Jarquín, S., Moreno-Pedraza, A., Soto-Rodríguez, L. D., & Winkler, R. (2022). Build, Share and Remix: 3D Printing for Speeding Up the Innovation Cycles in Ambient Ionisation Mass Spectrometry (AIMS). Metabolites, 12(2), 185. https://doi.org/10.3390/metabo12020185