Metabolite Signature in the Carriers of Pathogenic Genetic Variants for Cardiomyopathy: A Population-Based METSIM Study
Abstract
:1. Introduction
2. Results
2.1. Identification of Genetic Variants for HCM and DCM
2.2. Identification of Metabolites Associated with HCM Pathogenic Variants
2.3. Identification of Metabolites Associated with DCM Pathogenic Variants
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Whole Exome Sequencing and Classification of Genetic Variants for Cardiomyopathies
4.3. Metabolomics
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKenna, W.J.; Judge, D.P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 2021, 18, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Semsarian, C.; Ingles, J.; Maron, M.S.; Maron, B.J. New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll Cardiol. 2015, 65, 1249–1254. [Google Scholar] [CrossRef] [Green Version]
- Maron, B.J.; Towbin, J.A.; Thiene, G.; Antzelevitch, C.; Corrado, D.; Arnett, D.; Moss, A.J.; Seidman, C.E.; Young, J.B.; American Heart Association; et al. Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Function. Circulation 2006, 113, 1807–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kühl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the cardiomyopathies: A position statement from the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reichart, D.; Magnussen, C.; Zeller, T.; Blankenberg, S. Dilated cardiomyopathy: From epidemiologic to genetic phenotypes: A translational review of current literature. J. Intern. Med. 2019, 286, 362–372. [Google Scholar] [CrossRef] [Green Version]
- Yotti, R.; Seidman, C.E.; Seidman, J.G. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Ann. Rev. Genomic. Hum. Genet. 2019, 20, 129–153. [Google Scholar] [CrossRef]
- Jääskeläinen, P.; Vangipurapu, J.; Raivo, J.; Kuulasmaa, T.; Heliö, T.; Aalto-Setälä, K.; Kaartinen, M.; Ilveskoski, E.; Vanninen, S.; Hämäläinen, L.; et al. Genetic basis and outcome in a nationwide study of Finnish patients with hypertrophic cardiomyopathy. ESC Hearth Fail. 2019, 6, 436–445. [Google Scholar] [CrossRef]
- Mestroni, L.; Rocco, C.; Gregori, D.; Sinagra, G.; Di Lenarda, A.; Miocic, S.; Vatta, M.; Pinamonti, B.; Muntoni, F.; Caforio, A.L.; et al. Familial dilated cardiomyopathy: Evidence for genetic and phenotypic heterogeneity. J. Am. Coll Cardiol. 1999, 34, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Stege, N.M.; de Boer, R.A.; van den Berg, M.P.; Silljé, H.H.W. The time has come to explore plasma biomarkers in genetic cardiomyopathies. Int. J. Mol. Sci. 2021, 22, 2955. [Google Scholar] [CrossRef]
- Greenwell, A.A.; Gopal, K.; Ussher, J.R. Myocardial energy metabolism in non-ischemic cardiomyopathy. Front. Physiol. 2020, 11, 570421. [Google Scholar] [CrossRef]
- Wolf, C.M. Hypertrophic cardiomyopathy: Genetics and cellular perspectives. Cardiovasc. Diagn. Ther. 2019, 9, S388–S415. [Google Scholar] [CrossRef] [PubMed]
- Ranjbarvaziri, S.; Kooiker, K.B.; Ellenberger, M.; Fajardo, G.; Zhao, M.; Vander Roest, A.S.; Woldeyes, R.A.; Koyano, T.T.; Fong, R.; Ma, N.; et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy. Circulation 2021, 144, 1714–1731. [Google Scholar] [CrossRef] [PubMed]
- Nagana Gowda, G.A.; Djukovic, D. Overview of mass spectrometry-based metabolomics: Opportunities and challenges. Method Mol. Biol. 2014, 1198, 3–12. [Google Scholar]
- Mueller-Hennessen, M.; Sigl, J.; Fuhrmann, J.C.; Witt, H.; Reszka, R.; Schmitz, O.; Kastler, J.; Fischer, J.J.; Müller, O.J.; Giannitsis, E.; et al. Metabolic profiles in heart failure due to non-ischemic cardiomyopathy at rest and under exercise. ESC Heart Fail. 2017, 4, 178–189. [Google Scholar] [CrossRef]
- Laakso, M.; Kuusisto, J.; Stančáková, A.; Kuulasmaa, T.; Pajukanta, P.; Lusis, A.J.; Collins, F.S.; Mohlke, K.L.; Boehnke, M. The Metabolic Syndrome in Men study: A resource for studies of metabolic and cardiovascular diseases. J. Lipid Res. 2017, 58, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Ingles, J.; Goldstein, J.; Thaxton, C.; Caleshu, C.; Corty, E.W.; Crowley, S.B.; Dougherty, K.; Harrison, S.M.; McGlaughon, J.; Milko, L.V.; et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ. Genom. Precis. Med. 2019, 12, e002460. [Google Scholar] [CrossRef] [Green Version]
- Jordan, E.; Peterson, L.; Ai, T.; Asatryan, B.; Bronicki, L.; Brown, E.; Celeghin, R.; Edwards, M.; Fan, J.; Ingles, J.; et al. Evidence-based assessment of genes in dilated cardiomyopathy. Circulation 2021, 144, 7–19. [Google Scholar] [CrossRef]
- Herman, D.S.; Lam, L.; Taylor, M.R.; Wang, L.; Teekakirikul, P.; Christodoulou, D.; Conner, L.; DePalma, S.R.; McDonough, B.; Sparks, E.; et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 2012, 366, 619–628. [Google Scholar] [CrossRef] [Green Version]
- Vikhorev, P.G.; Vikhoreva, N.N.; Yeung, W.; Li, A.; Lal, S.; Dos Remedios, C.G.; Blair, C.A.; Guglin, M.; Campbell, K.S.; Yacoub, M.H. Titin-truncating mutations associated with dilated cardiomyopathy alter length-dependent activation and its modulation via phosphorylation. Cardiovasc. Res. 2022, 118, 241–253. [Google Scholar] [CrossRef]
- Deidda, M.; Noto, A.; Pasqualucci, D.; Fattuoni, C.; Barberini, L.; Piras, C.; Bassareo, P.P.; Porcu, M.; Mercuro, G.; Dessalvi, C.C. The echocardiographic parameters of systolic function are associated with specific metabolomic fingerprints in obstructive and non-obstructive hypertrophic cardiomyopathy. Metabolites 2021, 11, 787. [Google Scholar] [CrossRef]
- Schuldt, M.; van Driel, B.; Algül, S.; Parbhudayal, R.Y.; Barge-Schaapveld, D.; Güçlü, A.; Jansen, M.; Michels, M.; Baas, A.F.; van de Wiel, M.A.; et al. Distinct metabolomic signatures in preclinical and obstructive hypertrophic cardiomyopathy. Cells 2021, 10, 2950. [Google Scholar] [CrossRef] [PubMed]
- Jørgenrud, B.; Jalanko, M.; Heliö, T.; Jääskeläinen, P.; Laine, M.; Hilvo, M.; Nieminen, M.S.; Laakso, M.; Hyötyläinen, T.; Orešič, M.; et al. The metabolome in Finnish carriers of the MYBPC3-Q1061X mutation for hypertrophic cardiomyopathy. PLoS ONE 2015, 10, e0134184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, P.B.; Woollacott, A.J.; Hill, R.G.; Seabrook, G.R. Functional characterization of bradykinin analogues on recombinant human bradykinin B(1) and B(2) receptors. Eur. J. Pharmacol. 2000, 392, 1–9. [Google Scholar] [CrossRef]
- Feldman, D.S.; Carnes, C.A.; Abraham, W.T.; Bristow, M.R. Mechanisms of disease: β-adrenergic receptors—Alterations in signal transduction and pharmacogenomics in heart failure. Nat. Clin. Pract. Cardiovasc. Med. 2005, 2, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.J.; Engelhardt, S.; Eschenhagen, T. What is the role of β-adrenergic signaling in heart failure? Circ. Res. 2003, 93, 896–906. [Google Scholar] [CrossRef] [PubMed]
- De Lucia, C.; Eguchi, A.; Koch, W.J. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front. Pharmacol. 2018, 9, 904. [Google Scholar] [CrossRef] [Green Version]
- Kamide, T.; Okumura, S.; Ghosh, S.; Shinoda, Y.; Mototani, Y.; Ohnuki, Y.; Jin, H.; Cai, W.; Suita, K.; Sato, I. Oscillation of cAMP and Ca2+ in cardiac myocytes: A systems biology approach. J. Physiol. Sci. 2015, 65, 195–200. [Google Scholar] [CrossRef]
- Lowes, B.D.; Gilbert, E.M.; Abraham, W.T.; Minobe, W.A.; Larrabee, P.; Ferguson, D.; Wolfel, E.E.; Lindenfeld, J.; Tsvetkova, T.; Robertson, A.D.; et al. Myocardial gene expression in dilated cardiomyopathy treated with β-blocking agents. N. Engl. J. Med. 2002, 346, 1357–1365. [Google Scholar] [CrossRef]
- Frey, N.; McKinsey, T.A.; Olson, E.N. Decoding calcium signals involved in cardiac growth and function. Nat. Med. 2000, 6, 1221–1227. [Google Scholar] [CrossRef]
- Abraham, W.T.; Gilbert, E.M.; Lowes, B.D.; Minobe, W.A.; Larrabee, P.; Roden, R.L.; Dutcher, D.; Sederberg, J.; Lindenfeld, J.A.; Wolfel, E.E.; et al. Coordinate changes in myosin heavy chain isoform gene expression are selectively associated with alterations in dilated cardiomyopathy phenotype. Mol. Med. 2002, 8, 750–760. [Google Scholar] [CrossRef] [Green Version]
- Goetze, J.P.; Bruneau, B.G.; Ramos, H.R.; Ogawa, T.; de Bold, M.K.; de Bold, A.J. Cardiac natriuretic peptides. Nat. Rev. Cardiol. 2020, 17, 698–717. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; He, F.J.; Dong, Y.; Huang, Y.; Harshfield, G.A.; Zhu, H. Sodium reduction, metabolomic profiling, and cardiovascular disease risk in untreated black hypertensives. Hypertension 2019, 74, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Kubli, D.A.; Gustafsson, A.B. Mitochondria and mitophagy: The yin and yang of cell death control. Circ. Res. 2012, 111, 1208–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibbetts, A.S.; Appling, D.R. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Ann. Rev. Nutr. 2010, 30, 57–81. [Google Scholar] [CrossRef] [PubMed]
- Katayama, A.; Funamoto, M.; Shimizu, K.; Gempei, M.; Sunagawa, Y.; Wada, H.; Hasegawa, K. Analysis of the effects of EPA and DHA on cardiomyocyte hypertrophy. Eur. Cardiol. 2018, 13, 121. [Google Scholar] [CrossRef]
- Shimojo, N.; Jesmin, S.; Sakai, S.; Maeda, S.; Miyauchi, T.; Mizutani, T.; Aonuma, K.; Kawano, S. Fish oil constituent eicosapentaenoic acid inhibits endothelin-induced cardiomyocyte hypertrophy via PPAR-α. Life Sci. 2014, 118, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Guo, A.C.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Gautam, V.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Han, J.H.; Cao, C.; Kim, S.M.; Piao, F.L.; Kim, S.H. Attenuation of lysophosphatidylcholine-induced suppression of ANP release from hypertrophied atria. Hypertension 2004, 43, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Ronkainen, J.J.; Vuolteenaho, O.; Tavi, P. Calcium-calmodulin kinase II is the common factor in calcium-dependent cardiac expression and secretion of A- and B-type natriuretic peptides. Endocrinology 2007, 148, 2815–2820. [Google Scholar] [CrossRef] [Green Version]
- Coppini, R.; Ferrantini, C.; Yao, L.; Fan, P.; Del Lungo, M.; Stillitano, F.; Sartiani, L.; Tosi, B.; Suffredini, S.; Tesi, C.; et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation 2013, 127, 575–584. [Google Scholar] [CrossRef]
- Torimoto, K.; Okada, Y.; Mori, H.; Tanaka, Y. Low levels of 1,5-anhydro-D-glucitol are associated with vascular endothelial dysfunction in type 2 diabetes. Cardiovasc. Diabetol. 2014, 13, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roura, S.; Bayes-Genis, A. Vascular dysfunction in idiopathic dilated cardiomyopathy. Nat. Rev. Cardiol. 2009, 6, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.; Lombardi, R.; Rodriguez, G.; Mitchell, M.M.; Marian, A.J. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. Eur. J. Clin. Investig. 2011, 41, 527–538. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, X.; Li, Z.; Li, L. Relationship between Serum Bilirubin and Left Ventricular Hypertrophy in Patients with Essential Hypertension. PLoS ONE 2015, 10, e0125275. [Google Scholar]
- Zheng, H.; Li, Y.; Xie, N. Association of serum total bilirubin levels with diastolic dysfunction in heart failure with preserved ejection fraction. Biol. Res. 2014, 47, 7. [Google Scholar] [CrossRef] [Green Version]
- Bahls, M.; Atzler, D.; Markus, M.R.P.; Friedrich, N.; Böger, R.H.; Völzke, H.; Felix, S.B.; Schwedhelm, E.; Dörr, M. Low-circulating homoarginine is associated with dilatation and decreased function of the left ventricle in the general population. Biomolecules 2018, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Faller, K.; Atzler, D.; McAndrew, D.J.; Zervou, S.; Whittington, H.J.; Simon, J.N.; Aksentijevic, D.; Ten Hove, M.; Choe, C.U.; Isbrandt, D.; et al. Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovasc. Res. 2018, 114, 417–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruszczycky, M.W.; Liu, H.W. Biochemistry: The surprising history of an antioxidant. Nature 2017, 551, 37–38. [Google Scholar] [CrossRef]
- Matsuda, Y.; Ozawa, N.; Shinozaki, T.; Wakabayashi, K.-I.; Suzuki, K.; Kawano, Y.; Ohtsu, I.; Tatebayashi, Y. Ergothioneine, a metabolite of the gut bacterium Lactobacillus reuteri, protects against stress-induced sleep disturbances. Transl. Psychiatry 2020, 10, 170. [Google Scholar] [CrossRef]
- Locke, A.E.; Steinberg, K.M.; Chiang, C.; Service, S.K.; Havulinna, A.S.; Stell, L.; Pirinen, M.; Abel, H.J.; Chiang, C.C.; Fulton, R.S.; et al. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature 2019, 572, 323–328. [Google Scholar] [CrossRef]
- Fernandes Silva, L.; Vangipurapu, J.; Kuulasmaa, T.; Laakso, M. An intronic variant in the GCKR gene is associated with multiple lipids. Sci. Rep. 2019, 9, 10240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Chan, L.S.; Bose, D.; Jackson, A.U.; VandeHaar, P.; Locke, A.E.; Fuchsberger, C.; Stringham, H.M.; Welch, R.; Boehnke, M.; et al. Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci. Nat. Commun. 2022, 13, 1644. [Google Scholar] [CrossRef] [PubMed]
Variable | HCM (n = 36) * | Controls (n = 180) | p | DCM (n = 20) | Controls (n = 100) | p |
---|---|---|---|---|---|---|
Age, years | 58.9 ± 7.2 | 58.9 ± 7.1 | 0.990 | 56.6 ± 7.5 | 56.9 ± 7.5 | 0.883 |
Body mass index, kg/m2 | 26.3 ± 3.7 | 26.2 ± 3.6 | 0.967 | 27.8 ± 3.8 | 27.7 ± 3.7 | 0.961 |
Systolic blood pressure, mmHg | 143.4 ± 17.0 | 138.9 ± 16.9 | 0.137 | 132.3 ± 14.3 | 135.8 ± 15.8 | 0.376 |
Diastolic blood pressure, mmHg | 88.5 ± 8.6 | 86.6± 9.8 | 0.230 | 86.4 ± 9.0 | 86.3 ± 8.9 | 0.954 |
Total triglycerides, mmol/L | 1.22 ± 0.58 | 1.31 ± 0.73 | 0.480 | 1.41 ± 0.82 | 1.88 ± 3.92 | 0.852 |
Free fatty acids, mmol/L | 0.36 ± 0.17 | 0.38 ± 0.15 | 0.377 | 0.36 ± 0.16 | 0.39 ± 0.22 | 0.523 |
hS-CRP (mg/L) | 1.45 ± 1.47 | 2.32 ± 6.59 | 0.148 | 2.39 ± 1.68 | 2.20± 3.46 | 0.163 |
HCM Variant | HCM (n = 38) | DCM Variant | DCM (n = 20) |
---|---|---|---|
MYH7, Arg1053Gln | 24 | TTN, Trp24243Ter | 1 |
MYH7, Arg941His | 4 | TTN, Leu24076Ter | 1 |
MYBPC3, Gln1061Ter | 3 | TTN, Gln4151Ter | 1 |
MYBPC3, c.655-2A > C | 4 | TTN, Gln25397Ter | 1 |
MYBPC3, Gly853fs | 1 | TTN, Pro28547GlnfsTer12 | 2 |
TPM1, Asp175Asn | 2 | TTN, c.7057 + 2dup | 4 |
TTN, Ala35063CysfsTer6 | 1 | ||
TTN, Trp29474Ter | 1 | ||
TTN, Arg22499Ter | 4 | ||
TTN, c.67348 + 1G > A | 1 | ||
TTN, Arg27509Ter | 1 | ||
TTN, Gln23834Ter | 2 |
HMDB | Subclass | Metabolite | Cases | Controls | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Amino Acids | n | Mean | SD | n | Mean | SD | p | Novel | ||
- | ɣ-glutamyl amino acid | Gamma-glutamyl-alpha-lysine | 36 | −0.055 | 0.096 | 179 | 0.017 | 0.113 | 4.9 × 10−4 | Yes |
HMDB0000913 | Tyrosine Metabolism | Vanillactate | 28 | 0.123 | 0.250 | 158 | −0.003 | 0.218 | 0.006 | Yes |
HMDB0004246 | Oligopeptide | Des-arg 9-bradykinin | 5 | 0.430 | 0.674 | 36 | −0.053 | 0.303 | 0.008 | Yes |
HMDB0000092 | Glycine, Serine and Threonine Metabolism | Dimethylglycine | 36 | 0.049 | 0.136 | 180 | −0.005 | 0.109 | 0.009 | Yes |
Lipids | ||||||||||
Fatty acids | ||||||||||
HMDB0000321 | Medium-chain FA | 2-hydroxyadipate | 14 | 0.141 | 0.323 | 46 | −0.034 | 0.162 | 0.008 | Yes |
HMDB0031057 | Long-chain FA | 2-hydroxypalmitate | 36 | −0.033 | 0.095 | 180 | 0.013 | 0.086 | 0.005 | Yes |
HMDB0061859 | Long-chain FA | (14 or 15)-methylpalmitate (a17:0 or i17:0) | 36 | −0.060 | 0.192 | 176 | 0.019 | 0.147 | 0.006 | Yes |
HMDB0001999 | Long-chain PUFA | Eicosapentaenoate (EPA; 20:5n3) | 36 | −0.104 | 0.227 | 180 | 0.004 | 0.228 | 0.010 | Yes |
HMDB0001043 | Long-chain PUFA | Arachidonate (20:4n6) | 36 | −0.077 | 0.140 | 180 | 0.001 | 0.130 | 0.001 | Yes |
HMDB0002183 | Long-chain PUFA | Docosahexaenoate (DHA; 22:6n3) | 36 | −0.104 | 0.227 | 180 | 0.002 | 0.208 | 0.006 | Yes |
Glycerophospholipids | ||||||||||
- | Phosphatidylcholine (PC) | 1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) | 36 | −0.090 | 0.162 | 180 | −0.009 | 0.163 | 0.007 | Yes |
- | Lysophosphatidylcholine | 2-docosahexaenoyl-GPC (22:6) | 34 | −0.107 | 0.183 | 164 | 0.014 | 0.172 | 2.8 × 10−4 | Yes |
HMDB0010384 | Lysophosphatidylcholine | 1-stearoyl-GPC (18:0) | 36 | −0.048 | 0.090 | 180 | 0.007 | 0.092 | 0.001 | Yes |
HMDB0010403 | Lysophosphatidylcholine | 1-docosapentaenoyl-GPC (22:5n6) * | 34 | −0.117 | 0.232 | 158 | 0.021 | 0.221 | 0.001 | Yes |
N/A | Lysophosphatidylcholine | 1-nonadecenoyl-GPC (19:1) | 35 | −0.066 | 0.156 | 168 | 0.027 | 0.162 | 0.002 | Yes |
HMDB0010404 | Lysophosphatidylcholine | 1-docosahexaenoyl-GPC (22:6) | 36 | −0.088 | 0.197 | 180 | 0.009 | 0.178 | 0.004 | Yes |
HMDB0010390 | Lysophosphatidylcholine | 1-arachidoyl-GPC (20:0) | 36 | −0.051 | 0.119 | 178 | 0.013 | 0.129 | 0.007 | Yes |
HMDB0061699 | Lysophosphatidylcholine | 2-arachidonoyl-GPC (20:4) | 34 | −0.078 | 0.168 | 173 | 0.005 | 0.143 | 0.009 | Yes |
N/A | Choline-lysoplasmalogen | 1-palmityl-GPC (O-16:0) | 36 | −0.060 | 0.136 | 180 | 0.025 | 0.142 | 0.001 | Yes |
HMDB0011149 | Choline-lysoplasmalogen | 1-stearyl-GPC (O-18:0) | 36 | −0.052 | 0.128 | 175 | 0.015 | 0.128 | 0.004 | Yes |
HMDB0010407 | Choline-lysoplasmalogen | 1-(1-enyl-palmitoyl)-GPC (P-16:0) * | 36 | −0.048 | 0.129 | 180 | 0.016 | 0.126 | 0.006 | Yes |
HMDB0061690 | Lysophosphatidylinositol | 1-arachidonoyl-GPI (20:4) | 36 | −0.076 | 0.135 | 180 | −0.004 | 0.123 | 0.002 | Yes |
Other metabolites | ||||||||||
HMDB0029968 | Food Component/Plant | Ethyl beta-glucopyranoside | 35 | 0.194 | 0.443 | 178 | −0.035 | 0.421 | 0.004 | Yes |
HMDB | Subclass | Metabolite | Cases | Controls | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Carbohydrate | n | Mean | SD | n | Mean | SD | p | Novel | ||
HMDB0002712 | Glycolysis, Gluconeogenesis, and Pyruvate Metabolism | 1,5-anhydroglucitol | 20 | −0.137 | 0.300 | 100 | −0.008 | 0.107 | 8.9 × 10−4 | Yes |
Lipids | ||||||||||
HMDB0000054 | Bilirubins | Bilirubin (Z,Z) | 20 | −0.060 | 0.162 | 100 | 0.049 | 0.178 | 0.012 | Yes |
Amino acids | ||||||||||
HMDB0000670 | Urea cycle; Arginine and Proline Metabolism | Homoarginine | 20 | −0.076 | 0.130 | 100 | 0.031 | 0.165 | 0.007 | No |
HMDB0029422 | Histidine pathway | Histidine betaine (hercynine) | 20 | −0.189 | 0.328 | 85 | 0.057 | 0.373 | 0.008 | Yes |
HMDB0000725 | Urea cycle; Arginine and Proline Metabolism | Trans-4-hydroxyproline | 20 | 0.097 | 0.111 | 100 | 0.000 | 0.163 | 0.012 | Yes |
HMDB0013713 | Tryptophan Metabolism | N-acetyltryptophan | 20 | −0.076 | 0.133 | 99 | 0.003 | 0.128 | 0.014 | Yes |
HMDB0001844 | Leucine, Isoleucine and Valine Metabolism | Methylsuccinate | 19 | −0.082 | 0.180 | 95 | 0.000 | 0.128 | 0.019 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravi, R.; Fernandes Silva, L.; Vangipurapu, J.; Maria, M.; Raivo, J.; Helisalmi, S.; Laakso, M. Metabolite Signature in the Carriers of Pathogenic Genetic Variants for Cardiomyopathy: A Population-Based METSIM Study. Metabolites 2022, 12, 437. https://doi.org/10.3390/metabo12050437
Ravi R, Fernandes Silva L, Vangipurapu J, Maria M, Raivo J, Helisalmi S, Laakso M. Metabolite Signature in the Carriers of Pathogenic Genetic Variants for Cardiomyopathy: A Population-Based METSIM Study. Metabolites. 2022; 12(5):437. https://doi.org/10.3390/metabo12050437
Chicago/Turabian StyleRavi, Rowmika, Lilian Fernandes Silva, Jagadish Vangipurapu, Maleeha Maria, Joose Raivo, Seppo Helisalmi, and Markku Laakso. 2022. "Metabolite Signature in the Carriers of Pathogenic Genetic Variants for Cardiomyopathy: A Population-Based METSIM Study" Metabolites 12, no. 5: 437. https://doi.org/10.3390/metabo12050437
APA StyleRavi, R., Fernandes Silva, L., Vangipurapu, J., Maria, M., Raivo, J., Helisalmi, S., & Laakso, M. (2022). Metabolite Signature in the Carriers of Pathogenic Genetic Variants for Cardiomyopathy: A Population-Based METSIM Study. Metabolites, 12(5), 437. https://doi.org/10.3390/metabo12050437