Novel Insights into Exogenous Phytohormones: Central Regulators in the Modulation of Physiological, Biochemical, and Molecular Responses in Rice under Metal(loid) Stress
Abstract
:1. Introduction
2. Auxin and Signal Transduction
3. Abscisic Acid
4. Ethylene
5. Strigolactones
6. Jasmonate
7. Brassinosteroids
8. Salicylic Acid
9. Gibberellic Acid
10. Cytokinin
10.1. Transcription Factors and Genes Regulated by Hormones in Rice under HM Stress
10.2. The First Pathway: Altered Auxin Signaling via ABA Signal Transduction in Rice Plants Exposed to Cd Stress
10.3. The Second Pathway: Cd-Stressed Rice Plants Regulate Cell Cycle by ABA Signaling
10.4. The Third Pathway: MAPK Cascades Play a Role in ABA and Cd Signaling
11. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Zhu, Y.; Yu, L.; Yang, M.; Zou, X.; Yin, C.; Lin, Y. Research advances in cadmium uptake, transport and resistance in rice (Oryza sativa L.). Cells 2022, 11, 569. [Google Scholar] [CrossRef]
- Kaur, R.; Das, S.; Bansal, S.; Singh, G.; Sardar, S.; Dhar, H.; Ram, H. Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms. Physiol. Plant. 2021, 173, 430–448. [Google Scholar] [CrossRef]
- Chávez-Dulanto, P.N.; Thiry, A.A.; Glorio-Paulet, P.; Vögler, O.; Carvalho, F.P. Increasing the impact of science and technology to provide more people with healthier and safer food. Food Energy Secur. 2021, 10, e259. [Google Scholar] [CrossRef]
- Li, C.-H.; Wang, G.; Zhao, J.-L.; Zhang, L.-Q.; Ai, L.-F.; Han, Y.-F.; Sun, D.-Y.; Zhang, S.-W.; Sun, Y. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 2014, 26, 2538–2553. [Google Scholar] [CrossRef]
- Trinh, N.N.; Huang, T.L.; Chi, W.C.; Fu, S.F.; Chen, C.C.; Huang, H.J. Chromium stress response effect on signal transduction and expression of signaling genes in rice. Physiol. Plant. 2014, 150, 205–224. [Google Scholar] [CrossRef] [PubMed]
- Satpathy, D.; Reddy, M.V.; Dhal, S.P. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India. BioMed Res. Int. 2014, 2014, 545473. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.R.; Kumari, S.; Nazir, F.; Khanna, R.R.; Gupta, R.; Chhillar, H. Defensive Role of Plant Hormones in Advancing Abiotic Stress-Resistant Rice Plants. Rice Sci. 2023, 30, 15–35. [Google Scholar] [CrossRef]
- Slamet-Loedin, I.H.; Johnson-Beebout, S.E.; Impa, S.; Tsakirpaloglou, N. Enriching rice with Zn and Fe while minimizing Cd risk. Front. Plant Sci. 2015, 6, 121. [Google Scholar] [CrossRef]
- Riyazuddin, R.; Nisha, N.; Ejaz, B.; Khan, M.I.R.; Kumar, M.; Ramteke, P.W.; Gupta, R. A comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 2021, 12, 43. [Google Scholar] [CrossRef]
- Wang, L.; Wang, G.; Cui, J.; Wang, X.; Li, M.; Qi, X.; Li, X.; Li, Y.; Ma, L. Transcriptomics, metabolomics, antioxidant enzymes activities and respiration rate analysis reveal the molecular responses of rice to Cd stress and/or elevated CO2 concentration. Plant Soil 2023, 485, 259–280. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Sun, J.; Mao, X.; Wang, J.; Liu, H.; Zheng, H.; Li, X.; Zhao, H.; Zou, D. Heavy metal stress-associated proteins in rice and Arabidopsis: Genome-wide identification, phylogenetics, duplication, and expression profiles analysis. Front. Genet. 2020, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.Q.; Sesin, V.; Kisiala, A.; Emery, R.N. Phytohormonal roles in plant responses to heavy metal stress: Implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ. Toxicol. Chem. 2021, 40, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Alvi, A.F.; Sehar, Z.; Fatma, M.; Masood, A.; Khan, N.A. Strigolactone: An Emerging Growth Regulator for Developing Resilience in Plants. Plants 2022, 11, 2604. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, R.; Bilal, S.; Imran, M.; Khan, A.L.; Alosaimi, A.A.; Al-Shwyeh, H.A.; Almahasheer, H.; Rehman, S.; Lee, I.-J. Amelioration of heavy metal stress by endophytic Bacillus amyloliquefaciens RWL-1 in rice by regulating metabolic changes: Potential for bacterial bioremediation. Biochem. J. 2019, 476, 3385–3400. [Google Scholar] [CrossRef]
- Rahman, S.U.; Li, Y.; Hussain, S.; Hussain, B.; Riaz, L.; Ashraf, M.N.; Khaliq, M.A.; Du, Z.; Cheng, H. Role of phytohormones in heavy metal tolerance in plants: A review. Ecol. Indic. 2023, 146, 109844. [Google Scholar] [CrossRef]
- Du, Y.; Scheres, B. Lateral root formation and the multiple roles of auxin. J. Exp. Bot. 2018, 69, 155–167. [Google Scholar] [CrossRef]
- Bücker-Neto, L.; Paiva, A.L.S.; Machado, R.D.; Arenhart, R.A.; Margis-Pinheiro, M. Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol. 2017, 40, 373–386. [Google Scholar] [CrossRef]
- Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Wang, K.; Zhang, S.Y.; Ren, J.; Liu, T.; Wang, X. Crosstalk between ABA, auxin, MAPK signaling, and the cell cycle in cadmium-stressed rice seedlings. Acta Physiol. Plant. 2014, 36, 1879–1892. [Google Scholar] [CrossRef]
- Li, Z.; Rao, M.J.; Li, J.; Wang, Y.; Chen, P.; Yu, H.; Ma, C.; Wang, L. CRISPR/Cas9 Mutant Rice Ospmei12 Involved in Growth, Cell Wall Development, and Response to Phytohormone and Heavy Metal Stress. Int. J. Mol. Sci. 2022, 23, 16082. [Google Scholar] [CrossRef]
- Farooq, H.; Asghar, H.N.; Khan, M.Y.; Saleem, M.; Zahir, Z.A. Auxin-mediated growth of rice in cadmium-contaminated soil. Turk. J. Agric. For. 2015, 39, 272–276. [Google Scholar] [CrossRef]
- Pandey, C.; Gupta, M. Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J. Hazard. Mater. 2015, 287, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Chao, Y.-Y.; Hsu, Y.Y.; Hong, C.-Y.; Kao, C.H. Heme oxygenase is involved in nitric oxide-and auxin-induced lateral root formation in rice. Plant Cell Rep. 2012, 31, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, L.; Zhu, C. Exogenous nitric oxide mediates alleviation of mercury toxicity by promoting auxin transport in roots or preventing oxidative stress in leaves of rice seedlings. Acta Physiol. Plant. 2015, 37, 194. [Google Scholar] [CrossRef]
- Piacentini, D.; Della Rovere, F.; Sofo, A.; Fattorini, L.; Falasca, G.; Altamura, M.M. Nitric oxide cooperates with auxin to mitigate the alterations in the root system caused by cadmium and arsenic. Front. Plant Sci. 2020, 11, 1182. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Indoliya, Y.; Chauhan, A.S.; Singh, P.; Singh, P.K.; Singh, P.C.; Srivastava, S.; Pande, V.; Chakrabarty, D. Auxin-salicylic acid cross-talk ameliorates OsMYB–R1 mediated defense towards heavy metal, drought and fungal stress. J. Hazard. Mater. 2020, 399, 122811. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, T.; Sun, Y.; Wang, X.; Cao, Q.; Fang, Z.; Chang, M.; Cai, Q.; Lou, L. Exogenous IAA alleviates arsenic toxicity to rice and reduces arsenic accumulation in rice grains. J. Plant Growth Regul. 2022, 41, 734–741. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Trinh, N.N.; Lin, C.-W.; Huang, H.-J. Transcriptome analysis of phytohormone, transporters and signaling pathways in response to vanadium stress in rice roots. Plant Physiol. Biochem. 2013, 66, 98–104. [Google Scholar] [CrossRef]
- Asgher, M.; Rehaman, A.; Islam, S.N.U.; Arshad, M.; Khan, N.A. Appraisal of Functions and Role of Selenium in Heavy Metal Stress Adaptation in Plants. Agriculture 2023, 13, 1083. [Google Scholar] [CrossRef]
- Mangano, S.; Denita-Juarez, S.P.; Choi, H.-S.; Marzol, E.; Hwang, Y.; Ranocha, P.; Velasquez, S.M.; Borassi, C.; Barberini, M.L.; Aptekmann, A.A. Molecular link between auxin and ROS-mediated polar growth. Proc. Natl. Acad. Sci. USA 2017, 114, 5289–5294. [Google Scholar] [CrossRef]
- Zhang, T.; Li, R.; Xing, J.; Yan, L.; Wang, R.; Zhao, Y. The YUCCA-auxin-WOX11 module controls crown root development in rice. Front. Plant Sci. 2018, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Deng, F.; Chen, G.; Chen, X.; Gao, W.; Long, L.; Xia, J.; Chen, Z.-H. Evolution of abscisic acid signaling for stress responses to toxic metals and metalloids. Front. Plant Sci. 2020, 11, 909. [Google Scholar] [CrossRef]
- Huang, T.-L.; Nguyen, Q.T.T.; Fu, S.-F.; Lin, C.-Y.; Chen, Y.-C.; Huang, H.-J. Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol. Biol. 2012, 80, 587–608. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Khan, A.L.; Kim, D.-H.; Lee, S.-Y.; Kim, K.-M.; Waqas, M.; Jung, H.-Y.; Shin, J.-H.; Kim, J.-G.; Lee, I.-J. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativalow silicon genes, and endogenous phytohormones. BMC Plant Biol. 2014, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Moya, J.; Ros, R.; Picazo, I. Heavy metal-hormone interactions in rice plants: Effects on growth, net photosynthesis, and carbohydrate distribution. J. Plant Growth Regul. 1995, 14, 61–67. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, S.; Feng, J.; Wang, W.; Wang, Y.; Yu, Q.; Liao, Y.; Mo, Y.; Xu, Z.; Li, L. Overexpression of a stress response membrane protein gene OsSMP1 enhances rice tolerance to salt, cold and heavy metal stress. Environ. Exp. Bot. 2021, 182, 104327. [Google Scholar] [CrossRef]
- Hsu, Y.; Kao, C. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ. 2003, 26, 867–874. [Google Scholar] [CrossRef]
- Chaudhary, K.; Jan, S.; Khan, S. Chapter 23—Heavy Metal ATPase (HMA2, HMA3, and HMA4) Genes in Hyperaccumulation Mechanism of Heavy Metals. In Plant Metal Interaction; Ahmad, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 545–556. [Google Scholar]
- Yu, E.; Wang, W.; Yamaji, N.; Fukuoka, S.; Che, J.; Ueno, D.; Ando, T.; Deng, F.; Hori, K.; Yano, M.; et al. Duplication of a manganese/cadmium transporter gene reduces cadmium accumulation in rice grain. Nat. Food 2022, 3, 597–607. [Google Scholar] [CrossRef]
- Saha, I.; Hasanuzzaman, M.; Adak, M.K. Abscisic acid priming regulates arsenite toxicity in two contrasting rice (Oryza sativa L.) genotypes through differential functioning of sub1A quantitative trait loci. Environ. Pollut. 2021, 287, 117586. [Google Scholar] [CrossRef]
- Satoh-Nagasawa, N.; Mori, M.; Nakazawa, N.; Kawamoto, T.; Nagato, Y.; Sakurai, K.; Takahashi, H.; Watanabe, A.; Akagi, H. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol. 2012, 53, 213–224. [Google Scholar] [CrossRef]
- Zhao, L.; Xiong, J.; Li, L.; Zhu, C. Low concentration of exogenous abscisic acid increases lead tolerance in rice seedlings. Biol. Plant. 2009, 53, 728. [Google Scholar] [CrossRef]
- Ravanbakhsh, M.; Sasidharan, R.; Voesenek, L.A.; Kowalchuk, G.A.; Jousset, A. Microbial modulation of plant ethylene signaling: Ecological and evolutionary consequences. Microbiome 2018, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Azhar, W.; Khan, A.R.; Salam, A.; Ulhassan, Z.; Qi, J.; Liu, Y.; Chunyan, Y.; Yang, S.; Gan, Y. Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings. Environ. Sci. Pollut. Res. 2023, 30, 26137–26149. [Google Scholar] [CrossRef] [PubMed]
- Skottke, K.R.; Yoon, G.M.; Kieber, J.J.; DeLong, A. Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet. 2011, 7, e1001370. [Google Scholar] [CrossRef]
- Steffens, B. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front. Plant Sci. 2014, 5, 685. [Google Scholar] [CrossRef]
- Khan, A.R.; Azhar, W.; Wu, J.; Ulhassan, Z.; Salam, A.; Zaidi, S.H.R.; Yang, S.; Song, G.; Gan, Y. Ethylene participates in zinc oxide nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings. Ecotoxicol. Environ. Saf. 2021, 226, 112844. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Li, Y.-F.; Zhao, J.; Guo, J.; Wang, R.; Li, B.; Zhang, Z.; Gao, Y. Evidence for molecular antagonistic mechanism between mercury and selenium in rice (Oryza sativa L.): A combined study using 1, 2-dimensional electrophoresis and SR-XRF techniques. J. Trace Elem. Med. Biol. 2018, 50, 435–440. [Google Scholar] [CrossRef]
- Tan, J.; He, S.; Yan, S.; Li, Y.; Li, H.; Zhang, H.; Zhao, L.; Li, L. Exogenous EDDS modifies copper-induced various toxic responses in rice. Protoplasma 2014, 251, 1213–1221. [Google Scholar] [CrossRef]
- Wang, J.; Islam, F.; Yang, C.; Long, M.; Li, L.; Hu, L.; Gill, R.A.; Wan, G.; Zhou, W. Use of Phytohormones in Improving Abiotic Stress Tolerance in Rice. In Advances in Rice Research for Abiotic Stress Tolerance; Woodhead Publishing: Cambridge, UK, 2019; pp. 651–675. [Google Scholar]
- Alder, A.; Jamil, M.; Marzorati, M.; Bruno, M.; Vermathen, M.; Bigler, P.; Ghisla, S.; Bouwmeester, H.; Beyer, P.; Al-Babili, S. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 2012, 335, 1348–1351. [Google Scholar] [CrossRef]
- Marzec, M.; Situmorang, A.; Brewer, P.B.; Brąszewska, A. Diverse roles of MAX1 homologues in rice. Genes 2020, 11, 1348. [Google Scholar] [CrossRef]
- Nasir, F.; Shi, S.; Tian, L.; Chang, C.; Ma, L.; Li, X.; Gao, Y.; Tian, C. Strigolactones shape the rhizomicrobiome in rice (Oryza sativa). Plant Sci. 2019, 286, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Furusawa, S.; Nagasaka, S.; Shimomura, K.; Yamaguchi, S.; Umehara, M. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 2014, 240, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Mostofa, M.G.; Rahman, M.M.; Nguyen, K.H.; Li, W.; Watanabe, Y.; Tran, C.D.; Zhang, M.; Itouga, M.; Fujita, M.; Tran, L.-S.P. Strigolactones regulate arsenate uptake, vacuolar-sequestration and antioxidant defense responses to resist arsenic toxicity in rice roots. J. Hazard. Mater. 2021, 415, 125589. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Yuan, Y.; Huang, H.; Hossain, M.M.; Xiong, S.; Cao, M.; Ma, L.Q.; Tu, S. Methyl jasmonate mitigates high selenium damage of rice via altering antioxidant capacity, selenium transportation and gene expression. Sci. Total Environ. 2021, 756, 143848. [Google Scholar] [CrossRef]
- Mostofa, M.G.; Ha, C.V.; Rahman, M.; Nguyen, K.H.; Keya, S.S.; Watanabe, Y.; Itouga, M.; Hashem, A.; Abd_Allah, E.F.; Fujita, M. Strigolactones modulate cellular antioxidant defense mechanisms to mitigate arsenate toxicity in rice shoots. Antioxidants 2021, 10, 1815. [Google Scholar] [CrossRef]
- Xu, B.; Yu, J.; Zhong, Y.; Guo, Y.; Ding, J.; Chen, Y.; Wang, G. Influence of Br24 and Gr24 on the accumulation and uptake of Cd and As by rice seedlings grown in nutrient solution. Regul. Plant Growth Dev. 2019, 19, 20. [Google Scholar] [CrossRef]
- Liu, S.; Huang, H.; Huber, D.J.; Pan, Y.; Shi, X.; Zhang, Z. Delay of ripening and softening in ‘Guifei’ mango fruit by postharvest application of melatonin. Postharvest Biol. Technol. 2020, 163, 111136. [Google Scholar] [CrossRef]
- Raza, A.; Charagh, S.; Najafi-Kakavand, S.; Siddiqui, M.H. The crucial role of jasmonates in enhancing heavy metals tolerance in plants. In Jasmonates and Salicylates Signaling in Plants; Springer: Berlin/Heidelberg, Germany, 2021; pp. 159–183. [Google Scholar]
- Chen, X.; Jiang, W.; Tong, T.; Chen, G.; Zeng, F.; Jang, S.; Gao, W.; Li, Z.; Mak, M.; Deng, F. Molecular interaction and evolution of jasmonate signaling with transport and detoxification of heavy metals and metalloids in plants. Front. Plant Sci. 2021, 12, 665842. [Google Scholar] [CrossRef]
- Ghorbani, A.; Pishkar, L.; Roodbari, N.; Pehlivan, N.; Wu, C. Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration. Plant Physiol. Biochem. 2021, 167, 337–348. [Google Scholar] [CrossRef]
- Yu, L.J.; Luo, Y.F.; Liao, B.; Xie, L.J.; Chen, L.; Xiao, S.; Li, J.T.; Hu, S.N.; Shu, W.S. Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol. 2012, 195, 97–112. [Google Scholar] [CrossRef]
- Azeem, U. Ameliorating Nickel stress by Jasmonic acid treatment in Zea mays L. Russ. Agric. Sci. 2018, 44, 209–215. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Niknejad, Y.; Fallah, H.; Tari, D.B. Methyl jasmonate alleviates arsenic toxicity in rice. Plant Cell Rep. 2020, 39, 1041–1060. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Lin, Y.; Yang, L.; Zhang, Y.; Hu, W.; Du, Y.; Huang, M. Effects of antimony stress on growth, structure, enzyme activity and metabolism of Nipponbare rice (Oryza sativa L.) roots. Ecotoxicol. Environ. Saf. 2023, 249, 114409. [Google Scholar] [CrossRef] [PubMed]
- Rakwal, R.; Tamogami, S.; Kodama, O. Role of jasmonic acid as a signaling molecule in copper chloride-elicited rice phytoalexin production. Biosci. Biotechnol. Biochem. 1996, 60, 1046–1048. [Google Scholar] [CrossRef]
- Verma, G.; Srivastava, D.; Narayan, S.; Shirke, P.A.; Chakrabarty, D. Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2020, 201, 110735. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xu, X.; Tang, Z.; Zhang, W.; Huang, X.-Y.; Zhao, F.-J. OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Front. Plant Sci. 2018, 9, 1330. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Trinh, N.N.; Fu, S.-F.; Hsiung, Y.-C.; Chia, L.-C.; Lin, C.-W.; Huang, H.-J. Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol. Biol. 2013, 81, 507–522. [Google Scholar] [CrossRef]
- Di, X.; Zheng, F.; Norton, G.J.; Beesley, L.; Zhang, Z.; Lin, H.; Zhi, S.; Liu, X.; Ding, Y. Physiological responses and transcriptome analyses of upland rice following exposure to arsenite and arsenate. Environ. Exp. Bot. 2021, 183, 104366. [Google Scholar] [CrossRef]
- Tan, M.; Cheng, D.; Yang, Y.; Zhang, G.; Qin, M.; Chen, J.; Chen, Y.; Jiang, M. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC Plant Biol. 2017, 17, 194. [Google Scholar] [CrossRef]
- Ronzan, M.; Piacentini, D.; Fattorini, L.; Caboni, E.; Eiche, E.; Ziegler, J.; Hause, B.; Riemann, M.; Betti, C.; Altamura, M.M. Auxin-jasmonate crosstalk in Oryza sativa L. root system formation after cadmium and/or arsenic exposure. Environ. Exp. Bot. 2019, 165, 59–69. [Google Scholar] [CrossRef]
- Piotrowska, A.; Bajguz, A.; Godlewska-Żyłkiewicz, B.; Czerpak, R.; Kamińska, M. Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ. Exp. Bot. 2009, 66, 507–513. [Google Scholar] [CrossRef]
- Farooq, M.A.; Gill, R.A.; Islam, F.; Ali, B.; Liu, H.; Xu, J.; He, S.; Zhou, W. Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front. Plant Sci. 2016, 7, 468. [Google Scholar] [CrossRef] [PubMed]
- Kanna, M.; Tamaoki, M.; Kubo, A.; Nakajima, N.; Rakwal, R.; Agrawal, G.K.; Tamogami, S.; Ioki, M.; Ogawa, D.; Saji, H. Isolation of an ozone-sensitive and jasmonate-semi-insensitive Arabidopsis mutant (oji1). Plant Cell Physiol. 2003, 44, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Keramat, B.; Kalantari, K.M.; Arvin, M.J. Effects of methyl jasmonate treatment on alleviation of cadmium damages in soybean. J. Plant Nutr. 2010, 33, 1016–1025. [Google Scholar] [CrossRef]
- Yan, Z.; Chen, J.; Li, X. Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol. Environ. Saf. 2013, 98, 203–209. [Google Scholar] [CrossRef]
- Esmaielzadeh, S.; Fallah, H.; Niknejad, Y.; Mahmoudi, M.; Tari, D.B. Methyl jasmonate increases aluminum tolerance in rice by augmenting the antioxidant defense system, maintaining ion homeostasis, and increasing nonprotein thiol compounds. Environ. Sci. Pollut. Res. 2022, 29, 46708–46720. [Google Scholar] [CrossRef]
- Salavati, J.; Fallah, H.; Niknejad, Y.; Barari Tari, D. Methyl jasmonate ameliorates lead toxicity in Oryza sativa by modulating chlorophyll metabolism, antioxidative capacity and metal translocation. Physiol. Mol. Biol. Plants 2021, 27, 1089–1104. [Google Scholar] [CrossRef]
- Singh, I.; Shah, K. Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. Phytochemistry 2014, 108, 57–66. [Google Scholar] [CrossRef]
- Harrison, M.A. Cross-Talk Between Phytohormone Signaling Pathways Under Both Optimal and Stressful Environmental Conditions. In Phytohormones and Abiotic Stress Tolerance in Plants; Khan, N.A., Nazar, R., Iqbal, N., Anjum, N.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 49–76. [Google Scholar]
- Kim, E.H.; Kim, Y.S.; Park, S.H.; Koo, Y.J.; Choi, Y.D.; Chung, Y.Y.; Lee, I.J.; Kim, J.K. Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol. 2009, 149, 1751–1760. [Google Scholar] [CrossRef]
- Santos, L.; Batista, B.; Lobato, A. Brassinosteroids mitigate cadmium toxicity in cowpea plants. Photosynthetica 2018, 56, 591–605. [Google Scholar] [CrossRef]
- Vázquez, M.N.; Guerrero, Y.R.; González, L.M.; de la Noval, W.T. Brassinosteroids and plant responses to heavy metal stress. An overview. Open J. Metal 2013, 3, 34–41. [Google Scholar] [CrossRef]
- Sharma, I.; Pati, P.K.; Bhardwaj, R. Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicology 2011, 20, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kumar, A.; Bhardwaj, R. Plant steroidal hormone epibrassinolide regulate–Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ. Exp. Bot. 2016, 122, 1–9. [Google Scholar] [CrossRef]
- Sharma, P.; Bhardwaj, R.; Arora, N.; Arora, H.K. Effect of 28-homobrassinolide on growth, zinc metal uptake and antioxidative enzyme activities in Brassica juncea L. seedlings. Braz. J. Plant Physiol. 2007, 19, 203–210. [Google Scholar] [CrossRef]
- Sharma, I.; Pati, P.K.; Bhardwaj, R. Regulation of growth and antioxidant enzyme activities by 28-homobrassinolide in seedlings of Raphanus sativus L. under cadmium stress. Indian J. Biochem. Biophys. 2010, 47, 172–177. [Google Scholar]
- Basit, F.; Chen, M.; Ahmed, T.; Shahid, M.; Noman, M.; Liu, J.; An, J.; Hashem, A.; Fahad Al-Arjani, A.-B.; Alqarawi, A.A. Seed priming with brassinosteroids alleviates chromium stress in rice cultivars via improving ROS metabolism and antioxidant defense response at biochemical and molecular levels. Antioxidants 2021, 10, 1089. [Google Scholar] [CrossRef]
- Rajewska, I.; Talarek, M.; Bajguz, A. Brassinosteroids and response of plants to heavy metals action. Front. Plant Sci. 2016, 7, 629. [Google Scholar] [CrossRef]
- Xu, B.; Yu, J.; Guo, Y.; Sun, X.; Ding, J.; Chen, Y.; Wang, G. Influence of organic fertilizers and brassinosteroids on accumulation and uptake of as and Cd by rice seedlings (Oryza sativa L.) grown in soil. Commun. Soil Sci. Plant Anal. 2020, 51, 2429–2440. [Google Scholar] [CrossRef]
- Zhang, S.; Bao, Q.; Huang, Y.; Han, N. Exogenous plant hormones alleviate as stress by regulating antioxidant defense system in Oryza sativa L. Environ. Sci. Pollut. Res. 2023, 30, 6454–6465. [Google Scholar] [CrossRef]
- Yu, J.; Guo, X.; Luo, Z.; Ding, J.; Xu, B.; Chen, H.; Zheng, C.; Li, Y.; Chen, Y.; Wang, G. Do brassinosteroids and iron plaque affect the accumulation of As and Cd in rice (Oryza sativa L.)? Environ. Technol. Innov. 2021, 23, 101660. [Google Scholar] [CrossRef]
- Li, B.; Wang, S.; You, X.; Wen, Z.; Huang, G.; Huang, C.; Li, Q.; Chen, K.; Zhao, Y.; Gu, M. Effect of Foliar Spraying of Gibberellins and Brassinolide on Cadmium Accumulation in Rice. Toxics 2023, 11, 364. [Google Scholar] [CrossRef]
- Xu, B.; Yu, J.; Xie, T.; Li, Y.; Liu, M.; Guo, J.; Li, H.; Yu, Y.; Zheng, C.; Chen, Y. Brassinosteroids and iron plaque affect arsenic and cadmium uptake by rice seedlings grown in hydroponic solution. Biol. Plant. 2018, 62, 362–368. [Google Scholar] [CrossRef]
- Choudhary, S.P.; Yu, J.-Q.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Benefits of brassinosteroid crosstalk. Trends Plant Sci. 2012, 17, 594–605. [Google Scholar] [CrossRef]
- Tadaiesky, L.B.; da Silva, B.R.; Batista, B.L.; Lobato, A.K.d.S. Brassinosteroids trigger tolerance to iron toxicity in rice. Physiol. Plant. 2021, 171, 371–387. [Google Scholar] [CrossRef]
- Basit, F.; Liu, J.; An, J.; Chen, M.; He, C.; Zhu, X.; Li, Z.; Hu, J.; Guan, Y. Seed priming with brassinosteroids alleviates aluminum toxicity in rice via improving antioxidant defense system and suppressing aluminum uptake. Environ. Sci. Pollut. Res. 2022, 29, 10183–10197. [Google Scholar] [CrossRef]
- Cao, F.; Liu, L.; Ibrahim, W.; Cai, Y.; Wu, F. Alleviating effects of exogenous glutathione, glycinebetaine, brassinosteroids and salicylic acid on cadmium toxicity in rice seedlings (Oryza sativa). Agrotechnology 2013, 2, 107–112. [Google Scholar] [CrossRef]
- Chen, J.; Nolan, T.M.; Ye, H.; Zhang, M.; Tong, H.; Xin, P.; Chu, J.; Chu, C.; Li, Z.; Yin, Y. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses. Plant Cell 2017, 29, 1425–1439. [Google Scholar] [CrossRef] [PubMed]
- Gui, J.; Zheng, S.; Liu, C.; Shen, J.; Li, J.; Li, L. OsREM4.1 Interacts with OsSERK1 to Coordinate the Interlinking between Abscisic Acid and Brassinosteroid Signaling in Rice. Dev. Cell 2016, 38, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sidhu, G.P.S.; Araniti, F.; Bali, A.S.; Shahzad, B.; Tripathi, D.K.; Brestic, M.; Skalicky, M.; Landi, M. The role of salicylic acid in plants exposed to heavy metals. Molecules 2020, 25, 540. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.-Y.; Chen, C.-Y.; Huang, W.-D.; Kao, C.H. Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 2010, 329, 327–337. [Google Scholar] [CrossRef]
- Jing, C.; Cheng, Z.; Li, L.-P.; Sun, Z.-Y.; Pan, X.-B. Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. J. Environ. Sci. 2007, 19, 44–49. [Google Scholar]
- Huda, A.N.; Swaraz, A.; Reza, M.A.; Haque, M.A.; Kabir, A.H. Remediation of chromium toxicity through exogenous salicylic acid in rice (Oryza sativa L.). Water Air Soil Pollut. 2016, 227, 278. [Google Scholar] [CrossRef]
- Guo, B.; Liang, Y.; Zhu, Y.; Zhao, F. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ. Pollut. 2007, 147, 743–749. [Google Scholar] [CrossRef]
- Mishra, A.; Choudhuri, M. Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol. Plant. 1999, 42, 409–415. [Google Scholar] [CrossRef]
- Yan, J.; Wang, P.; Wang, P.; Yang, M.; Lian, X.; Tang, Z.; Huang, C.F.; Salt, D.E.; Zhao, F.J. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars. Plant Cell Environ. 2016, 39, 1941–1954. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Sachdev, S.; Kundu, R. Salicylic acid mediated reduction in grain cadmium accumulation and amelioration of toxicity in Oryza sativa L. cv Bandana. Ecotoxicol. Environ. Saf. 2020, 205, 111167. [Google Scholar] [CrossRef]
- Wang, F.; Tan, H.; Huang, L.; Cai, C.; Ding, Y.; Bao, H.; Chen, Z.; Zhu, C. Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice. Ecotoxicol. Environ. Saf. 2021, 207, 111198. [Google Scholar] [CrossRef]
- Singh, A.P.; Dixit, G.; Mishra, S.; Dwivedi, S.; Tiwari, M.; Mallick, S.; Pandey, V.; Trivedi, P.K.; Chakrabarty, D.; Tripathi, R.D. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.). Front. Plant Sci. 2015, 6, 340. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F. The Role of Salicylic Acid and Gibberellin Signaling in Plant Responses to Abiotic Stress with an Emphasis on Heavy Metals. Plant Signal. Behav. 2020, 15, 1777372. [Google Scholar] [CrossRef]
- Liu, Y.S.; Tao, Y.; Yang, X.Z.; Liu, Y.N.; Shen, R.F.; Zhu, X.F. Gibberellic acid alleviates cadmium toxicity in rice by regulating NO accumulation and cell wall fixation capacity of cadmium. J. Hazard. Mater. 2022, 439, 129597. [Google Scholar] [CrossRef]
- Rubio, M.; Escrig, I.; Martinez-Cortina, C.; Lopez-Benet, F.; Sanz, A. Cadmium and nickel accumulation in rice plants. Effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul. 1994, 14, 151–157. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, C.; Gan, L.; Ng, D.; Xia, K. Effects of exogenous gibberellic acid3 on iron and manganese plaque amounts and iron and manganese uptake in rice. PLoS ONE 2015, 10, e0118177. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Z.; Xu, Y.; Joo, S.H.; Kim, S.K.; Xue, Z.; Xu, Z.; Wang, Z.; Chong, K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J. 2009, 57, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Ramírez, A.; Rodríguez, D.; Reyes, D.; Jiménez, J.A.; Nicolás, G.; López-Climent, M.; Gómez-Cadenas, A.; Nicolás, C. Evidence for a Role of Gibberellins in Salicylic Acid-Modulated Early Plant Responses to Abiotic Stress in Arabidopsis Seeds. Plant Physiol. 2009, 150, 1335–1344. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef]
- Xing, P.; Luo, H.; He, Z.; He, L.; Zhao, H.; Tang, X.; Duan, M. Trans-Zeatin induce regulation the biosynthesis of 2-acetyl-1-pyrroline in fragrant rice (Oryza sativa L.) seedlings. BMC Plant Biol. 2023, 23, 88. [Google Scholar] [CrossRef]
- Nazir, H.; Asghar, H.N.; Zahir, Z.A.; Akhtar, M.J.; Saleem, M. Judicious use of kinetin to improve growth and yield of rice in nickel contaminated soil. Int. J. Phytoremediat. 2016, 18, 651–655. [Google Scholar] [CrossRef]
- Kumar, N.; Bose, B. Hydro, Mg(NO3)2 and kinetin primed seeds mitigate the inhibitory effects of CdCl2 in germinating rice. J. Pharmacogn. Phytochem. 2018, 7, 2578–2584. [Google Scholar]
- Chen, Y.-A.; Chi, W.-C.; Trinh, N.N.; Huang, L.-Y.; Chen, Y.-C.; Cheng, K.-T.; Huang, T.-L.; Lin, C.-Y.; Huang, H.-J. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings. PLoS ONE 2014, 9, e95163. [Google Scholar] [CrossRef]
- Jones, B.; Gunnerås, S.A.; Petersson, S.V.; Tarkowski, P.; Graham, N.; May, S.; Dolezal, K.; Sandberg, G.; Ljung, K. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 2010, 22, 2956–2969. [Google Scholar] [CrossRef]
- Nishiyama, R.; Watanabe, Y.; Fujita, Y.; Le, D.T.; Kojima, M.; Werner, T.; Vankova, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Kakimoto, T.; et al. Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis. Plant Cell 2011, 23, 2169–2183. [Google Scholar] [CrossRef]
- Xiong, L.; Zhu, J.-K. Regulation of abscisic acid biosynthesis. Plant Physiol. 2003, 133, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.-G.; Chen, H.-C.; Huang, W.-Y.; Chu, Y.-C.; Shii, C.-T.; Cheng, W.-H. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci. 2010, 178, 12–22. [Google Scholar] [CrossRef]
- He, J.; Duan, Y.; Hua, D.; Fan, G.; Wang, L.; Liu, Y.; Chen, Z.; Han, L.; Qu, L.-J.; Gong, Z. DEXH box RNA helicase–mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 2012, 24, 1815–1833. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jia, L.; Shi, W.; Liang, J.; Zhou, F.; Li, Q.; Zhang, J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol. 2013, 197, 139–150. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Han, M.M.; Zhang, S.Y.; Wang, K.; Zhang, C.R.; Liu, T.; Liu, W. Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress. J. Integr. Plant Biol. 2012, 54, 991–1006. [Google Scholar] [CrossRef]
- Potters, G.; Pasternak, T.P.; Guisez, Y.; Palme, K.J.; Jansen, M.A. Stress-induced morphogenic responses: Growing out of trouble? Trends Plant Sci. 2007, 12, 98–105. [Google Scholar] [CrossRef]
- Lin, C.; Sauter, M. Polar auxin transport determines adventitious root emergence and growth in rice. Front. Plant Sci. 2019, 10, 444. [Google Scholar] [CrossRef]
- Qin, H.; Wang, J.; Zhou, J.; Qiao, J.; Li, Y.; Quan, R.; Huang, R. Abscisic acid promotes auxin biosynthesis to inhibit primary root elongation in rice. Plant Physiol. 2023, 191, 1953–1967. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kamiya, N.; Morinaka, Y.; Matsuoka, M.; Sazuka, T. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol. 2007, 143, 1362–1371. [Google Scholar] [CrossRef]
- Vanneste, S.; Friml, J. Auxin: A trigger for change in plant development. Cell 2009, 136, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hua, D.; He, J.; Duan, Y.; Chen, Z.; Hong, X.; Gong, Z. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet. 2011, 7, e1002172. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.Y.; Hu, F.; Zhang, S.Y.; Wang, K.; Zhang, C.R.; Liu, T. MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ. Sci. Pollut. Res. 2013, 20, 5449–5460. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zeng, X.; Song, Q.; Sun, Y.; Feng, Y.; Lai, Y. Identification of key genes and modules in response to Cadmium stress in different rice varieties and stem nodes by weighted gene co-expression network analysis. Sci. Rep. 2020, 10, 9525. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-A.; Agrawal, G.K.; Rakwal, R.; Han, K.-S.; Kim, K.-N.; Yun, C.-H.; Heu, S.; Park, S.-Y.; Lee, Y.-H.; Jwa, N.-S. Molecular cloning and mRNA expression analysis of a novel rice (Oryzasativa L.) MAPK kinase kinase, OsEDR1, an ortholog of ArabidopsisAtEDR1, reveal its role in defense/stress signalling pathways and development. Biochem. Biophys. Res. Commun. 2003, 300, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-O.; Cho, K.; Kim, S.-H.; Jeong, S.-H.; Kim, J.-A.; Jung, Y.-H.; Shim, J.; Shibato, J.; Rakwal, R.; Tamogami, S. Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. Planta 2008, 227, 981–990. [Google Scholar] [CrossRef]
- Mishra, N.S.; Tuteja, R.; Tuteja, N. Signaling through MAP kinase networks in plants. Arch. Biochem. Biophys. 2006, 452, 55–68. [Google Scholar] [CrossRef]
- Zhao, F.; Hu, F.; Han, M.; Zhang, S.; Liu, W. Superoxide radical and auxin are implicated in redistribution of root growth and the expression of auxin and cell-cycle genes in cadmium-stressed rice. Russ. J. Plant Physiol. 2011, 58, 851–863. [Google Scholar] [CrossRef]
Trearment | Application | Conc. | Effect | References |
---|---|---|---|---|
Cd (30 mg kg−1 of soil) | Exogenous Se and L-TRP (auxin precursor) | 10−5 M | Enhanced growth and yield under Cd stress by stabilizing endogenous auxin levels and decreasing Cd translocation to rice grains | [21] |
As | Exogenous IAA | 3.0 M | Reduced As-induced stress more efficiently when used in combination with selenium and improved chlorophyll content, proline, and cysteine; lowered protein content inhibition and DNA damage; reduced lipid peroxidation | [22] |
- | Exogenous indole-3-butyric acid (IBA) | 1 µM | Increased synthesis of nitric oxide in lateral roots and heme oxygenase activity | [23] |
Mercury (60 µM) | Exogenous nitroprusside (SNP or NO) | 200 µM | Induced auxin transport in roots and improved resistance to Hg-stress, decreased Hg uptake and transportation in roots and shoots, decreased auxin levels during iron deficiency. Antioxidant activity was not enhanced by SNP | [24] |
Cd/As | Exogenous IAA or IBA | 100 mM | Mitigated alterations in root system caused by Cd stress by increasing nitric oxide content and lateral root production and AUX1 expression | [25] |
Hexavalent chromium (300 µM) | OsMYB-R1 overexpressing lines | - | Rice plants showed higher auxin accumulation, overexpression of OsMYB-R1-induced antioxidative genes such as CAT, SOD, guaiacol peroxidase; and regulated salicylic acid signaling under Cr 300 µmol L−1 and other abiotic stresses | [26] |
CdSO4 and Na2HAsO4 (100 µmol L−1) | IAA or IBA | 10 µM | Altered OsAUX1, OzYUCCA1, OsASA2 IAA-biosynthesis gene and OsYUCCA1 expression was downregulated under As and Cd toxicity, while OsASA2 expression was not influenced with or without Cd and As. 100 µmol L−1 CdSO4 and 100 µmol L−1 Na2HAsO4·7H2O | [25] |
As | IAA | 2.0 μmol L−1 | Enhanced grain biomass, reduced As translocation, decreased the As concentration in rice grains | [27] |
Cd | NAA | 1.0 and 10 μmol L−1 | Enhanced plant biomass, restricted seedling growth in both wild type and transgenic pmei12 lines | [20] |
Vanadium (0–2 mM) | - | - | Five genes encoding auxin response transcription factors (OsIAA) as well as enhanced abscisic acid (ABA) and jasmonic acid (JA) expression in hormone signaling pathways. Upregulated ATP-dependent GSH-conjugated transport, ATP binding cassette (ABC) transporter, and markedly reduced the expression of divalent cation transporters, drug/metabolite transporter (DMT), and zinc/iron permease (ZIP) | [28] |
Treatment | Application | Conc. | Effects/Mechanism | References |
---|---|---|---|---|
CuSO4 and CdCl2 | ABA | 10 μM | Upregulation of stress membrane protein (OsSMP1), increasing tolerance to heavy metal stresses but increasing sensitivity to ABA | [36] |
CdCl2 | Pretreatment with ABA | 10 μM | Reduced transpiration rate, decreased Cd content, and enhanced Cd tolerance of TN1 seedlings. ABA content enhanced in roots and leaves of Cd-tolerant cultivar | [37] |
Cd | ABA | 100 μM | Stomatal closure, reduced transpiration rate, and dramatically reduced the accumulation of Cd in the leaves | [32] |
Pb, Cd, As | ABA | - | Increase in ABA concentrations; signaling and biosynthesis genes of ABA are upregulated | [17] |
Cd, Cu | -Si | - | Increased level of endogenous ABA in Si-plants after 10 days, triggered heavy metal transporters (OsHMA2 and OsHMA3) genes | [34] |
Cd | ABA | - | Upregulation of ABA biosynthesis genes, positive correlation between Cd tolerance and endogenous ABA content, rapid ABA production detected in roots and leaves of Cd-tolerant rice genotypes | [37] |
Cd (0.1 mM) or Nickel (0.5 mM) | ABA | 19 µM | Potentiate the effects of heavy metals by accumulating carbohydrates and inhibiting growth | [35] |
As(III) (25 and 50 mM L−1) | pretreated with ABA | 10 µM | As altered phosphatase, H+/ATPase, alkaline phosphatase, ROS, antioxidative and proline biosynthesis genes and ABA regulated phosphatase, H+/ATPase and alkaline phosphatase to moderate phosphate and upregulated antioxidative biosynthesis genes and downregulated ROS biosynthesis genes | [40] |
As(V) (25 µM) | - | - | Two ABA biosynthesis genes, OsNCED2 and OsNCED3, were strongly increased and 4 ABA signaling genes were upregulated. Expression of GARP-G2-like and C3H transcription factors was specifically modulated by As(V) stress. MAPKs activity was enhanced. | [33] |
Pb (0.25 mM Pb) | Pretreatment with ABA | 0.1 g m−3 | Restricted amount of Pb translocated from roots to shoots, decreased malondialdehyde and H2O2 contents in leaves, and alleviated Pb-induced decrease in plant growth and leaf chlorophyll content and improved increased ascorbate peroxidase and catalase activities | [42] |
Vanadium (1 mM) | - | - | Expression of ABA hormone signaling pathways increased. NAC (NAM, ATAF, CUC) proved to be V-specific transcription factor | [28] |
Treatment | Application | Effect | References |
---|---|---|---|
Cr | Ethylene | Increased expression of four ethylene biosynthesis-related genes (ACS1, ACS2, ACO4, and ACO5) | [21] |
200 μM Cu2+ | Ethylenediamine-N, N′-disuccinic acid (400 μM) | Enhance plant tolerance potential to excess Cu toxicity through alleviating Cu-induced poisonous effects. Modulated the mRNA level of Cytochrome P450 gene, OsHMA9, and sulfate transporter gene | [49] |
Copper oxide nanoparticles (CuO-NP) (450 mg L−1) | Ethylene biosynthesis and signaling antagonists cobalt and silver | Reduces the extent of ultrastructural and stomatal damage by controlling ROS accumulation in rice seedlings and cellular ultrastructural damages | [44] |
ZnO NPs | - | Upregulation of ACS2 and ACS6 transcripts responsible for ethylene biosynthesis | [47] |
Mercury and/or Se | Selenium (Se) | Triggered the ethylene transduction gene in Oryza sativa and regulated the synthesis of ethylene and osmotic balance | [48] |
Hexavalent chromium | Overexpressed the ACO5, ACO4, ACS2, and ACS1 genes to enhance ethylene biosynthesis to regulate Cr-induced oxidative stress | [5] | |
Chromium | - | Modulation of ethylene biosynthesis and signaling, vesicle trafficking, and ROS level | [46] |
Chromium | - | Upregulation of ethylene biosynthesis AP2/ERF gene family | [15] |
As (25 µM) | - | APETALA2/ethylene response factor expression was increased. Two ethylene biosynthesis genes, OsACS2 and OsACO4, were strongly increased, and three ethylene signaling genes were upregulated. | [33] |
Treatment | Application | Effect | References |
---|---|---|---|
As | SL deficient rice | Severe growth abnormalities in trigolactone-deficient mutants while wild type showed reduced As uptake and accumulation and reduced phosphate-transporters encoding gene expression, enhanced transcript accumulation of CAT, SOD and APX genes and lowered expression of phosphate tranporter genes. | [55] |
Cd or As | GR24 | Effectively inhibited Cd or As uptake by rice plants but Cd accumulation and translocation from root to shoot was not decreased. | [58] |
- | SLs | Play an active role in structuring rhizomicrobiome and mediation of distinct metabolic pathway. | [53] |
Phosphate deficiency | Exogenously applied GR24 (1 µM) | GR24 restored normal leaf senescence in SL-deficient mutants. | [54] |
Treatement | Application | Concentration | Effects | References |
---|---|---|---|---|
As (III) | Exogenous MeJA | 0.25 μM | Enhanced biomass and chlorophyll content and increased antioxidant enzyme activities, decreased accumulation of total AsIII content (root + shoot) and modulated JA signaling pathway genes downstream (OsCOI, OsJAZ3, OsMYC2) | [68] |
Cd (50 μM) | methyl jasmonate | 5 μM | Enhanced Cd-tolerance and antioxidant response, lowered Cd uptake, an improved membrane integrity and ‘switching on’ of the JA-biosynthesis by lipoxygenase (LOX) | [81] |
As (0, 25 and 50 µM) | MJ | (0, 0.5 and 1 µM) | Alleviated the negative effects of As toxicity and increased chlorophyll contents, biomass production, and Fe accumulation, decreased the oxidative stress by regulating ASA–GSH cycle and antioxidants. Reduced Lsi1, Lsi2, and Lsi6 expression. | [65] |
As(V) (2 μM) | Pretreatment with JA | 0.5 to 5 µM | Decreased the As concentrations in the roots and shoots, with the effect being significant for shoot As concentration | [69] |
Pb (150 and 300 µmol L−1) | MJ | 0.5 µM or 1 µM | Altered HMAs, ABCC1, PCS1 biosynthesis genes, regulated antioxidant and proline, glyoxalase system, and phytochelatins. Reduced MDA and H2O2. Immobilized Pb in root and reduced accmulation in shoot. | [80] |
As (50 μmol L−1) | MJ | 0.5 and 1 µM | Altered ABCC1, GSH1, PCS genes, antioxidative biosynthesis genes, glyoxalase regulated genes and MJ regulated the expression of ABCC1, HMAs, PCS1, and two genes for As sequestration. MJ also upregulated antioxidant and proline biosynthesis genes and downregulated MDA, MG, and H2O2 expression | [65] |
Se(IV) (25 μM) (Na2SeO3) | MeJA | 0.1–1.0 μM | Altered OsSBP1, OsNIP2;1, OsPT2, and low concentration of MJ depressed the gene expression of OsPt2 and OsNIP2;1 in roots and OsSBP1, OsCS, OsNIP2;1, and OsPT2 in shoot to hinder Se uptake | [56] |
Aluminium (0.5 and 1 mM L−1) | MJ | 0.5 and 1 µM | Altered ABCC1, GSH1, and PCS and MJ upregulated the expression of ABCC1, GSH1, and PCS for Al sequestration in the vacuole | [79] |
As (III) (25 mM L−1) | MJ | 0.5 and 1 µM | Improved chlorophyll metabolism, phytochelatins, and glutathione. Altered OsCOI, OsMYC2, OsJAZ3, OsINT5, OsLsi6, OsNIP3;1, OsLsi1;2, OsNIP1;1, OsABCC2, OsNRAMP1, and OsPCS2 and MJ treatment downregulated AsIII absorption (OsNIP1;1 OsNIP1;3, OsLsi1 and OsLsi2), translocation (OsINT5 and OsLsi6) and detoxification (OsABCC2, OsNRAMP1, and OsPCS2) genes to cope up As toxicity | [68] |
As(V) (25 uM) | - | - | Five JA biosynthesis genes (OsDAD1;2, OsLOX2;1, OsAOS2, OaAIM1 and OsJAR1;2) and six JA signaling genes were up regulated | [33] |
Antimony (10 to 50 mg L−1) | - | - | Significantly increased methyl jasmonate in rice roots for reducing the toxic effects | [66] |
Vanadium (1 mM) | - | - | Jasmonate ZIM domain family was upregulated and expression of jasmonic acid hormone signaling pathways (6 genes) and biosynthesis (3 genes) increased | [28] |
Treatment | Application | Concentration | Effects | References |
---|---|---|---|---|
As & Cd | Exogenous Br24 and Br28 | 0.2 or 0.02 μM | Decreased Cd and As accumulation and translocation to the rice grains. | [68] |
Cd and As | Iron plaque (IP) and Br | 20 or 60 mg Fe2+ dm−3 | Impedes accumulation and transports Cd and As. | [96] |
Iron (250 and 6250 μM) | 24-epibrassinolide (EBR) | 10 nM | Increased ROS scavenging, enhanced the activities of enzymes such as peroxidase, ascorbate peroxidase, catalase, and superoxide dismutase, modulated arenchyma area for reducing Fe mobilization in root. | [98] |
Chromium (100 µM) | Seed Priming with Brassinosteroids (EBL) | 0.01 µM | Altered antioxidative defense-associated genes and upregulated CAT, APX, and POD, while downregulating the MDA, H2O2, SOD, EL, and mitigated sub-cellular damages to ameliorate Cr toxicity. | [90] |
Aluminum (400 μmol L−1) | Seed priming with 24-epibrassinolide | (0.01 μM) | Altered APX08, CATa, CATb, APX02, SOD-Fe2, and SOD-Cu-Zn and upregulated BRs and antioxidant defensive genes. | [99] |
As (40 mg kg−1) and Cd (5 mg kg−1) | Spray Br28 or Br24 | 10−7 mg | Altered antioxidative-related genes and increased Fe plague, which improved Mn, Cu, and Zn uptake in roots and restricted Cd and enhanced As root uptake and translocation. | [92] |
Iron (250 and 6250 μmol L−1) | EBR | 10 nM | Altered antioxidative defense-related genes and decreased ROS, and increased carboxylation, CAT, SOD, and POD activities. | [98] |
As 5 µM | 2,4-epibrassinolide (EBL) | 0.2 µM | EBL significantly increased the content of carotenoid by 5.8% and significantly decreased As content in the roots by 32.5%. | [93] |
Cd (20 mol L−1) | Foliar Spraying of brassinolide | 0.1 mM | Increased root length and root surface area, and CAT, SOD, and POD activities were significantly improved and decreased the Cd content of rice by transforming Cd into immobile forms and fixing in the cell wall. | [95] |
Treatment | Application | Concentration | Effects/Mechanism | References |
---|---|---|---|---|
HgCl2 (10 µM) or PbCl2 (10 µM) | Seed germinated on SA moistened paper discs. | 100 µM | Alleviated the membrane deterioration caused by lipoxygenase (LOX). Reduced MDA and enhanced H2O2 under Pb stress | [108] |
Cd (25 μM) | SA | 100 μM | Showed elevated photosynthetic pigment content, on-protein thiol content, relieved the growth inhibition, and lowered the ROS accumulation. Upregulated OsHMA3 and OsPCS1 and lowered OsNRAMP2 expression | [110] |
Cd (2.5 μM) | Foliar Spray of SA | 0.1 mM | Increased the leaf’s Cd content at mature stage and decreased the accumulation of Cd in grains by depositing and fixing in cell wall of leaves | [111] |
CdCl2 (50 μmol L−1) | Pretreatment of rice roots with SA | 10 μM | Improves root growth; reduces ROS level, and membrane damage; enhances SOD, POD and CAT activities as well as GSH, and AsA contents; improves non-protein thiols’ concentration | [107] |
As (V) (25 and 50 μM) | SA | 10 μM | Plant growth and As(V) induced oxidative stress while drastically reducing the roots to shoot translocation of AsV. OsNRAMP5 and OsFRDL1 were enhanced | [112] |
Chromium (100 mmol L−1) | SA | 100 μM | Alters OsPCS1, OsMT1 and OsHMA3 and plant response SR, CAT, POD, and SOD increased to regulate Cr-mediated ROS in rice seedlings | [110] |
As 10 μmol L⁻¹ | SA | (2.0 μmol L−1) | Increased root and shoot elongation, biomass, total root length, root surface area, root volume, and root tip number | [27] |
Pb (0.05, 0.15 and 0.25 mmol L−1) | SA pretreatment | 0.1 mmol | Increases seedling shoot, and root length; improves chlorophyll content; reduces peroxide levels; alters SOD and APX activities of hybrid rice cultivar | [105] |
Cr+6 | OsMYB-R1 overexpressing rice | - | Controls the crosstalk of auxin and salicylic acid signaling and other genes in response to Cr stress | [26] |
Cr(VI) | SA application in solution culture | 100 μM | Three genes (OsPCS1, OsMT1, and OsHMA3) involved with vacuolar sequestration showed significant upregulation due to SA treatment. Modulated salicylic acid signaling molecule calcium-dependent protein kinases, to activate the stress-responsive downstream genes (Peroxidases, Glutathione S-transferases, Osmotins, Heat Shock Proteins, Pathogenesis Related-Proteins) | [106] |
Treatment | Application | Conc. | Effects | References |
---|---|---|---|---|
- | GA3 | 1.0 and 10 (μmol L−1) | Higher growth rate and seedling height in both wild type and pmei12 lines compared to the control | [20] |
Cd (0.1 mM) or Ni (0.5mM) | Exogenous GA3 application | 14 μM | Partially reversed the effects of heavy metals and stimulated growth. Activated mobilization of carbohydrates in seeds | [35] |
Cd or Nickel treatment on rice plants | Exogenous GA3 | 1.4 × l0−5 M | Adverse effects of the metals on the nutrient acquisition were not alleviated and decreased Ca content in Ni-plants. Endogenous GA reduced under stress. | [35] |
Fe and Mn plaque | Exogenous (GA3) application through spraying | 0.18 mM GA3 | Decreased Fe plaque, but increased Mn plaque | [116] |
As (10 μmol L⁻¹) | Seedlings were pretreated GA | (2 μmol L−1) | Shoot biomass and root elongation significantly increased. As concentration was reduced. | [27] |
Cd | Exogenous GA | - | Decreased the fixation of Cd in the root cell via lowering hemicellulose content, decreased the expression of OsNRAMP5 and OsCd1, increased OsHMA3 and OsCAL1 and accelerated cell wall Cd exclusion mechanism. Lowered endogenous NO production and antioxdant enzymes. | [114] |
Cd (20 mol L−1) | Foliar Spraying of Gibberellins | 0.1 mM | Root length and root surface area, and CAT, SOD, and POD activities were significantly improved; decreased the Cd content of rice by transforming Cd into immobile forms and fixing in the cell wall. | [95] |
Treatment | Application | Conc. | Effects | References |
---|---|---|---|---|
Nickel sulfate (130 mg kg−1) | Rice seedlings dipped in kinetin solution | 10−4 M | Improved the plant panicles, number of tillers, 1000 grain weight, paddy yield, and plant height while decreasing concentration of Ni in grains and enhanced in in shoot. NPK uptake improved. | [121] |
CdCl2 (4, 12 & 30 ppm) | seeds Priming with Mg (NO3)2 and kinetin | 5 ppm | Overcome the adverse effects/phytotoxicity of the HMs by improving α-amylase activity and enhancing availability of soluble sugar in the endosperm | [122] |
Mercury (25 µM) | - | - | Genes involved in cytokinin signaling (OsRR1, OsRR13, OsRR14, OsRR16, and OsRR111) were downregulated in long-term Hg exposure and 5 ethylene (ET) synthesis genes–OsACS2, OsACO1, OsACO2, OsACO5 and OsACO6– were significantly increased in short-term Hg exposure. Activated calcium accmulation and mitogen-activated protein kinase (MAPK). | [123] |
As(V) (25 µM) | - | - | Two CK—inactivation genes (OsCKX4 and OsCKX5) were strongly increased, 1 CK biosynthesis gene (OsIPT4) was decreased, and 2 CK signaling genes (OsHKL1/OsCRL4) and (OsRR20), were downregulated | [33] |
- | Trans-zeatin (ZT3) solutions treatments | 20 to 40 μmol L− 1 | Increased plant height and stem width, 1-pyrroline, methylglyoxal, proline, and P5CS and OAT activities, enhanced P5CS and OAT activities, and reduced glutamic acid contents. ProDH, P5CS2, and DAO4 expression upregulated. | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, S.; Saad Jan, S.; Shahid, M.; Asaf, S.; Khan, A.L.; Lubna; Al-Rawahi, A.; Lee, I.-J.; AL-Harrasi, A. Novel Insights into Exogenous Phytohormones: Central Regulators in the Modulation of Physiological, Biochemical, and Molecular Responses in Rice under Metal(loid) Stress. Metabolites 2023, 13, 1036. https://doi.org/10.3390/metabo13101036
Bilal S, Saad Jan S, Shahid M, Asaf S, Khan AL, Lubna, Al-Rawahi A, Lee I-J, AL-Harrasi A. Novel Insights into Exogenous Phytohormones: Central Regulators in the Modulation of Physiological, Biochemical, and Molecular Responses in Rice under Metal(loid) Stress. Metabolites. 2023; 13(10):1036. https://doi.org/10.3390/metabo13101036
Chicago/Turabian StyleBilal, Saqib, Syed Saad Jan, Muhammad Shahid, Sajjad Asaf, Abdul Latif Khan, Lubna, Ahmed Al-Rawahi, In-Jung Lee, and Ahmed AL-Harrasi. 2023. "Novel Insights into Exogenous Phytohormones: Central Regulators in the Modulation of Physiological, Biochemical, and Molecular Responses in Rice under Metal(loid) Stress" Metabolites 13, no. 10: 1036. https://doi.org/10.3390/metabo13101036
APA StyleBilal, S., Saad Jan, S., Shahid, M., Asaf, S., Khan, A. L., Lubna, Al-Rawahi, A., Lee, I.-J., & AL-Harrasi, A. (2023). Novel Insights into Exogenous Phytohormones: Central Regulators in the Modulation of Physiological, Biochemical, and Molecular Responses in Rice under Metal(loid) Stress. Metabolites, 13(10), 1036. https://doi.org/10.3390/metabo13101036