Type 2 Diabetes Risk and Lipid Metabolism Related to the Pleiotropic Effects of an ABCB1 Variant: A Chinese Family-Based Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Study Design
2.2. Definition of Phenotypes and Indicators
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Baseline Lipid Parameters and the Risk of T2DM
3.3. Pleiotropic Effects of ABCB1 rs4148727 on T23DM and Lipid Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2021, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Teng, D.; Shi, X.; Qin, G.; Qin, Y.; Quan, H.; Shi, B.; Sun, H.; Ba, J.; Chen, B. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: National cross sectional study. BMJ 2020, 369, m997. [Google Scholar] [CrossRef]
- Horton, W.B.; Barrett, E.J. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr. Rev. 2021, 42, 29–55. [Google Scholar] [CrossRef] [PubMed]
- Ježek, P.; Jabůrek, M.; Holendová, B.; Plecitá-Hlavatá, L. Fatty acid-stimulated insulin secretion vs. lipotoxicity. Molecules 2018, 23, 1483. [Google Scholar] [CrossRef]
- Kannel, W.B. Lipids, diabetes, and coronary heart disease: Insights from the Framingham Study. Am. Heart J. 1985, 110, 1100–1107. [Google Scholar] [CrossRef]
- Mackey, R.H.; Mora, S.; Bertoni, A.G.; Wassel, C.L.; Carnethon, M.R.; Sibley, C.T. Lipoprotein particles and incident type 2 diabetes in the multi-ethnic study of atherosclerosis. Diabetes Care 2015, 38, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.K.; Toth, P.P. Trends in lipids, obesity, metabolic syndrome, and diabetes mellitus in the United States: An NHANES analysis (2003–2004 to 2013–2014). Obesity 2019, 27, 309–314. [Google Scholar] [CrossRef]
- Vergès, B. Pathophysiology of diabetic dyslipidaemia: Where are we? Diabetologia 2015, 58, 886–899. [Google Scholar] [CrossRef] [Green Version]
- Taskinen, M.-R.; Borén, J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes. Atherosclerosis 2015, 239, 483–495. [Google Scholar] [CrossRef]
- Mooradian, A.D. Dyslipidemia in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2009, 5, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 2020, 11, 1582. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Cousins, R.S.; Liu, S.; Phelps, B.M.; Promes, J.A. Connecting pancreatic islet lipid metabolism with insulin secretion and the development of type 2 diabetes. Ann. N. Y. Acad. Sci. 2020, 1461, 53. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Khunti, K.; Davies, M.J.J.T.l. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Li, N.; van der Sijde, M.R.; Group, L.C.S.; Bakker, S.J.; Dullaart, R.P.; van der Harst, P.; Gansevoort, R.T.; Elbers, C.C.; Wijmenga, C.; Snieder, H. Pleiotropic effects of lipid genes on plasma glucose, HbA1c, and HOMA-IR levels. Diabetes 2014, 63, 3149–3158. [Google Scholar] [CrossRef]
- Nomani, H.; Vaisi-Raygani, A. Association between the -11377 C/G and -11391 G/A polymorphisms of adiponectin gene and adiponectin levels with susceptibility to type 1 and type 2 diabetes mellitus in population from the west of Iran, correlation with lipid profile. J. Cell Biochem. 2019, 120, 3574–3582. [Google Scholar] [CrossRef]
- Astapova, O.; Leff, T. Adiponectin and PPARγ: Cooperative and interdependent actions of two key regulators of metabolism. Vitam. Horm. 2012, 90, 143–162. [Google Scholar]
- Tous, M.; Ribas, V.; Ferré, N.; Escolà-Gil, J.C.; Blanco-Vaca, F.; Alonso-Villaverde, C.; Coll, B.; Camps, J.; Joven, J. Turpentine-induced inflammation reduces the hepatic expression of the multiple drug resistance gene, the plasma cholesterol concentration and the development of atherosclerosis in apolipoprotein E deficient mice. Biochim. Biophys. Acta Mol. Biol. Lipids 2005, 1733, 192–198. [Google Scholar] [CrossRef]
- Taegtmeyer, A.B.; Breen, J.B.; Smith, J.; Rogers, P.; Kullak-Ublick, G.A.; Yacoub, M.H.; Banner, N.R.; Barton, P.J. Effect of ABCB1 genotype on pre-and post-cardiac transplantation plasma lipid concentrations. J. Cardiovasc. Transl. Res. 2011, 4, 304–312. [Google Scholar] [CrossRef]
- Li, Q.; Hong, J.; Wu, J.; Huang, Z.-X.; Li, Q.-J.; Yin, R.-X.; Lin, Q.-Z.; Wang, F. The role of common variants of ABCB1 and CYP7A1 genes in serum lipid levels and lipid-lowering efficacy of statin treatment: A meta-analysis. J. Clin. Lipidol. 2014, 8, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Tang, X.; Wu, Y.; Qin, X.; He, L.; Wang, J.; Li, N.; Li, J.; Zhang, Z.; Dou, H. Cohort profile: The Fangshan Cohort Study of cardiovascular epidemiology in Beijing, China. J. Epidemiol. 2014, 24, JE20120230. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Wu, J.; Wang, M.; Wang, J.; Wu, T.; Chen, D.; Tang, X.; Qin, X.; Wu, Y. Interactive associations of the INAFM2 rs67839313 variant and egg consumption with type 2 diabetes mellitus and fasting blood glucose in a Chinese population: A family-based study. Gene 2021, 770, 145357. [Google Scholar] [CrossRef]
- Yin, Q.; Sun, K.; Xiang, X.; Juan, J.; Cao, Y.; Song, J.; Yang, Y.; Shi, M.; Tian, Y.; Liu, K. Identification of Novel CXCL12 Genetic Polymorphisms Associated with Type 2 Diabetes Mellitus: A Chinese Sib-Pair Study. Genet. Test. Mol. Biomark. 2019, 23, 435–441. [Google Scholar] [CrossRef]
- Justesen, J.M.; Andersson, E.A.; Allin, K.H.; Sandholt, C.H.; Jørgensen, T.; Linneberg, A.; Jørgensen, M.E.; Hansen, T.; Pedersen, O.; Grarup, N. Increasing insulin resistance accentuates the effect of triglyceride-associated loci on serum triglycerides during 5 years. J. Lipid Res. 2016, 57, 2193–2199. [Google Scholar] [CrossRef]
- Agarwal, T.; Lyngdoh, T.; Dudbridge, F.; Chandak, G.R.; Kinra, S.; Prabhakaran, D.; Reddy, K.S.; Relton, C.L.; Davey Smith, G.; Ebrahim, S. Causal relationships between lipid and glycemic levels in an Indian population: A bidirectional Mendelian randomization approach. PLoS ONE 2020, 15, e0228269. [Google Scholar] [CrossRef] [PubMed]
- De Silva, N.M.G.; Freathy, R.M.; Palmer, T.M.; Donnelly, L.A.; Luan, J.a.; Gaunt, T.; Langenberg, C.; Weedon, M.N.; Shields, B.; Knight, B.A. Mendelian randomization studies do not support a role for raised circulating triglyceride levels influencing type 2 diabetes, glucose levels, or insulin resistance. Diabetes 2011, 60, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Metherall, J.E.; Li, H.; Waugh, K. Role of multidrug resistance P-glycoproteins in cholesterol biosynthesis. J. Biol. Chem. 1996, 271, 2634–2640. [Google Scholar] [CrossRef]
- Rodrigues, A.; Rebecchi, I.; Bertolami, M.; Faludi, A.; Hirata, M.; Hirata, R. High baseline serum total and LDL cholesterol levels are associated with MDR1 haplotypes in Brazilian hypercholesterolemic individuals of European descent. Braz. J. Med. Biol. Res. 2005, 38, 1389–1397. [Google Scholar] [CrossRef]
- Jeannesson, E.; Siest, G.; Bastien, B.; Albertini, L.; Aslanidis, C.; Schmitz, G.; Visvikis-Siest, S. Association of ABCB1 gene polymorphisms with plasma lipid and apolipoprotein concentrations in the STANISLAS cohort. Clin. Chim. Acta 2009, 403, 198–202. [Google Scholar] [CrossRef]
- Kajinami, K.; Brousseau, M.E.; Ordovas, J.M.; Schaefer, E.J. Polymorphisms in the multidrug resistance-1 (MDR1) gene influence the response to atorvastatin treatment in a gender-specific manner. Am. J. Cardiol. 2004, 93, 1046–1050. [Google Scholar] [CrossRef]
- Chinn, L.; Kroetz, D. ABCB1 pharmacogenetics: Progress, pitfalls, and promise. Clin. Pharmacol. Ther. 2007, 81, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-O.; Kim, S.-Y.; Yun, D.H.; Lee, S.-W. Association between ABCB1 polymorphisms and ischemic stroke in Korean population. Exp. Neurobiol. 2012, 21, 164. [Google Scholar] [CrossRef]
- Yang, X.; Yan, Y.; Fang, S.; Zeng, S.; Ma, H.; Qian, L.; Chen, X.; Wei, J.; Gong, Z. Comparison of oxcarbazepine efficacy and MHD concentrations relative to age and BMI: Associations among ABCB1, ABCC2, UGT2B7, and SCN2A polymorphisms. Medicine 2019, 98, e14908. [Google Scholar] [CrossRef]
- Gervasini, G.; Carrillo, J.A.; Garcia, M.; San Jose, C.; Cabanillas, A. Adenosine triphosphate-binding cassette B1 (ABCB1)(multidrug resistance 1) G2677T/A gene polymorphism is associated with high risk of lung cancer. Cancer 2006, 107, 2850–2857. [Google Scholar] [CrossRef]
- Tang, X.; Hu, Y.; Chen, D.; Zhan, S.; Zhang, Z.; Dou, H. The Fangshan/Family-based Ischemic Stroke Study in China (FISSIC) protocol. BMC Med. Genet. 2007, 8, 60. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Total Participants | T2DM Cases | Non-T2DM | p Value |
---|---|---|---|---|
number | 2300 | 344 | 1956 | |
Age, mean (SD), years | 58.41 ± 8.94 | 59.09 ± 9.02 | 58.29 ± 8.92 | 0.137 |
Female sex, n (%) | 1185 (51.5) | 118 (34.3) | 927 (47.4) | 0.014 |
BMI, mean (SD), kg/m2 | 26.02 ± 3.75 | 26.86 ± 3.88 | 25.87 ± 3.71 | <0.001 |
TC (mmol/L) | 3.00 ± 0.95 | 3.02 ± 1.03 | 3.00 ± 0.93 | 0.684 |
TG (mmol/L) | 1.39 ± 1.32 | 1.68 ± 1.88 | 1.34 ± 1.19 | <0.001 |
LDL-C (mmol/L) | 2.04 ± 0.75 | 2.06 ± 0.79 | 2.04 ± 0.75 | 0.601 |
HDL-C (mmol/L) | 0.90 ± 0.32 | 0.86 ± 0.30 | 0.91 ± 0.32 | 0.009 |
Apo-A (mmol/L) | 1.09 ± 0.32 | 1.09 ± 0.33 | 1.09 ± 0.32 | 0.940 |
Apo-B (mmol/L) | 0.71 ± 0.24 | 0.71 ± 0.26 | 0.70 ± 0.24 | 0.506 |
Smoker, n (%) | 1183 (47.7) | 140 (40.7) | 943 (48.2) | 0.013 |
Alcohol consumer, n (%) | 985 (43.5) | 130 (37.8) | 885 (45.2) | 0.043 |
Hypertension (%) | 443 (19.5) | 65 (18.9) | 378 (19.3) | 0.503 |
Coronary heart disease (%) | 224 (9.7) | 64 (18.6) | 160 (8.2) | <0.001 |
No. of rs4148727 G alleles (%) | ||||
0 | 1720 (74.8) | 237 (68.9) | 1483 (75.8) | 0.004 |
1 | 558 (24.3) | 106 (30.8) | 452 (23.1) | |
2 | 22 (1.0) | 1 (0.2) | 21 (1.1) |
Variables | β (SE) | PC (%) (95% CI) | p Value |
---|---|---|---|
Lipid parameters | |||
TC | 0.097 (0.045) | 10.19 (0.88–20.35) | 0.029 |
TG | 0.154 (0.063) | 16.65 (3.10–31.98) | 0.015 |
LDL-C | 0.053 (0.035) | 5.44 (−1.55–12.93) | 0.133 |
HDL-C | 0.015 (0.015) | 1.51 (−1.43–4.54) | 0.313 |
Apo-A | 0.037 (0.015) | 3.77 (0.76–6.87) | 0.015 |
Apo-B | 0.007 (0.011) | 0.70 (−1.45–2.90) | 0.542 |
T2DM | |||
model1 | 0.274 (0.112) | 31.52 (5.60–63.81) | 0.015 |
model2 | 0.276 (0.114) | 31.79 (5.40–64.78) | 0.015 |
Variables | Direct Effect HR (95%CI) | Indirect Effect HR (95%CI) | Total Effect HR (95%CI) | PM (%) |
---|---|---|---|---|
TC | 1.40 (1.13–1.67) | 0.99 (0.84–1.07) | 1.40 (1.13–1.67) | 0 |
TG | 1.30 (1.04–1.66) | 1.09 (1.04–1.15) | 1.40 (1.13–1.68) | 6.9 |
LDL-C | 1.35 (1.09–1.71) | 1.05 (0.99–1.10) | 1.40 (1.13–1.67) | 0 |
HDL-C | 1.36 (1.10–1.72) | 1.04 (0.98–1.09) | 1.40 (1.13–1.67) | 0 |
Apo-A | 1.40 (1.14–1.76) | 1.00 (0.98–1.02) | 1.40 (1.13–1.67) | 0 |
Apo-B | 1.34 (1.08–1.70) | 1.06 (1.03–1.09) | 1.40 (1.13–1.68) | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wang, X.; Chen, H.; Yang, R.; Yu, H.; Wu, Y.; Hu, Y. Type 2 Diabetes Risk and Lipid Metabolism Related to the Pleiotropic Effects of an ABCB1 Variant: A Chinese Family-Based Cohort Study. Metabolites 2022, 12, 875. https://doi.org/10.3390/metabo12090875
Wu J, Wang X, Chen H, Yang R, Yu H, Wu Y, Hu Y. Type 2 Diabetes Risk and Lipid Metabolism Related to the Pleiotropic Effects of an ABCB1 Variant: A Chinese Family-Based Cohort Study. Metabolites. 2022; 12(9):875. https://doi.org/10.3390/metabo12090875
Chicago/Turabian StyleWu, Junhui, Xiaowen Wang, Hongbo Chen, Ruotong Yang, Huan Yu, Yiqun Wu, and Yonghua Hu. 2022. "Type 2 Diabetes Risk and Lipid Metabolism Related to the Pleiotropic Effects of an ABCB1 Variant: A Chinese Family-Based Cohort Study" Metabolites 12, no. 9: 875. https://doi.org/10.3390/metabo12090875
APA StyleWu, J., Wang, X., Chen, H., Yang, R., Yu, H., Wu, Y., & Hu, Y. (2022). Type 2 Diabetes Risk and Lipid Metabolism Related to the Pleiotropic Effects of an ABCB1 Variant: A Chinese Family-Based Cohort Study. Metabolites, 12(9), 875. https://doi.org/10.3390/metabo12090875