Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach
Abstract
:1. Introduction
2. Xenobiotic Pollution and Its Impact on the Environment
2.1. Impact of Xenobiotics on Soil
2.2. Impact of Xenobiotics on Water
2.3. Impact of Xenobiotics on Plants
2.4. Impact of Xenobiotics on Marine Life
2.5. Impact of Xenobiotics on Terrestrial Animals
2.6. Impact of Xenobiotics on Human Health
3. Omics Approaches to Combat Xenobiotic Pollution
3.1. Genomics and Metagenomics
3.2. Transcriptomics and Metatranscriptomics
3.3. Proteomics and Metaproteomics
3.4. Metabolomics
3.4.1. Analytical Approaches for Metabolite Screening and Their Use in the Detection and Degradation of Xenobiotics
3.4.2. Miscellaneous Methods Used in Detection of Xenobiotics
4. Role of Microorganisms in Xenobiotic Degradation
4.1. Xenobiotic Degrading Enzymes Associated with Bacteria
4.2. Xenobiotic Degrading Enzymes Associated with Fungi
5. Practical Use of Microorganisms in Bioremediation of Xenobiotics
Patent | Patent No. | Country | Application | Novelties/Inventions | References |
---|---|---|---|---|---|
Microbial degradation of waste/sludge | 0 274 856 A1 | England; European Patent | Biotransformation and/or mineralisation of each determined constituent of the waste | This study revealed the use of the defined assorted culture of bacteria isolated through enrichment on major individual constituents of an effluent, followed by mixing the isolates to detoxify the complex non-degradable effluent. | [150] |
Microbial removal of xenobiotic dyes | DD290004A5 | Germany; German Patent | Microbial degradation of xenobiotic dyes from triphenylmethane compounds | This invention is unique in terms of its way of selecting and using oleophilic microorganisms that ensure the degradation of xenobiotic dyes, in particular, those of triphenylmethane compounds | [151] |
Microbial detoxification of xenobiotics using yeast | US4968620A | Peoria, United States; United States Patent | Detoxification of a variety of xenobiotics, including insecticides, herbicides, mycotoxins, and plant toxins (allelochemicals) | This invention provides insight into symbiotic yeast i.e., cigarette beetle (Lasioderma serricorne) NRRLY-18546 that detoxify pesticides, herbicides, mycotoxins, and plant poisons (allelochemicals) | [152] |
Two-phase partitioning bioreactor for the degradation of a xenobiotech (organic and aqueous) | CA2216327A1 | Canada; Canadian Intellectual Property Office | Causing the microorganism to metabolize the xenobiotic in the aqueous phase | The novelty of the invention is the two-phase concentration of xenobiotic compounds using bioreactors | [153] |
Bioremediation of Xenobiotics Including Methyl Tert-Butylether | US 6,194,197 B1 | United States; United States Patent | Degradation of Methyl Tert-Butylether (MTBE) | The novelty of this patent suggests that the co-metabolism of MTBE by graphium and other microbial species having a non-specific P-450 cytochrome oxidase could be used for the remediation of MTBE contamination | [154] |
Treatment of contaminated groundwater using immobilized cells | WO 01/32566 Al | United States; Australian Patent | Creating a “bio-trench” or “bio-curtain” to clean contaminated groundwater | A method of removing contaminated groundwater is provided which places a biological permeable barrier in the path of the groundwater flow to contact the contaminated groundwater with encapsulated microorganisms which act to decontaminate the contaminated groundwater | [155] |
Environmental remediation of organic compounds | EP 0 822 253 B1 | Tokyo-Japan; European Patent | Biodegrading of chlorinated organic compounds such as trichloroethylene (TCE) and dichloroethylene (DCE) | Processes for making harmful chemical substances harmless or less harmful by effecting a chemical change in the substances by biological methods, i.e., processes of utilizing enzymes or microorganisms as whole | [156] |
Microbial decomposition of xenobiotics | DE10125365A1 | Germany; German Patent | Degradation of the herbicide Isoproturon | Effective method for decomposing xenobiotics (X) using a physiologically compatible combination of at least one fungus (A) with mono-/di-oxygenase activity and at least one fungus (B) with glutathione-S-transferase (GST) activity. An independent claim is also included for a combination of decomposing (X) containing (A) and (B). | [157] |
Anaerobic microbial degradation of phthalic acid esters | WO2006136173A2 | Denmark; World Intellectual Property Organization International Bureau | Degradation of phthalic acid esters | A process for anaerobic microbial degradation of phthalic acid esters, comprising the step of adding to a bioreactor at least one bacterial strain, which as a pure isolate capable of anaerobic degradation of phthalic acid esters. | [158] |
bioremediation of chlorinated organic compound using recombinant bacteria | US 7,989,194B2 | Chile; United States Patent | Degradation or mineralization of pollutants such as polychlorobiphenyls (PCBs), | Wautersia eutropha strain JMS34, a recombinant bacterium that can completely degrade or mineralize pollutants such as polychlorobiphenyls (PCBs), bioremediation of PCB-contaminated environments that contain a bacterial inoculum of this recombinant strain. | [148] |
Method for simultaneous biological removal of nitrogen compounds and xenobiotics of wastewaters | WO2013166611 | Prilly, Switzerland; European Patent | Removal of nitrogen compounds and xenobiotics of wastewaters using aerobic granular biomass | According to the present invention, it can provide a kind of when in order to handle the method that contains ammonia-state nitrogen waste water and carry out promotion when biological nitrogen is removed nitration reaction. | [159] |
Purification of soil contamination using bacterial strain | EP 2 788 512 B1 | Warszawa-Poland; European Patent | Removal of contaminants from soil, as well as a method of soil treatment | The present solution is a natural method of removing hazardous pollutants from the environment without introducing synthetic products. | [149] |
Soil and Plant remediation using Atrazine degrading bacteria | CN104762227A | China; Chinese Patent | atrazine degradation- | The bacterium Arthrobacter ureafaciens liulou 1 (CGMCC 9667) possesses a unique combination of high atrazine-degrading activity and can colonize plant roots after seed inoculation and traits of plant growth-promoting bacterium. | [160] |
Xenobiotic metabolism and associated enzyme | US 2019/0100792 A1 | United States; United States Patent | Probes for specifically identifying target active enzymes involved in xenobiotic metabolism | The activity-based probes labeled only their target active enzymes involved in xenobiotic metabolism and therefore provide a measurement of true protein functional activity rather than transcript or protein abundance. | [150] |
Bioremediation of xenobiotics in the honey bee hive | US2021378263A1 | United States; United States Patent | GE bacteria can hydrolyze ester bonds or remove a carboxyl group | Described herein are engineered cells, enzymes, methods of use, and bee bread incorporating engineered cells and enzymes as described herein to address honey bee hive contamination | [161] |
In-vitro model of the human gut microbiome to understand the Impact of xenobiotics | US20200370005 | United States Patent | Modifications of xenobiotics by intrinsic gut microbiota | The model facilitates metabolic modeling and enables a better understanding of the structure and function of the human gut microbiome and modifications of xenobiotics by intrinsic gut microbiota, such as biotransformation and bioaccumulation. | [162] |
6. Conclusions and Future Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Malla, M.A.; Dubey, A.; Yadav, S.; Kumar, A.; Hashem, A.; Abd-Allah, E.F. Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front. Microbiol. 2018, 9, 1132. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Srinivasan, L.R. Enzymes and operons mediating xenobiotic degradation in bacteria. Crit. Rev. Microbiol. 2001, 27, 133–166. [Google Scholar] [CrossRef] [PubMed]
- Godheja, J.; Shekhar, S.K.; Siddiqui, S.A.; Modi, D.R. Xenobiotic compounds present in soil and water: A review on remediation strategies. J. Environ. Anal. Toxicol. 2016, 6, 2161. [Google Scholar] [CrossRef]
- Embrandiri, A.; Kiyasudeen, S.K.; Rupani, P.F.; Ibrahim, M.H. Environmental xenobiotics and its effect on natural ecosystem. In Plant Response to Xenobiotic; Singh, A., Prasad, S.M., Singh, R.P., Eds.; Springer: Singapore, 2016; pp. 1–18. [Google Scholar]
- Dhakal, K.; Gadupudi, G.S.; Lehmler, H.J.; Ludewig, G.; Duffel, M.W.; Robertson, L.W. Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs). Environ. Sci. Pollut. Res. Int. 2018, 25, 16277–16290. [Google Scholar] [CrossRef]
- Baun, A.; Sørensen, S.N.; Rasmussen, R.F.; Hartmann, N.B.; Koch, C.B. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat. Toxicol. 2012, 86, 379–387. [Google Scholar] [CrossRef]
- Ashauer, R.; Hintermeister, A.; O’Connor, I.; Elumelu, M.; Hollender, J.; Escher, B.I. Significance of xenobiotic Metabolism for bioaccumulation kinetics of organic chemicals in Gammarus pulex. Environ. Sci. Technol. 2012, 46, 3498–3508. [Google Scholar] [CrossRef]
- Maurya, P.K. Bioaccumulation of xenobiotics compound of pesticides in riverine system and its control technique: A critical review. J. Ind. Pollut. Control. 2016, 32, 580–594. [Google Scholar]
- Derby, A.P.; Fuller, N.W.; Huff Hartz, K.E.; Segarra, A.; Connon, R.E.; Brander, S.M.; Lydy, M.J. Trophic transfer, bioaccumulation and transcriptomic effects of permethrin in inland silversides, Menidiaberyllina, under future climate scenarios. Environ. Pollut. 2021, 275, 116545. [Google Scholar] [CrossRef]
- Zhou, Y.; Yao, L.; Pan, L.; Wang, H. Bioaccumulation and function analysis of glutathione S-transferase isoforms in Manila clam (Ruditapes philippinarum) exposed to different kinds of PAHs. J. Environ. Sci. 2022, 112, 129–139. [Google Scholar] [CrossRef]
- Elekwachi, O. Global use of bioremediation technologies for decontamination of ecosystems. J. Bioremed. Biodegrad. 2014, 5, 1–30. [Google Scholar] [CrossRef]
- Liu, L.; Bilal, M.; Duan, X.H.; Iqbal, H.M.N.; Iqbal, N. Mitigation of environmental pollution by genetically engineered bacteria-current challenges and future perspectives. Sci. Total Environ. 2019, 667, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Poudel, D.K.; Marahatha, R.; Dawadi, S.; Khadayat, K.; Phuyal, S.; Shrestha, S.; Gaire, S.; Basnet, K.; Khadka, U.; et al. Microbial Enzymes Used in Bioremediation. J. Chem. 2021, 8849512, 1–17. [Google Scholar] [CrossRef]
- Charles, S.; Ratier, A.; Baudrot, V.; Multari, G.; Siberchicot, A.; Wu, D.; Lopes, C. Taking full advantage of modelling to better assess environmental risk due to xenobiotics—the all-in-one facility MOSAIC. Environ. Sci. Pollut. Res. Int. 2022, 29, 29244–29257. [Google Scholar] [CrossRef]
- Perelo, L.W. In situ and Bioremediation of organic pollutants in aquatic sediments. J. Hazard. Mater. 2010, 177, 81–89. [Google Scholar] [CrossRef]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques- classification based on site of application: Principle, advantages, limitations, and prospects. World J. Microbiol. Biotechnol. 2016, 32, 180. [Google Scholar] [CrossRef] [PubMed]
- Štefanac, T.; Grgas, D.; LandekaDragičević, T. Xenobiotics-Division and Methods of Detection: A Review. J. Xenobiot. 2021, 11, 130–141. [Google Scholar] [CrossRef]
- Saraswat, S. Patent Analysis on Bioremediation of Environmental Pollutants. J. Bioremed. Biodeg 2014, 5, 251. [Google Scholar] [CrossRef]
- Sikandar, A.; Shehzadi, K.; Arshad, Q.; Munir, K. Phytoremediation: An analytical technique for the assessment of biodegradation of organic xenobiotic pollutants: A review. Int. J. Sci. Res. 2013, 4, 2250–2253. [Google Scholar]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef]
- Faroon, O.; Ruiz, P. Polychlorinated biphenyls: New evidence from the last decade. Toxicol. Ind. Health 2016, 32, 1825–1847. [Google Scholar] [CrossRef]
- Yadav, A. Potential Impact of Polychlorinated Biphenyls on Plant and Environmental Health. Int. J. Plant. Soil. Sci. 2020, 32, 51–57. [Google Scholar]
- Kroeze, C.; Reijnders, L. Halocarbons and global warming. Sci. Total Environ. 1992, 111, 1–24. [Google Scholar] [CrossRef]
- Piers, M.D.F.; Joshi, M. The role of halocarbons in the climate change of the troposphere and stratosphere. Clim. Chang. 2005, 71, 249–266. [Google Scholar]
- Griffin, G.J.L. Synthetic polymers and the living environment. Pure Appl. Chem. 1980, 52, 399–407. [Google Scholar] [CrossRef]
- Moore, C.J. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environ. Res. 2008, 108, 131–139. [Google Scholar] [CrossRef]
- Patneedi, C.B.; Prasadu, K.D. Impact of Pharmaceutical Wastes on Human Life and Environment. Rasyan J. Chem. 2015, 8, 67–70. [Google Scholar]
- Honda, M.; Suzuki, N. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. Int. J. Environ. Res. Public Health 2020, 17, 1363. [Google Scholar] [CrossRef]
- Curtis, S.W.; Terrell, M.L.; Jacobson, M.H.; Cobb, D.O.; Jiang, V.S.; Neblett, M.F.; Gerkowicz, S.A.; Spencer, J.B.; Marder, M.E.; Barr, D.B.; et al. Thyroid hormone levels associate with exposure to polychlorinated biphenyls and polybrominated biphenyls in adults exposed as children. J. Environ. Health 2019, 18, 1–12. [Google Scholar] [CrossRef]
- Wang, X.; Sial, M.U.; Bashir, M.A.; Bilal, M.; Raza, Q.U.A.; Ali Raza, H.M.; Rehim, A.; Geng, Y. Pesticides Xenobiotics in Soil Ecosystem and Their Remediation Approaches. Sustainability 2022, 14, 3353. [Google Scholar] [CrossRef]
- Sall, M.L.; Diaw, A.K.D.; Gningue-Sall, D.; Efremova Aaron, S.; Aaron, J.J. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res. 2022, 27, 29927–29942. [Google Scholar] [CrossRef]
- Salem, H.M.; Abdel-Salam, A.; Abdel-Salam, M.A.; Seleiman, M.F. Soil Xenobiotics and their Phyto-chemical remediation. In Xenobiotics in the Soil Environment; Hashmi, M., Kumar, V., Varma, A., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Juliano, C.; Magrini, G.A. Cosmetic ingredients as emerging pollutants of environmental and health concern. A Mini-Review. Cosmetics 2017, 4, 11. [Google Scholar] [CrossRef]
- Priyanka, J.V.; Rajalakshmi, S.; Kumar, P.S.; Krishnaswamy, V.G.; Al Farraj, D.A.; Elshikh, M.S.; Gawwad, M.R.A. Bioremediation of soil contaminated with toxic mixed reactive azo dyes by co-cultured cells of Enterobacter cloacae and Bacillus subtilis. Environ. Res. 2022, 204, 112136. [Google Scholar] [CrossRef] [PubMed]
- Alkorta, I.; Garbisu, C. Phytoremediation of organic contaminants in soils. Bioresour. Technol. 2001, 79, 273–276. [Google Scholar] [CrossRef]
- Samanta, S.K.; Singh, O.V.; Jain, R.K. Polycyclic aromatic hydrocarbons: Environmental pollution and Bioremediation. Trends Biotechnol. 2002, 20, 243–248. [Google Scholar] [CrossRef]
- Borpatragohain, B.; Sahoo, S.; Rai, A. An overview on the impact, interaction and fate of xenobiotic-soil organic matter complexes. Int. J. Commun. Syst. 2019, 7, 4935–4941. [Google Scholar]
- Schwitzguébel, J.P.; Meyer, J.; Kidd, P. Pesticide’s removal using plants: Phytodegradation versus Phyto stimulation. In Phytoremediation and Rhizoremediation Theoretical Background; Mackova, M., Dowling, D.N., Macek, T., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 179–198. [Google Scholar]
- Hayat, M.T.; Xu, J.; Ding, N.; Mahmood, T. Dynamic behavior of persistent organic pollutants in soil and their interaction with organic matter. In Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone; Springer: Berlin/Heidelberg, Germany, 2010; pp. 217–222. [Google Scholar]
- Strauch, G.; Möder, M.; Wennrich, R.; Osenbrück, K.; Gläser, H.R.; Schladitz, T.; Muller, C.; Schirmer, K.; Reinstorf, F.; Schirmer, M. Indicators for assessing anthropogenic impact on urban surface and groundwater. J. Soils Sediments 2008, 8, 23–33. [Google Scholar] [CrossRef]
- Mishra, V.K.; Singh, G.; Shukla, R. Impact of Xenobiotics under a Changing Climate Scenario in Climate Change and Agricultural Ecosystems; Woodhead Publishing: Sawston, UK, 2019; pp. 133–151. [Google Scholar]
- Essumang, D.K. Distribution, levels, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in some water bodies along the coastal belt of Ghana. Sci. World J. 2010, 10, 972–985. [Google Scholar] [CrossRef]
- Ibor, O.R.; Adeogun, A.O.; Regoli, F.; Arukwe, A. Xenobiotic biotransformation, oxidative stress and obesogenic molecular biomarker responses in Tilapia guineensis from Eleyele Lake, Nigeria. Ecotoxicol. Environ. Saf. 2019, 169, 255–265. [Google Scholar] [CrossRef]
- Burgos-Aceves, M.A.; Cohen, A.; Smith, Y.; Faggio, C. MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicol. Environ. Saf. 2018, 148, 995–1000. [Google Scholar] [CrossRef]
- Verma, A.; Singh, S.N. Biochemical and ultrastructural changes in plant foliage exposed to auto-pollution. Environ. Monit. Assess. 2006, 120, 585–602. [Google Scholar] [CrossRef]
- Ramel, F.; Sulmon, C.; Serra, A.A.; Gouesbet, G.; Couée, I. Xenobiotic sensing and signalling in higher plants. J. Exp. Bot. 2012, 63, 3999–4014. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Aery, N.C. Impact, Metabolism, and Toxicity of Heavy Metals in Plants. In Plant Responses to Xenobiotics; Singh, A., Prasad, S., Singh, R., Eds.; Springer: Singapore, 2016. [Google Scholar]
- Pande, V.; Pandey, S.C.; Sati, D.; Bhatt, P.; Samant, M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front. Microbiol. 2022, 13, 824084. [Google Scholar] [CrossRef]
- Arya, P.; Haq, S.A. Effects of xenobiotics and their biodegradation in marine life. In Smart Bioremediation Technologies; Academic Press: Cambridge, MA, USA, 2019; pp. 63–81. [Google Scholar]
- Abdelkader, E.; Nadjia, L.; Ahmed, B. Degradation study of phenazin neutral red from aqueous suspension by paper sludge. J Chem. Eng. Process. Technol. 2011, 2, 109–114. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Yan, Y. Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour. Technol. 2011, 102, 7139–7146. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.E.; Hankenson, F.C. Non-experimental xenobiotics: Unintended consequences of intentionally administered substances in terrestrial animal models. ILAR J. 2020, 61, 103. [Google Scholar] [CrossRef]
- Macdonald, N.; Gledhill, A. Potential impact of ABCB1 (glycoprotein) polymorphisms on ivermectin toxicity in humans. Arch. Toxicol. 2007, 81, 553–563. [Google Scholar] [CrossRef]
- Khan, A.M.; Rampal, S. Effects of repeated oral administration of pazufloxacin mesylate and meloxicam on the antioxidant status in rabbits. J. Am. Assoc. Lab. Anim. Sci. 2014, 53, 399–403. [Google Scholar]
- Kobzev, K.; Kobzeva, N.; Chegge, V.; Balinskaya, M.; Bozhenko, E.; Saakian, S.; Sarkisian, D. Ecological problems in the Russian Federation. Impact on the health of people and the country’s economy. E3S Web Conf. 2020, 217, 11001. [Google Scholar] [CrossRef]
- Korrapati, M.C.; Mehendale, H.M. Xenobiotics. In Encyclopedia of Toxicology, 2nd ed.; Wexler, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 469–470. [Google Scholar]
- Kucherenko, S.V.; Ovcharenko, A.M.; Pushenko, S.L. Xenobiotics: A Threat to the Health of Living Organisms. E3S Web Conf. EDP Sci. 2021, 285, 03006. [Google Scholar] [CrossRef]
- Nagata, Y. Special Issue: Microbial Degradation of Xenobiotics. Microorganisms 2020, 8, 487. [Google Scholar] [CrossRef]
- Nag, M.; Lahiri, D.; Dutta, B.; Jadav, G.; Ray, R.R. Biodegradation of used polyethene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environ. Sci. Pollut. Res. 2021, 28, 41365–41379. [Google Scholar] [CrossRef] [PubMed]
- Tirkey, S.R.; Ram, S.; Mitra, M.; Mishra, S. Performance analysis of Pseudomonas sp. strain SA3 in naphthalene degradation using phytotoxicity and microcosm studies. Biodegradation 2022, 33, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, Y.; Yao, T.; Ma, L.; Zhang, J.; Li, C. Biodegradation Pathway and Detoxification of β-cyfluthrin by the bacterial consortium and its bacterial community structure. J. Agric. Food Chem. 2022, 70, 7626–7635. [Google Scholar] [CrossRef] [PubMed]
- Bodor, A.; Bounedjoum, N.; Feigl, G.; Duzs, Á.; Laczi, K.; Szilágyi, Á.; Perei, K. Exploitation of extracellular organic matter from Micrococcus luteus to enhance ex-situ bioremediation of soils polluted with used lubricants. J. Hazard. Mat. 2021, 417, 125996. [Google Scholar] [CrossRef]
- Srinivasan, S.; Sadasivam, S.K. Biodegradation of textile azo dyes by textile effluent non-adapted and adapted Aeromonas hydrophila. Environ. Res. 2021, 194, 110643. [Google Scholar] [CrossRef]
- Feller, F.M.; Eilebrecht, S.; Nedielkov, R.; Yücel, O.; Alvincz, J.; Salinas, G.; Philipp, B. Investigations on the Degradation of the Bile Salt Cholate via the 9, 10-Seco-Pathway Reveals the Formation of a Novel Recalcitrant Steroid Compound by a Side Reaction in Sphingobium sp. Strain Chol11. Microorganisms 2021, 9, 2146. [Google Scholar] [CrossRef]
- Benguenab, A.; Chibani, A. Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocilliumlilacinum) isolated from used engine oil-contaminated soil. Acta Ecol. Sin. 2021, 41, 416–423. [Google Scholar] [CrossRef]
- Correa, L.O.; Bezerra, A.F.M.; Honorato, L.R.S.; Cortêz, A.C.A.; Souza, J.V.B.; Souza, E.S. Amazonian soil fungi are efficient degraders of glyphosate herbicide; novel isolates of Penicillium, Aspergillus, and Trichoderma. Braz. J. Biol. 2021, 83, e242830. [Google Scholar] [CrossRef]
- Benmessaoud, S.; Anissi, J.; Kara, M.; Assouguem, A.; AL-Huqail, A.A.; Germoush, M.O.; Bahhou, J. Isolation and Characterization of Three New Crude Oil Degrading Yeast Strains, Candida parapsilosis SK1, Rhodotorulamucilaginosa SK2 and SK3. Sustainability 2022, 14, 3465. [Google Scholar] [CrossRef]
- Lakshmi, V.V. Genomics Approach to Bioremediation. Bioremediat. Technol. 2010, 7, 206–244. [Google Scholar]
- Rodríguez, A.; Castrejón-Godínez, M.L.; Salazar-Bustamante, E.; Gama-Martínez, Y.; Sánchez-Salinas, E.; Mussali-Galante, P.; Tovar-Sánchez, E.; Ortiz-Hernández, M.L. Omics Approaches to Pesticide Biodegradation. Curr. Microbiol. 2020, 77, 545–563. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.N.; Perry, B.J.; Bergsveinson, J.; Freeman, C.N.; Sheedy, C.; Nilsson, D.; Yost, C.K. Metagenomic and metatranscriptomic analysis reveals enrichment for xenobiotic-degrading bacterial specialists and xenobiotic-degrading genes in a Canadian Prairie two-cell biobed system. Environ. Microbiol. Rep. 2021, 13, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, J.; Fortin, N.; Elias, M.; Wasserscheid, J.; King, T.L.; Lee, K.; Greer, C.W. Metagenomic and metatranscriptomic responses of natural oil-degrading bacteria in the presence of dispersants. Environ. Microbiol. 2019, 21, 2307–2319. [Google Scholar] [CrossRef] [PubMed]
- Siddique, A.B.; Albrectsen, B.R.; Ilbi, H.; Siddique, A.B. Optimization of Protocol for Construction of Fungal ITS Amplicon Library for High-Throughput Illumina Sequencing to Study the Mycobiome of Aspen Leaves. Appl. Sci. 2022, 12, 1136. [Google Scholar] [CrossRef]
- Jeffries, T.C.; Rayu, S.; Nielsen, U.N.; Lai, K.; Ijaz, A.; Nazaries, L.; Singh, B.K. Metagenomic Functional Potential Predicts Degradation Rates of a Model Organophosphorus Xenobiotic in Pesticide Contaminated Soils. Front. Microbiol. 2018, 9, 147. [Google Scholar] [CrossRef]
- Billet, L.; Devers-Lamrani, M.; Serre, R.F.; Julia, E.; Vandecasteele, C.; Rouard, N.; Spor, A. Complete genome sequences of four atrazine-degrading bacterial strains, Pseudomonas sp. strain ADPe, Arthrobacter sp. strain TES, Variovorax sp. strain 38R, and Chelatobacter sp. strain SR38. Microbiol. Resour. Announc. 2021, 10, e01080-20. [Google Scholar] [CrossRef]
- Delegan, Y.A.; Valentowich, L.N.; Shafieva, S.M.; Ganbarov, K.G.; Filonov, A.E.; Vainstein, M.B. Characterization and genomic analysis of highly efficient thermotolerant oil-degrading bacterium Gordonia sp. 1D. Folia Microbiol. 2019, 64, 41–48. [Google Scholar] [CrossRef]
- Eyers, L.; George, I.; Schuler, L.; Stenuit, B.; Agathos, S.N.; ElFantroussi, S. Environmental genomics: Exploring the unmined richness of microbes to degrade xenobiotics. Appl. Microbiol. Biotechnol. 2004, 66, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Lam, K.N.; Cheng, J.; Engel, K.; Neufeld, J.D.; Charles, T.C. Current and future resources for functional metagenomics. Front. Microbiol. 2015, 6, 1196. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, D.; Pandya, L.; Pandit, P.R.; Patel, Z.; Bhairappanavar, S.; Das, J. Gene-targeted metagenomics approach for the degradation of organic pollutants. In Emerging Technologies in Environmental Bioremediation; Shah, M.P., Rodriguez-Couto, S., Sengor, S.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 257–273. [Google Scholar]
- Mishra, S.; Lin, Z.; Pang, S.; Zhang, W.; Bhatt, P.; Chen, S. Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities. Front. Bioeng. Biotechnol. 2021, 9, 632059. [Google Scholar] [CrossRef]
- Singh, O.V.; Nagaraj, N.S. Transcriptomics, proteomics and interactomics: Unique approaches to track the insights of Bioremediation. Brief. Funct. Genom. Proteomic 2006, 4, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Dharmadi, Y.; Gonzalez, R.D.N.A. microarrays: Experimental issues, data analysis, and application to bacterial systems. Biotechnol. Prog. 2004, 20, 1309–1324. [Google Scholar] [CrossRef] [PubMed]
- Roh, S.W.; Abell, G.; Kim, K.H.; Nam, Y.D.; Bae, J.W. Comparing microarray and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol. 2010, 28, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Davolos, D.; Russo, F.; Canfora, L.; Malusà, E.; Tartanus, M.; Furmanczyk, E.M.; Persiani, A.M. A Genomic and Transcriptomic Study on the DDT-Resistant Trichoderma hamatum FBL 587: First Genetic Data into Mycoremediation Strategies for DDT-Polluted Sites. Microorganisms 2021, 9, 1680. [Google Scholar] [CrossRef] [PubMed]
- Lima-Morales, D.; Jáuregui, R.; Camarinha-Silva, A.; Geffers, R.; Pieper, D.H.; Vilchez-Vargas, R. Linking microbial community and catabolic gene structures during the adaptation of three contaminated soils under continuous long-term pollutant stress. Appl. Environ. Microbiol. 2016, 82, 2227–2237. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Wang, R.; Lin, C.Y.; Chen, S.H.; Chuang, C.H.; Chou, T.H.; Shih, Y.H. The degradation mechanisms of Rhodopseudomonas palustris toward hexabromocyclododecane by time-course transcriptome analysis. Chem. Eng. J. 2021, 425, 130489. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, L.; Meng, J.; Tian, Q.; Zhai, L.; Hao, Z.; Guan, Z.; Cai, Y.; Liao, X. Evaluation of the Strain Bacillus amyloliquefaciens YP6 in Phoxim degradation via transcriptomic data and product analysis. Molecules 2019, 24, 3997. [Google Scholar] [CrossRef]
- Kleiner, M. Metaproteomics: Much more than measuring gene expression in microbial communities. mSystems 2019, 4, e00115–e00119. [Google Scholar] [CrossRef] [Green Version]
- Castrejón-Godínez, M.L.; Tovar-Sánchez, E.; Ortiz-Hernández, M.L.; Encarnación-Guevara, S.; Batallar, Á.G.M.; Ortiz, M.H.; Mussali-Galante, P. Proteomic analysis of Burkholderia zhejiangensis CEIB S4–3 during the methyl parathion degradation process. Pestic. Biochem. Physiol. 2022, 187, 105197. [Google Scholar] [CrossRef]
- An, X.; Chen, Y.; Chen, G.; Feng, L.; Zhang, Q. Integrated metagenomic and metaproteomic analyses reveal potential degradation mechanism of azo dye-Direct Black G by thermophilic microflora. Ecotoxicol. Environ. Saf. 2020, 196, 110557. [Google Scholar] [CrossRef]
- Dangi, A.K.; Sharma, B.; Hill, R.T.; Shukla, P. Bioremediation through microbes: Systems biology and metabolic engineering approach. Crit. Rev. Biotechnol. 2019, 39, 79–98. [Google Scholar] [CrossRef]
- Bedia, C. Metabolomics in environmental toxicology: Applications and challenges. Trends Environ. Anal. C 2022, 34, e00161. [Google Scholar] [CrossRef]
- Koppel, N.; Bisanz, J.E.; Pandelia, M.E.; Turnbaugh, P.J.; Balskus, E.P. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. Elife 2018, 7, e33953. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Kato, H.; Ohtsubo, Y.; Tsuda, M. Lessons from the genomes of lindane-degrading sphingomonads. Environ. Microbiol. Rep. 2019, 11, 630–644. [Google Scholar] [CrossRef]
- Singh, D.P.; Prabha, R.; Gupta, V.K.; Verma, M.K. Metatranscriptome Analysis Deciphers Multifunctional Genes and Enzymes Linked with the Degradation of Aromatic Compounds and Pesticides in the Wheat Rhizosphere. Front. Microbiol. 2018, 9, 1331. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Keum, Y.S.; Li, Q.X. Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamate. Biodegradation 2013, 24, 795–811. [Google Scholar] [CrossRef]
- Wang, T.; Hu, C.; Zhang, R.; Sun, A.; Li, D.; Shi, X. Mechanism study of cyfluthrin biodegradation by Photobacterium ganghwense with comparative metabolomics. Appl. Microbiol. Biotechnol. 2019, 103, 473–488. [Google Scholar] [CrossRef]
- Jones, O.A.H.; Sdepanian, S.; Lofts, S.; Svendsen, C.; Spurgeon, D.J.; Maguire, M.L.; Griffin, J.L. Metabolomic analysis of soil communities can be used for pollution assessment. Environ. Toxicol. Chem. 2018, 33, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Wright, R.; Bosch, R.; Gibson, M.I.; Christie-Oleza, J. Plasticizer degradation by a marine bacterial isolates: A proteogenomic and metabolomic characterization. Environ. Sci. Technol. 2020, 54, 2244–2256. [Google Scholar] [CrossRef]
- D’Errico, G.; Aloj, V.; Flematti, G.R.; Sivasithamparam, K.; Worth, C.M. Metabolites of Drechslera sp. endophyte with potential as biocontrol and bioremediation agent. Nat. Prod. Res. 2020, 35, 4508–4516. [Google Scholar] [CrossRef]
- Gao, M.; Gu, X.; Satterlee, T.; Duke, M.V.; Scheffler, B.E.; Gold, S.E.; Glenn, A.E. Transcriptomic Responses of Fusarium verticillioides to Lactam and Lactone Xenobiotics. Front. Fungal Biol. 2022, 3, 923112. [Google Scholar] [CrossRef]
- Li, J.; Xu, Y.; Song, Q.; Yang, J.; Xie, L.; Yu, S.; Zheng, L. Polycyclic aromatic hydrocarbon and n-alkane pollution characteristics and structural and functional perturbations to the microbial community: A case-study of historically petroleum-contaminated soil. Environ. Sci. Pollut. Res. Int. 2021, 28, 10589–10602. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Rajput, V.; Dharne, M. Functional metagenomic landscape of polluted river reveals potential genes involved in degradation of xenobiotic pollutants. Environ. Res. 2021, 192, 110332. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Stenuit, B.; Tremblay, J.; Yu, K.; Tringe, S.G.; Alvarez-Cohen, L. (Structural dynamics and transcriptomic analysis of Dehalococcoidesmccartyi within a TCE-Dechlorinating community in a completely mixed flow reactor. Water Res. 2019, 158, 146–156. [Google Scholar] [CrossRef]
- Sengupta, K.; Swain, M.T.; Livingstone, P.G.; Whitworth, D.E.; Saha, P. Genome sequencing and comparative transcriptomics provide a holistic view of 4-nitrophenol degradation and concurrent fatty acid catabolism by Rhodococcus sp. strain BUPNP1. Front. Microbiol. 2019, 9, 3209. [Google Scholar] [CrossRef]
- Di Canito, A.; Zampolli, J.; Orro, A.; D’Ursi, P.; Milanesi, L.; Sello, G.; Di Gennaro, P. Genome-based analysis for the identification of genes involved in o-xylene degradation in Rhodococcusopacus R7. BMC Genom. 2018, 19, 587. [Google Scholar] [CrossRef]
- Kim, H.M.; Kang, J.S. Metabolomic Studies for the Evaluation of Toxicity Induced by Environmental Toxicants on Model Organisms. Metabolites 2021, 11, 485. [Google Scholar] [CrossRef]
- Plumb, J.A.; Finn, P.W.; Williams, R.J.; Bandara, M.J.; Romero, M.R.; Watkins, C.J.; La Thangue, N.B.; Brown, R. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol. Cancer Ther. 2003, 2, 721–728. [Google Scholar]
- Chen, C.; Kim, S. LC-MS based metabolomics of xenobiotic-induced toxicities. Comput. Struct. Biotechnol. J. 2013, 4, e201301008. [Google Scholar] [CrossRef] [Green Version]
- Percival, B.C.; Grootveld, M.; Gibson, M.; Osman, Y.; Molinari, M.; Jafari, F.; Sahota, T.; Martin, M.; Casanova, F.; Mather, M.L. Low-field, benchtop NMR spectroscopy as a potential tool for point-of-care diagnostics of metabolic conditions: Validation, protocols and computational models. High-Throughput 2019, 8, 2. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Carpena, M.; Garcia-Oliveira, P.; Pereira, A.; Prieto, M.; Simal-Gandara, J. Analytical metabolomics and applications in health, environmental and food science. Crit. Rev. Anal. Chem. 2020, 52, 712–734. [Google Scholar] [CrossRef]
- Zu, L.; Li, G.; An, T.; Wong, P.K. Biodegradation kinetics and mechanism of 2,4,6-tribromophenol by Bacillus sp. GZT: A phenomenon of xenobiotic methylation during debromination. Bioresour. Technol. 2012, 110, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Robledo, V.; Vendrell, A.; García-Cifuentes, A.; Villaseca-González, N.; Guiberteau-Cabanillas, C.; Martínez, L.L.; Garde, J.J.; Fernández-Santos, M.R. Determination of atrazine and propazine metabolites deemed endocrine disruptors in human seminal plasma by LC–ESI-MS/MS. Chem. Biol Technol. Agric. 2022, 9, 22. [Google Scholar] [CrossRef]
- Lee, S.Y.; Sekhon, S.S.; Ban, Y.H.; Ahn, J.Y.; Ko, J.H.; Lee, L.; Kim, S.Y.; Kim, Y.C.; Kim, Y.H. Proteomic analysis of polycyclic aromatic hydrocarbons (PAHs) degradation and detoxification in Sphingobiumchungbukense DJ77. J. Microbiol. Biotechnol. 2016, 26, 1943–1950. [Google Scholar] [CrossRef]
- Facey, S.J.; Nebel, B.A.; Kontny, L.; Allgaier, M.; Hauer, B. Rapid and complete degradation of diclofenac by native soil microorganisms. Environ. Technol. Innov. 2018, 10, 55–61. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Poi, R.; Sen, M.B.; Hazra, D.K.; Ghosh, R.; Mandal, S.; Karmakar, R. Establishment of modified QuEChERS-GC–MS-LC–MS/MS method for simultaneous screening of multi-class multi-pesticide residues in betelvine and consumer risk assessment. Microchem. J. 2022, 179, 107444. [Google Scholar] [CrossRef]
- Tuzimski, T.; Sherma, J. Determination of Targe Xenobiotics and Unknown Compound Residues in Food, Environmental, and Biological Samples; Taylor & Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- Kim, L.; Lee, D.; Cho, H.K.; Choi, S.D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, e00063. [Google Scholar] [CrossRef]
- Azzouz, A.; Kumar Kailasa, S.; Soo Lee, S.; Rascón, A.J.; Ballesteros, E.; Zhang, M.; Kim, K.H. Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. Trends Anal. Chem. 2018, 108, 347–369. [Google Scholar] [CrossRef]
- Lashgari, M.; Singh, V.; Pawliszyn, J. A critical review on regulatory sample preparation methods: Validating solid-phase microextraction techniques. Trends Anal. Chem. 2019, 119, 115618. [Google Scholar] [CrossRef]
- David, F.; Sandra, P. Stir bar sorptive extraction for trace analysis. J. Chromatogr. A 2007, 1152, 54–69. [Google Scholar] [CrossRef]
- Khan, W.A.; Arain, M.B.; Yamini, Y.; Shah, N.; Kazi, T.G.; Pedersen-Bjergaard, S.; Tajik, M. Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals. J. Pharm. Anal. 2020, 10, 109–122. [Google Scholar] [CrossRef]
- Zgoła-Grześkowiak, A.; Kaczorek, E. Isolation, preconcentration and determination of rhamnolipids in aqueous samples by dispersive liquid-liquid microextraction and liquid chromatography with tandem mass spectrometry. Talanta 2011, 83, 744–750. [Google Scholar] [CrossRef]
- Errekatxo, A.; Prieto, A.; Zuloaga, O.; Usobiaga, A.; Etxebarria, N.; Fernández, L.A. Simultaneous extraction of several persistent organic pollutants in sediment using focused ultrasonic solid-liquid extraction. Anal. Bioanal. Chem. 2008, 392, 1471–1478. [Google Scholar] [CrossRef]
- Godoy, P.; Reina, R.; Calderón, A.; Wittich, R.M.; García-Romera, I.; Aranda, E. Exploring the potential of fungi isolated from PAH-polluted soil. as a source of xenobiotics-degrading fungi. Environ. Sci. Pollut. Res. 2016, 23, 20985–20996. [Google Scholar] [CrossRef]
- Ijoma, G.N.; Tekere, M. Potential microbial applications of co-cultures involving ligninolytic fungi in the Bioremediation of recalcitrant xenobiotic compounds. Int. J. Environ. Sci. Technol. 2017, 14, 1787–1806. [Google Scholar] [CrossRef]
- Arora, P.K. Bacilli-Mediated Degradation of Xenobiotic Compounds and Heavy Metals. Front. Bioeng. Biotechnol. 2020, 8, 570307. [Google Scholar] [CrossRef]
- Gangola, S.; Joshi, S.; Kumar, S.; Pandey, S.C. Comparative analysis of fungal and bacterial enzymes in biodegradation of xenobiotic compounds. In Smart Bioremediation Technologies; Academic Press: Cambridge, MA, USA, 2016; pp. 169–189. [Google Scholar]
- Abbasian, F.; Palanisami, T.; Megharaj, M.; Naidu, R.; Lockington, R.; Ramadass, K. Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnol. Prog. 2016, 32, 638–648. [Google Scholar] [CrossRef]
- Okolafor, F.; Ekhaise, F.O. Microbial Enzyme Remediation of Poly-Aromatic Hydrocarbon (PAH’s): A review. J. Int. Environ. Appl. Sci. 2022, 17, 10–21. [Google Scholar]
- Janssen, D.B.; Dinkla, I.J.T.; Poelarends, G.J.; Terpstra, P. Bacterial degradation of xenobiotic compounds: Evolution and distribution of novel enzyme activities. Environ. Microbiol. 2005, 7, 1868–1882. [Google Scholar] [CrossRef]
- Kulig, J.K.; Spandolf, C.; Hyde, R.; Ruzzini, A.C.; Eltis, L.D.; Grönberg, G.; Grogan, G. A P450 fusion library of heme domains from Rhodococcusjostii RHA1 and its evaluation for the biotransformation of drug molecules. Bioorg. Med. Chem. 2015, 23, 5603–5609. [Google Scholar] [CrossRef]
- Torres-Farradá, G.; Manzano Leon, A.M.; Rineau, F.; Ledo Alonso, L.L.; Sánchez-López, M.I.; Thijs, S.; Vangronsveld, J. Diversity of ligninolytic enzymes and their genes in strains of the genus Ganoderma: Applicable for biodegradation of xenobiotic compounds? Front. Microbiol. 2017, 8, 898. [Google Scholar] [CrossRef]
- Budeli, P.; Ekwanzala, M.D.; Unuofin, J.O.; Momba, M.N.B. Endocrine disruptive estrogens in wastewater: Revisiting bacterial degradation and zymoremediation. Environ. Tech. Innov. 2021, 21, 101248. [Google Scholar] [CrossRef]
- Misal, S.A.; Gawai, K.R. Azoreductase: A key player of xenobiotic Metabolism. Bioresour. Bioprocess. 2018, 5, 17. [Google Scholar] [CrossRef]
- Xu, M.; Liu, D.; Sun, P.; Li, Y.; Wu, M.; Liu, W.; Guo, L. Degradation of 2, 4, 6-Trinitrotoluene (TNT): Involvement of Protocatechuate 3, 4-Dioxygenase (P34O) in Buttiauxella sp. S19-1. Toxics 2021, 9, 231. [Google Scholar] [CrossRef]
- Mohapatra, B.; Phale, P.S. Microbial degradation of naphthalene and substituted naphthalenes: Metabolic diversity and genomic insight for Bioremediation. Front. Bioeng. Biotechnol. 2021, 9, 602445. [Google Scholar] [CrossRef]
- Dhiman, N.; Jasrotia, T.; Sharma, P.; Negi, S.; Chaudhary, S.; Kumar, R.; Mahnashi, M.H.; Umar, A.; Kumar, R. Immobilization interaction between xenobiotic and Bjerkanderaadusta for the biodegradation of atrazine. Chemosphere 2020, 257, 127060. [Google Scholar] [CrossRef]
- Esparza-Naranjo, S.B.; da Silva, G.F.; Duque-Castaño, D.C.; Araujo, W.L.; Peres, C.K.; Boroski, M.; Bonugli- Santos, R.C. Potential for the Biodegradation of Atrazine Using Leaf Litter Fungi from a Subtropical Protection Area. Curr. Microbiol. 2021, 78, 358–368. [Google Scholar] [CrossRef]
- Al-Hawash, A.B.; Alkooranee, J.T.; Zhang, X.; Ma, F. Fungal Degradation of Polycyclic Aromatic Hydrocarbons. Int. J. Pure Appl. Biosci. 2018, 6, 8–24. [Google Scholar] [CrossRef]
- AlMatar, M.; Makky, E.A. Cladosporium cladosporioides from the perspectives of medical and biotechnological approaches. 3 Biotech 2016, 6, 4. [Google Scholar] [CrossRef]
- Kantharaj, P.; Boobalan, B.; Sooriamuthu, S.; Mani, R. Lignocellulose Degrading Enzymes from Fungi and Their Industrial Applications. Int. J. Curr. Res. Rev. 2017, 9, 1–12. [Google Scholar]
- Bilal, M.; Bagheri, A.R.; Bhatt, P.; Chen, S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. J. Environ. Manag. 2021, 291, 112685. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, B.; Rajesh, B.; Janardhan, A.; Kumar, A.P.; Narasimha, G. Fungal Laccases and Their Applications in Bioremediation. Enzyme Res. 2014, 2014, 163242. [Google Scholar] [CrossRef]
- González-Abradelo, D.; Pérez-Llano, Y.; Peidro-Guzmán, H.; del Rayo Sánchez-Carbente, M.; Folch-Mallol, J.L.; Aranda, E.; Vaidyanathan, V.K.; Cabana, H.; Gunde-Cimerman, N.; Batista-García, R.A. First demonstration that the ascomycetous halophilic fungi Aspergillus sydowii and Aspergillus destruens are useful in xenobiotic mycoremediation under high salinity conditions. Bioresour. Technol. 2019, 279, 287–296. [Google Scholar] [CrossRef]
- Peidro-Guzmán, H.; Pérez-Llano, Y.; González-Abradelo, D.; Fernández-López, M.G.; Dávila-Ramos, S. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ. Microbiol. 2021, 23, 3435–3459. [Google Scholar] [CrossRef]
- Patrick, F.D.; Samuel, K.S. Biologically Pure Culture of Yeast Strain Used for the Microbial Detoxification of Xenobiotics. United States Patent US4968620A, 6 November 1990. [Google Scholar]
- Michael, S.P.; Juan Matías, S.S.; Francisca Acevedo, C. PCB-Degrading Recombinant Bacterium, Product for the Bioremediation and Method of Bioremediation. United States Patent US 7,989,194B2, 2011. Available online: https://patentimages.storage.googleapis.com/ae/90/40/4afda38f65437b/US7989194.pdf (accessed on 1 May 2022).
- Pfeiffer, E.; Kommer, A.; Dempe, J.S.; Hildebrand, A.A.; Metzler, M. Absorption and Metabolism of the mycotoxin zearalenone and the growth promotor zeranol in Caco-2 cells in vitro. Mol. Nutr. Food Res. 2011, 55, 560–567. [Google Scholar] [CrossRef]
- Popowska, M.; Boszczyk-Maleszak, H.; Komorowska, I. Composition Of Bacterial Strains, Bioremediation Mixture and Use of This Composition for The Removal of Contaminants from The Soil and A Method for Purifying of The Soil Contaminants. European Patent Specification EP 2 788 512 B1, 2015. Available online: https://patentimages.storage.googleapis.com/5a/82/f0/6108eb476fe385/EP2788512B1.pdf (accessed on 25 April 2022).
- Knowies, C.J.; Wyatt, J.M. Microbial Degradation of Waste. European Patent Application 0 274 856 A1, 20 July 1988. [Google Scholar]
- Karl, S.; Peter, R. Process for Microbial Removal of Xenobiotic Dyes. German Patent DD290004A5, 16 May 1991. [Google Scholar]
- Dowd, P.F.; Shen, S.K. The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasiodermaserricorne). Entomol. Exp. Appl. 1990, 56, 241–248. [Google Scholar] [CrossRef]
- Daugulis, A.J.; Collins, L.D. Two-Phase Partitioning Bioreactor For The Degradation Of A Xenobiotech. Canadian Intellectual Property Office CA2216327A1, 19 March 1999. [Google Scholar]
- Michael, R.H.; Kenneth, W.; Lynda, M.C. Bioremediation of Xenobiotics Including Methyl Tert-Butylether. United States Patent US 6,194,197B1, 27 February 2001. [Google Scholar]
- Razavi-Shirazi, F. Biological Permeable Barrier to Treat Contaminated Groundwater Using Immobilized Cells. Australian Patent Office WO 01/32566 Al, 10 May 2001. [Google Scholar]
- Mihara, C.; Yano, T.; Kozaki, S.; Imamura, T. Novel Microbial Strain, Method for Biodegrading Organic Compounds and Method for Environmental Remediation. European Patent Specification EP 0 822 253 B1, 7 September 2003. [Google Scholar]
- Enamul, H. Microbial Decomposition of Xenobiotics, Useful Especially for Degrading Isoproturon, Uses Mixture of Fungi with oxygenase and Glutathione-S-Transferase Activities. German Patent DE10125365A1, 5 June 2003. [Google Scholar]
- Schmidt, J.E.; Trably, E.; Batstone, J.D.; Angelidaki, I.; Christensen, N. Anaerobic Microbial Degradation of Phthalic acid Esters. World Intellectual Property Organization WO2006136173A2, 28 December 2006. [Google Scholar]
- Soljan, V. Method for Simultaneous Biological Removal of Nitrogen Compounds and Xenobiotics of Wastewaters. World Intellectual Property Organization WO2013166611, 14 November 2013. [Google Scholar]
- Bazhanuofu, D.; Li, H.; Li, C.; Li, J.; Yang, H. Atrazine Degrading Bacterium and Application Thereof. Chinese Patent CN104762227A, 8 July 2015. [Google Scholar]
- Maddaloni, M.; Pascual, D.W.; Ellis, J. Bioremediation of Xenobiotics in the Honey Bee Hive. United States Patent US2021378263A1, 9 December 2021. [Google Scholar]
- Tramontano, M.; Klünemann, M.; Pruteanu, M.; Maier, L.; Kuhn, M.; Andrejev, S.; Kim, Y.; Bork, P.; Typas, A.; Patil, K.R.; et al. In-Vitro Model of the Human Gut Microbiome and Uses Thereof in the Analysis of the Impact of Xenobiotics. United States Patent Application Publication US20200370005, 26 November 2020. [Google Scholar]
Xenobiotic Compounds. | Possible Effects | Consequences Observed | References |
---|---|---|---|
Polychlorinated biphenyls (PCBs) PCB-156,180,194 | Pediatric neurological disorder | Wide range of neural abnormalities i.e., Abnormal reflexes and neural tissue damage | [21,22] |
Halocarbons CFCs, H(C)FCs, CH3CCl3, CCl4, CFC-12 HFC-134a | Global warming and climate change | Loss of biodiversity and habitat destruction | [23,24] |
Synthetic polymers | Accumulation of PVC and PP products | Alteration in the food chain and food webs, aquatic and soil pollution | [25,26] |
Pharmaceuticals Analgesics, Antibiotics, Antiepileptic, Antiseptics, Beta-blocker, estrogenic drugs | Cellular and tissue damage | Adverse effect on the reproductive potential of aquatic, terrestrial and arboreal animals, Lethal effect on scavengers | [27] |
Polycyclic Aromatic hydrocarbons PAHs | Aquatic and avian ecosystem toxicity | Genotoxicity, oxidative stress, immunosuppression and hormonal disorders | [28] |
Polybromonated biphenyls PBBs | Adverse effects on hormone T3 and T4 secretion | Disorders of the thyroid gland and related hormones | [29] |
Pesticides Herbicides, Fungicides and Insecticides | Biomagnification and bioaccumulation hazards | Endocrinal anomalies, embryonic cell toxicity in aquatic animals | [30] |
Heavy metals | Nephrotoxicity, hepatotoxicity, contamination of water tables, aquatic water | Metabolic disorder, cellular and organ damage and a variety of carcinogenic effects | [31] |
Genes Identified | Xenobiotic | Likely Pathways | Source | Approaches | References |
---|---|---|---|---|---|
alkB, alkM, LadA, GSTs, and pcaG | Polycyclic aromatic hydrocarbon (PAH) degradation and n-alkanes | Alkane monooxygenase catalyzes the terminal oxidation of n-alkanes. Ring-hydroxylating dioxygenase degrade PAH | Contaminated soil | Shotgun metagenomic | [101] |
abmG and anta | PAH | abmG encodes 2-aminobenzoate-CoA ligase which converts 2-Aminobenzoate to 2-Amino-benzoyl-CoA. The 2-Amino-benzoyl-CoA is transformed into Benzoyl-CoA, Anthranilate 1, 2-dioxygenase encoded by antA gene converts 2-Aminobenzoate to catechol | Polluted river | MinION shotgun sequencing | [102] |
nemA, dsrA and dsrB | Nitrotoluene | Trinitrotoluene (TNT) was probably transformed via 2,4,6-TNT | Polluted river | MinION shotgun sequencing | [102] |
tceA and vcrA | Trichloro-ethane | Reductive dechlorination of TCE to ethene | Dechlorinated enrichment culture | Transcriptomics | [103] |
Nph | 4-nitrophenol (4-NP) | Breakdown of 4-NP into acetyl co-A and succinate by nitrocatechol | Rhodococcus sp. Strain BUPNP1 | Genomic and transcriptomics | [104] |
akb, phe and prm | o-xylene | Transformation of o-xylene to 3,4-dimethylphenol and 2-methylbenzylalcohol | Rhodococcus opacus R7 | Genomics | [105] |
Xenobiotic | Bacteria | Enzyme | Mechanism of Degradation | Novelties/Inventions | References |
---|---|---|---|---|---|
Aliphatic hydrocarbons | Xanthobacter autotrophicus GJ10 Rhodococcuserythropolis R. erythropolis Y2 (England) R. rhodochrous NCIMB13064 Corynebacterium strain m15 | [130] | |||
Haloalkane (1, 2-dichloroethane) | Haloalkane dehalogenase (DhlA) | Nucleophilic substitution reaction to catalyze the displacement of Cl− | The genes encoding alkane oxidation in P. oleovorans GPo1 are located on the OCT-plasmid in two operons. It indicates the horizontal transfer of catabolic genes across the gram-border. The study emphasizes that horizontal mobilization is faster than the generation of novel catabolic pathways evolved by nature. | ||
Medium- and long-chain alkanes | Pseudomonas oleovorans GPo1 | Alkane hydroxylase (AlkB, AlkM) | Oxidation of the terminal carbon atom yielding an alcohol | ||
Sterol | R. jostii RHA1 | Oxygenase | Catalyzes the hydroxylation and possibly further oxidation of the C26 atom of sterols | Protein fusion strategies used to identify novel activities of cytochrome P450 for biotransformation | [131] |
Aromatic hydrocarbons | Laccase | [132] | |||
Azo dyes | Ganoderma sp. | Oxidize phenolic and methoxyphenolic acids, decarboxylate them and attack their methoxy groups | PCR and cloning approach using basidiomycetes specific primers determine the diversity of laccase and peroxidase-encoding genes, revealing the occurrence of several laccase isozymes. | ||
Estrogen | Pseudomonas putida strains | Ability to remove organic substrate electrons and ultimately reduce dioxygen molecules | This study recommends the use of the consortium of versatile laccase and peroxidase-based biocatalyst for complete removal of multiple estrogens at faster rates. | [133,134] | |
Nitro aromatic Compounds | [79,135] | ||||
(2-nitrophenol, 4-nitrobenzoic acid, 2-nitro-benzaldehyde, and 3-nitrophenol) | Xenophilus azovorans KF46F Enterococcus faecalis Geobacillus stearothermophilus Pseudomonas KF46 | Azoreductases | Reduction of azo-bonds | The metaproteomics approach was employed to find out the microbial key players in compost-treated bioremediation | |
Catechol and chlorocatechol | Pseudomonas sp. | Chlorocatechol 2,3-dioxygenase | Catechol is first transformed into a ring-cleaved product, i.e., 2-hydroxymuconic semialdehyde. | ||
Protocatechuate | Acinetobacter calcoaceticus Nocardia sp. Buttiauxella sp. S19-1 | Protocatechuate 3,4 Dioxygenase | Cleave between the two hydroxyl substituents of protocatechuic acid; with the incorporation of molecular oxygen to form β-carboxymuconate | The study identifies the upregulation of BuP34O (a gene encoding for protocatechuate 3,4-dioxygenase—P34O, a key enzyme in the β-ketoadipate pathway) during TNT degradation. | |
Polyaromatic hydrocarbons | Pseudomonas putida (strains: NCIB 9816-4, G7, AK-5, PMD-1, and CSV86), Pseudomonas stutzeri AN10, Pseudomonas fluorescens PC20, and other spp. (ND6 and AS1) | [136] | |||
Naphthalene | Naphthalene dioxygenase (NDO) and ring-hydroxylating dioxygenase | Oxidation of one of the aromatic rings of naphthalene using molecular oxygen | The study presents insights into strain optimization for competent, rapid, and complete bioremediation. The study also highlights that understanding at the biochemical and molecular levels will help identify a suitable host that can be further genetically engineered for efficient bioremediation of priority pollutants |
Xenobiotic | Fungi | Enzyme | Mechanism of Degradation | Novelties/Inventions | Reference |
---|---|---|---|---|---|
Aromatic Hydrocarbon β-lactam | Fusarium verticillioides | Lactamases | It hydrolyzes an aromatic polyketide into endocrocin-9-anthron | β-lactamase producing genes were widespread, creating a vast reservoir for genetic transfer between soil microorganisms. | [100] |
Atrazine | Bjerkandera adusta | Laccases, tyrosimases, manganese peroxidases (MnP), manganese independent peroxidases (MiP) and lignin peroxidases | De-alkylation of atrazine results in fragments of adelhyde and ketone | Bjerkandera adusta possess high potential with a removal efficiency of the xenobiotic compound (atrazine) up to 92%. | [137] |
Atrazine Monocrotophos DDT | Fusarium spp. | N-acetyltransferae and N-malonyltransferase | It helps in the detoxification and degradation of aromatic amines | Acetyl coenzyme A- and malonyl coenzyme A-dependent detoxification | [138] |
Aromatic compounds, aliphatic hydrocarbons and PAHs | Trichoderma harzianum, Aspergillus fumigatus, Cunninghamella elegans, Aspergillus niger, Penicillium sp., Cunninghamella elegans, Aspergillus ochraceus, Trametes versicolor, Penicillium sp. RMA1 and RMA2 and Aspergillus sp. RFC-1 | Lactase, LiP, MnP, epoxide hydrolases cytochrome P450 monoxygenase, dioxygenases, protease and lipase | By peripheral degradation pathways organic pollutants are gradually transformed, and many intermediate products are formed | PHA’s molecular structure was altered by the action of the enzyme, leading to the ring-cleavage processes that produced several intermediate components | [139] |
Chlorpyrifos | Cladosporium cladosporioides | Chlorpyrifos hydrolase, Pectin methylesterase (PME) and polygalacturonase (PG) | Responsible for pectin degradation by catalyzingthe demethoxylation of the homogalacturonan chain of pectin to release methanol and acidic pectin | Studies that have been conducted on C. cladosporioides discovered bioactive compounds including p-methylbenzoic acid, EP and calphostin C as well as enzymes such as PME, PG and chlorpyrifos hydrolase | [140] |
Lignin, Polychlorinated biphenyls (PCBs), Petroleum hydrocarbons, PAHs, trinitroluenes, industrial dye effluents, herbicides and pesticides | Trametes versicolor, Phanerochaete chrysosporium, Rigidoporous lignosus and Pleurotus ostreatus | Lignin peroxidase, versatile peroxidase, laccase and manganese peroxidise | Helps in the formation of semi-quinone intermediate during the oxidation of lignin-derived hyroquinone by laccase. It cleaves C-C bonds and oxidizes benzyl alcohols to aldehydes or ketones | The non-specific nature of these enzymes makes them capable of degraders a diverse group of environmental pollutants, including dioxins, polychlorinated biphenyls (PCBs), petroleum hydrocarbons, PAHs, trinitroluenes, industrial dye effluents, herbicides and pesticides | [125,141] |
Nitroaromatic compounds | Phanerochaete chrysosporium | Peroxidases | Degrades various nitroaromatic compounds by initial reduction of the nitro group tohydroxylamines | Bio-transformation of nitroaromatic compounds and their conversion into nontoxic metabolites via their metabolism | [142] |
Navy blue HER, Indigoid, triarylmethane, azo-dibenzothiophene, N-ethylcarbozole and carbozole | Trichosporon beigelii NCIM-3326, P. chrysosporium URM6181 and Curvularia lunata URM6179 Trametes hirsute and Coriolopsis gallica | Laccase | It attacks phenolic subunit and degrades dyes, leading to C𝛼 oxidation, C𝛼-C𝛽 cleavage and aryl-alkyl cleavage | Lowering the amount of dye in the effluent, showing superior rates of decolorization up to 98% and biodegradation rate 96%, respectively | [143] |
PAH and PhC | Aspergillus sydowii and Aspergillus destruens | Laccase and Peroxidase | Degradation of benzo-α-pyrene phenanthrene | This study revealed that in saline synthetic medium, both fungi used benzo-α-pyrene and phenanthrene as sole carbon sources and removed over 90% of both PAH | [144,145] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miglani, R.; Parveen, N.; Kumar, A.; Ansari, M.A.; Khanna, S.; Rawat, G.; Panda, A.K.; Bisht, S.S.; Upadhyay, J.; Ansari, M.N. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites 2022, 12, 818. https://doi.org/10.3390/metabo12090818
Miglani R, Parveen N, Kumar A, Ansari MA, Khanna S, Rawat G, Panda AK, Bisht SS, Upadhyay J, Ansari MN. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites. 2022; 12(9):818. https://doi.org/10.3390/metabo12090818
Chicago/Turabian StyleMiglani, Rashi, Nagma Parveen, Ankit Kumar, Mohd. Arif Ansari, Soumya Khanna, Gaurav Rawat, Amrita Kumari Panda, Satpal Singh Bisht, Jyoti Upadhyay, and Mohd Nazam Ansari. 2022. "Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach" Metabolites 12, no. 9: 818. https://doi.org/10.3390/metabo12090818
APA StyleMiglani, R., Parveen, N., Kumar, A., Ansari, M. A., Khanna, S., Rawat, G., Panda, A. K., Bisht, S. S., Upadhyay, J., & Ansari, M. N. (2022). Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites, 12(9), 818. https://doi.org/10.3390/metabo12090818