Plasma Metabolite Profiles Following Consumption of Animal Protein and Soybean-Based Diet in Hypercholesterolemic Postmenopausal Women
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of Study Participants
2.2. Metabolomic Profiling
2.3. Area under the Curve-Receiving Operating Characteristics (AUC-ROC Curve) for Biomarker Analysis
2.4. Enrichment and Network Analyses
2.5. Correlations between Top 10 Metabolites and Cardiometabolic Risk Factors
3. Discussion
4. Materials and Methods
4.1. Study Participants and Design
4.2. Diet Intervention
4.3. Untargeted Metabolomics
4.3.1. Primary Metabolites Extraction and Data Acquisition
4.3.2. Complex Lipids and Biogenic Amines Extraction and Data Acquisition
4.4. Clinical Laboratory Measures
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | animal protein |
CMRF | cardiometabolic risk factor |
CVD | cardiovascular disease |
DHA | docosahexaenoic acid |
EPA | eicosapentaenoic acid |
GCTOF MS | gas chromatography/time-of-flight mass spectrometry |
HDL-C | high-density lipoprotein-cholesterol |
LDL-C | low-density lipoprotein-cholesterol |
UHPLC-QTOF MS/MS | ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry |
PC | phosphatidylcholine |
PE | phosphatidylethanolamine |
PLS-DA | partial least squares discriminant analysis |
ROC curve | receiving operating characteristics curve |
SP | soybean protein |
TG | triglyceride |
VIP | variable importance projection |
VLDL-C | very low-density lipoprotein-cholesterol |
References
- Wang, Q.; Imamura, F.; Lemaitre, R.N.; Rimm, E.B.; Wang, M.; King, I.B.; Song, X.; Siscovick, D.; Mozaffarian, D. Plasma phospholipid trans-fatty acids levels, cardiovascular diseases, and total mortality: The cardiovascular health study. J. Am. Heart Assoc. 2014, 3, e000914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthan, N.R.; Ooi, E.M.; Van Horn, L.; Neuhouser, M.L.; Woodman, R.; Lichtenstein, A.H. Plasma phospholipid fatty acid biomarkers of dietary fat quality and endogenous metabolism predict coronary heart disease risk: A nested case-control study within the women’s health initiative observational study. J. Am. Heart Assoc. 2014, 3, e000764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The open study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Moore, S.C.; Derkach, A.; Reedy, J.; Subar, A.F.; Sampson, J.N.; Albanes, D.; Gu, F.; Kontto, J.; Lassale, C.; et al. Identifying biomarkers of dietary patterns by using metabolomics. Am. J. Clin. Nutr. 2017, 105, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Fresno, R.; Llorach, R.; Urpi-Sarda, M.; Lupianez-Barbero, A.; Estruch, R.; Corella, D.; Fitó, M.; Arós, F.; Ruiz-Canela, M.; Salas-Salvadó, J.; et al. Metabolomic pattern analysis after mediterranean diet intervention in a nondiabetic population: A 1- and 3-year follow-up in the predimed study. J. Proteome Res. 2015, 14, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.B.; Rinnan, Å.; Manach, C.; Poulsen, S.K.; Pujos-Guillot, E.; Larsen, T.M.; Astrup, A.; Dragsted, L.O. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J. Proteome Res. 2014, 13, 1405–1418. [Google Scholar] [CrossRef]
- Scalbert, A.; Brennan, L.; Manach, C.; Andres-Lacueva, C.; Dragsted, L.O.; Draper, J.; Rappaport, S.M.; van der Hooft, J.J.; Wishart, D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014, 99, 1286–1308. [Google Scholar] [CrossRef] [Green Version]
- McKeown, N.M.; Marklund, M.; Ma, J.; Ross, A.B.; Lichtenstein, A.H.; Livingston, K.A.; Jacques, P.F.; Rasmussen, H.M.; Blumberg, J.B.; Chen, C.Y. Comparison of plasma alkylresorcinols (ar) and urinary ar metabolites as biomarkers of compliance in a short-term, whole-grain intervention study. Eur. J. Nutr. 2016, 55, 1235–1244. [Google Scholar] [CrossRef]
- Cheung, W.; Keski-Rahkonen, P.; Assi, N.; Ferrari, P.; Freisling, H.; Rinaldi, S.; Slimani, N.; Zamora-Ros, R.; Rundle, M.; Frost, G.; et al. A metabolomic study of biomarkers of meat and fish intake. Am. J. Clin. Nutr. 2017, 105, 600–608. [Google Scholar] [CrossRef]
- Hernández-Alonso, P.; Becerra-Tomás, N.; Papandreou, C.; Bulló, M.; Guasch-Ferré, M.; Toledo, E.; Ruiz-Canela, M.; Clish, C.B.; Corella, D.; Dennis, C.; et al. Plasma metabolomics profiles are associated with the amount and source of protein intake: A metabolomics approach within the PREDIMED study. Mol. Nutr. Food Res. 2020, 64, e2000178. [Google Scholar] [CrossRef]
- Shibutami, E.; Ishii, R.; Harada, S.; Kurihara, A.; Kuwabara, K.; Kato, S.; Iida, M.; Akiyama, M.; Sugiyama, D.; Hirayama, A.; et al. Charged metabolite biomarkers of food intake assessed via plasma metabolomics in a population-based observational study in Japan. PLoS ONE 2021, 16, e0246456. [Google Scholar] [CrossRef]
- Lépine, G.; Fouillet, H.; Rémond, D.; Huneau, J.F.; Mariotti, F.; Polakof, S. A Scoping Review: Metabolomics Signatures Associated with Animal and Plant Protein Intake and Their Potential Relation with Cardiometabolic Risk. Adv. Nutr. 2021, 12, 2112–2131. [Google Scholar] [CrossRef]
- Matthan, N.R.; Jalbert, S.M.; Ausman, L.M.; Kuvin, J.T.; Karas, R.H.; Lichtenstein, A.H. Effect of soy protein from differently processed products on cardiovascular disease risk factors and vascular endothelial function in hypercholesterolemic subjects. Am. J. Clin. Nutr. 2007, 85, 960–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragsted, L.O. Biomarkers of meat intake and the application of nutrigenomics. Meat Sci. 2010, 84, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.A.; Rinaldi, S.; Ferrari, P.; Carayol, M.; Achaintre, D.; Scalbert, A.; Cross, A.J.; Gunter, M.J.; Fensom, G.K.; Appleby, P.N.; et al. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the epic-oxford cohort. Am. J. Clin. Nutr. 2015, 102, 1518–1526. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, M.; Willett, W.; Townsend, M.K.; Kraft, P.; Ivey, K.L.; Rimm, E.B.; Wilson, K.M.; Costenbader, K.H.; Karlson, E.W.; Poole, E.M.; et al. A lipid-related metabolomic pattern of diet quality. Am. J. Clin. Nutr. 2020, 112, 1613–1630. [Google Scholar] [CrossRef]
- Wittenbecher, C.; Muhlenbruch, K.; Kroger, J.; Jacobs, S.; Kuxhaus, O.; Floegel, A.; Fritsche, A.; Pischon, T.; Prehn, C.; Adamski, J.; et al. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am. J. Clin. Nutr. 2015, 101, 1241–1250. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zou, L.; Su, J.; Tai, E.S.; Whitton, C.; Dam, R.M.V.; Ong, C.N. Meat and seafood consumption in relation to plasma metabolic profiles in a chinese population: A combined untargeted and targeted metabolomics study. Nutrients 2017, 9, 683. [Google Scholar] [CrossRef] [Green Version]
- Sugino, T.; Shirai, T.; Kajimoto, Y.; Kajimoto, O. L-ornithine supplementation attenuates physical fatigue in healthy volunteers by modulating lipid and amino acid metabolism. Nutr. Res. 2008, 28, 738–743. [Google Scholar] [CrossRef]
- Feeney, M.B.; Schoneich, C. Tyrosine modifications in aging. Antioxid. Redox. Signal. 2012, 17, 1571–1579. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, G.; Ding, M.; Zong, G.; Hu, F.B.; Willett, W.C.; Rimm, E.B.; Manson, J.E.; Sun, Q. Isoflavone Intake and the Risk of Coronary Heart Disease in US Men and Women: Results From 3 Prospective Cohort Studies. Circulation 2020, 141, 1127–1137. [Google Scholar] [CrossRef]
- Jang, H.H.; Lee, Y.M.; Choe, J.S.; Kwon, O. Validation of soy isoflavone intake and its health effects: A review of the development of exposure biomarkers. Nutr. Res. Pract. 2021, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.D.; Tang, Z.Z.; Chen, G.; Huang, S.; Ferguson, J.F. Soy food intake associates with changes in the metabolome and reduced blood pressure in a gut microbiota dependent manner. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1500–1511. [Google Scholar] [CrossRef] [PubMed]
- Guadamuro, L.; Azcárate-Peril, M.A.; Tojo, R.; Mayo, B.; Delgado, S. Impact of dietary isoflavone supplementation on the fecal microbiota and its metabolites in postmenopausal women. Int. J. Environ. Res. Public Health. 2021, 18, 7939. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, R.; Frank, M.W.; Jackson, P.D.; Rock, C.O.; Jackowski, S. Elimination of the CDP-ethanolamine pathway disrupts hepatic lipid homeostasis. J. Biol. Chem. 2009, 284, 27077–27089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agren, J.J.; Kurvinen, J.P.; Kuksis, A. Isolation of very low density lipoprotein phospholipids enriched in ethanolamine phospholipids from rats injected with Triton WR 1339. Biochim. Biophys. Acta 2005, 1734, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Fullerton, M.D.; Vine, D.; Bakovic, M. Mechanism of hypertriglyceridemia in CTP:phosphoethanolamine cytidylyltransferase-deficient mice. J. Lipid. Res. 2012, 53, 1811–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradberry, J.C.; Hilleman, D.E. Overview of omega-3 fatty acid therapies. Pharm. Ther. 2013, 38, 681–691. [Google Scholar]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Fiehn, O. Metabolomics by gas chromatography-mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 2016, 114, 303431–303432. [Google Scholar] [CrossRef]
- Fiehn, O.; Kind, T. Metabolite profiling in blood plasma. Methods Mol. Biol. 2007, 358, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid. Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [Google Scholar] [CrossRef]
- Talameh, Y.; Wei, R.; Naito, H. Measurement of total hdl, hdl2 and hdl3 by dextran sulfate-mgcl2 precipitation technique in human serum. Clin. Chim. Acta 1986, 158, 33–41. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Msea: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic. Acids. Res. 2010, 38, W71–W77. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.E.; Li, S.; Xia, J. Metaboanalyst 5.0, Narrowing the gap between raw spectra and functional insights. Nucleic. Acids. Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
Variables | Participants (N = 11) |
---|---|
Age, y | 65 ± 6 |
Weight, kg | 71 ± 12 |
Females (%) | 100 |
Body Mass Index, kg/m2 | 27.3 ± 3.4 |
Total cholesterol, mmol/L | 6.18 ± 0.62 |
VLDL-C, mmol/L | 0.54 ± 0.20 |
LDL-C, mmol/L | 3.96 ± 0.63 |
HDL-C, mmol/L | 1.67 ± 0.38 |
Triacylglycerol, mmol/L | 1.19 ± 0.44 |
Metabolites | Category | t-Statistics | FDR |
---|---|---|---|
Daidzein 4′-sulfate | Xenobiotics | −20.13 | 0.0000017 |
PE 38:4 | Phospholipids | −9.516 | 0.0008065 |
PE 38:4 Isomer B | Phospholipids | −9.074 | 0.0008065 |
PE P-34:2 or PE O-34:3 | Phospholipids | 9.062 | 0.0008065 |
3-Methylhistidine | Amino acids | 8.455 | 0.0011983 |
PC P-36:5 or PC O-36:6 | Phospholipids | 7.758 | 0.0019206 |
PE O-37:5 (PE O-17:1_20:4) | Phospholipids | 7.614 | 0.0019206 |
N-α-Acetyl-L-ornithine | Amino acids | −7.491 | 0.0019206 |
N-Methylhistidine | Amino acids | 7.491 | 0.0019206 |
PE P-36:4 or PE O-36:5 | Phospholipids | 7.025 | 0.0029885 |
PC P-38:6 or PC O-38:7 | Phospholipids | 6.740 | 0.0037446 |
PE O-38:6 (PE O-18:1_20:5) | Phospholipids | 6.637 | 0.0037446 |
PE 36:4 | Phospholipids | −6.628 | 0.0037446 |
3-Aminotyrosine | Amino acids | −6.466 | 0.0042649 |
PE 38:5 (PE 16:0_22:5) | Phospholipids | −6.387 | 0.0044006 |
(2R)-3-Hydroxyisovaleroylcarnitine | Amino acids | 6.173 | 0.0053753 |
PE 36:1 (PE 18:0_18:1) | Phospholipids | −6.137 | 0.0053753 |
PE P-38:3 or PE O-38:4 | Phospholipids | 6.035 | 0.0057137 |
PC O-36:3 | Phospholipids | 6.007 | 0.0057137 |
PE P-38:6 or PE O-38:7 | Phospholipids | 5.747 | 0.0075186 |
PC P-34:1 or PC O-34:2 | Phospholipids | 5.729 | 0.0075186 |
PC 40:5 Isomer B | Phospholipids | −5.601 | 0.0085627 |
(3-Carboxypropyl)trimethylammonium | Xenobiotics | 5.550 | 0.0088038 |
PC P-34:1 or PC O-34:2 Isomer A | Phospholipids | 5.479 | 0.0093114 |
PC O-37:5 | Phospholipids | 5.394 | 0.0100850 |
Metabolite | Pathway Involved | VIP Score 1 |
---|---|---|
Daidzein 4′-sulfate | Xenobiotics | 16.5 |
Genistein | Xenobiotics | 7.22 |
Daidzein | Xenobiotics | 7.16 |
3-Methylhistidine | Amino acid | 4.57 |
N-α-Acetyl-L-ornithine | Amino acid | 2.55 |
3-Aminotyrosine | Amino acid | 2.54 |
PE O-37:5(PE O-17:1_20:4) | PE/lipid metabolism | 2.49 |
PE P-36:5 or PE O-36:6 | PE/lipid metabolism | 2.03 |
PE O-38:6 (PE O-18:1_20:5) | PE/lipid metabolism | 1.97 |
β-alanine | Amino acid | 1.73 |
Metabolites | AUC | p Value |
---|---|---|
Daidzein 4’-sulfate | 1 | 9.51 × 10−12 |
Genistein | 0.99 | 2.44 × 10−4 |
Daidzein | 0.97 | 6.09 × 10−5 |
3-Methylhistidine | 0.96 | 6.92 × 10−5 |
PE O-37:5 (PE O-17:1_20:4) | 0.93 | 3.07 × 10−5 |
PE O-38:6 (PE O-18:1_20:5) | 0.91 | 6.47 × 10−4 |
N-α-Acetyl-L-ornithine | 0.90 | 2.03 × 10−3 |
PE P-36:5 or PE O-36:6 | 0.89 | 1.19 × 10−3 |
3-Aminotyrosine | 0.87 | 3.01 × 10−3 |
β-alanine | 0.85 | 3.98 × 10−3 |
Pathway | p-Value | FDR |
---|---|---|
Beta-alanine metabolism | 0.00000037 | 0.0000336 |
Histidine metabolism | 0.00000143 | 0.0000652 |
Methylhistidine metabolism | 0.0000154 | 0.000468 |
Propanoate metabolism | 0.000147 | 0.00334 |
Vitamin B6 metabolism | 0.00209 | 0.038 |
Galactose metabolism | 0.00313 | 0.0426 |
Aspartate metabolism | 0.00328 | 0.0426 |
Pantothenate and CoA biosynthesis | 0.00539 | 0.0563 |
Pyrimidine metabolism | 0.00582 | 0.0563 |
Beta oxidation of very long chain fatty acids | 0.00619 | 0.0563 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.K.; Matthan, N.R.; Matuszek, G.; Lichtenstein, A.H. Plasma Metabolite Profiles Following Consumption of Animal Protein and Soybean-Based Diet in Hypercholesterolemic Postmenopausal Women. Metabolites 2022, 12, 209. https://doi.org/10.3390/metabo12030209
Huang NK, Matthan NR, Matuszek G, Lichtenstein AH. Plasma Metabolite Profiles Following Consumption of Animal Protein and Soybean-Based Diet in Hypercholesterolemic Postmenopausal Women. Metabolites. 2022; 12(3):209. https://doi.org/10.3390/metabo12030209
Chicago/Turabian StyleHuang, Neil K., Nirupa R. Matthan, Gregory Matuszek, and Alice H. Lichtenstein. 2022. "Plasma Metabolite Profiles Following Consumption of Animal Protein and Soybean-Based Diet in Hypercholesterolemic Postmenopausal Women" Metabolites 12, no. 3: 209. https://doi.org/10.3390/metabo12030209
APA StyleHuang, N. K., Matthan, N. R., Matuszek, G., & Lichtenstein, A. H. (2022). Plasma Metabolite Profiles Following Consumption of Animal Protein and Soybean-Based Diet in Hypercholesterolemic Postmenopausal Women. Metabolites, 12(3), 209. https://doi.org/10.3390/metabo12030209