Body Composition and Cardiovascular Risk: A Study of Polish Military Flying Personnel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessment of Nutritional Status
2.3. Laboratory Tests
- -
- Total cholesterol (TC) (enzymatic-colorimetric method using a Cobas Integra 400 plus analyzer (Roche Diagnostics, Warsaw, Poland). Values < 190 mg/dl were taken as the norm.
- -
- Triglycerides (TG) (enzyme-colorimetric method using a Cobas Integra 400 plus analyzer). Values of ≤150 mg/dl were taken as the norm.
- -
- Low-density lipoproteins (LDL-C) (parameter calculated according to the Friedewald formula). Values < 115 mg/dl were taken as the norm.
- -
- High-density lipoproteins (HDL-C) (enzyme-colorimetric method using a Cobas Integra 400 plus analyzer).
- -
- Glucose (enzymatic method with hexokinase using a Cobas Integra 400 plus analyzer). Values < 99 mg/dl were taken as the norm.
- -
- Insulin (ECLIA electrochemiluminescence method using a Cobas e 411 analyzer). Values of 2.6–24.9 µIU/mL were taken as the norm.
- -
- Ghrelin (ELISA method using an ETI-Max 3000 analyzer; DiaSorin S.p.A., Saluggia, Italia).
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [PubMed]
- Hruby, A.; Hill, O.T.; Bulathsinhala, L.; McKinnon, C.J.; Montain, S.J.; Young, A.J.; Smith, T.J. Trends in Overweight and Obesity in Soldiers Entering the US Army, 1989–2012. Obesity 2015, 23, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Quertier, D.; Goudard, Y.; Goin, G.; Regis-Marigny, L.; Sockeel, P.; Dutour, A.; Pauleau, G.; De La Villeon, B. Overweight and Obesity in the French Army. Mil. Med. 2022, 187, E99–E105. [Google Scholar] [CrossRef]
- Sanderson, P.W.; Clemes, S.A.; Biddle, S.J.H. Prevalence and socio-demographic correlates of obesity in the British Army. Ann. Hum. Biol. 2014, 41, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Salimi, Y.; Taghdir, M.; Sepandi, M.; Zarchi, A.A.K. The prevalence of overweight and obesity among Iranian military personnel: A systematic review and meta-analysis. BMC Public Health 2019, 19, 1–99. [Google Scholar] [CrossRef]
- Gaździńska, A.; Jagielski, P.; Baran, P. Evaluation of nutritional status and the level of physical fitness of military flying personnel staying at the training camp. Pol. J. Aviat. Med. Bioeng Psychol. 2018, 24, 12–18. [Google Scholar] [CrossRef]
- Gazdzinska, A.; Jagielski, P.; Turczynska, M.; Dziuda, L.; Gazdzinski, S. Assessment of Risk Factors for Development of Overweight and Obesity among Soldiers of Polish Armed Forces Participating in the National Health Programme 2016–2020. Int. J. Environ. Res. Public Health 2022, 19, 3069. [Google Scholar] [CrossRef]
- Gazdzinska, A.; Baran, P.; Skibniewski, F.; Truszczynski, O.; Gazdzinski, S.; Wylezol, M. The prevalence of overweight and obesity vs. the level of physical activity of aviation military academy students. Med. Pr. 2015, 66, 653–660. [Google Scholar] [CrossRef]
- Al-Qahtani, D.A.; Imtiaz, M.L.; Shareef, M.M. Obesity and cardiovascular risk factors in Saudi adult soldiers. Saudi Med. J. 2005, 26, 1260–1268. [Google Scholar]
- Williams, E.P.; Mesidor, M.; Winters, K.; Dubbert, P.M.; Wyatt, S.B. Overweight and Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem. Curr. Obes. Rep. 2015, 4, 363–370. [Google Scholar] [CrossRef]
- Hu, L.H.; Huang, X.; You, C.J.; Li, J.X.; Hong, K.; Li, P.; Wu, Y.Q.; Wu, Q.H.; Wang, Z.W.; Gao, R.L.; et al. Prevalence of overweight, obesity, abdominal obesity and obesity-related risk factors in southern China. PLoS ONE 2017, 12, e0183934. [Google Scholar] [CrossRef] [PubMed]
- Alpert, M.A. Obesity cardiomyopathy: Pathophysiology and evolution of the clinical syndrome. Am. J. Med. Sci. 2001, 321, 225–236. [Google Scholar] [CrossRef]
- Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and Cardiovascular Disease Risk Factor, Paradox, and Impact of Weight Loss. J. Am. Coll. Cardiol. 2009, 53, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Lavie, C.J.; McAuley, P.A.; Church, T.S.; Milani, R.V.; Blair, S.N. Obesity and Cardiovascular Diseases. J. Am. Coll. Cardiol. 2014, 63, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, M.S.; Weakley, S.M.; Yao, Q.Z.; Chen, C.Y. Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 2012, 165, 622–632. [Google Scholar] [CrossRef]
- Abate, N.; Sallam, H.S.; Rizzo, M.; Nikolic, D.; Obradovic, M.; Bjelogrlic, P.; Isenovic, E.R. Resistin: An Inflammatory Cytokine. Role in Cardiovascular Diseases, Diabetes and the Metabolic Syndrome. Curr. Pharm. Des. 2014, 20, 4961–4969. [Google Scholar] [CrossRef]
- Laakso, M. Is Insulin Resistance a Feature of or a Primary Risk Factor for Cardiovascular Disease? Curr. Diab. Rep. 2015, 15, 1–9. [Google Scholar] [CrossRef]
- Gielerak, G.; Krzesinski, P.; Piotrowicz, K.; Murawski, P.; Skrobowski, A.; Stanczyk, A.; Galas, A.; Uzieblo-Zyczkowska, B.; Kazmierczak-Dziuk, A.; Maksimczuk, J.; et al. The Prevalence of Cardiovascular Risk Factors among Polish Soldiers: The Results from the MIL-SCORE Program. Cardiol. Res. Pract. 2020, 2020, 3973526. [Google Scholar] [CrossRef]
- Gielerak, G.; Krzesiński, P.; Stańczyk, A. Cardiovascular risk factors among soldiers-candidates for service abroad. The new perspective of epidemiological studies and pro-health behaviors in general population of the armed forces. Lekarz Wojskowy 2013, 91, 387–394. [Google Scholar]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef]
- Gruzdeva, O.; Borodkina, D.; Uchasova, E.; Dyleva, Y.; Barbarash, O. Localization of fat depots and cardiovascular risk. Lipids Health Dis. 2018, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.S.E.; Moreno, A.G.M.; Castillo, Z.R. The role of ghrelin and leptin in feeding behavior: Genetic and molecular evidence. Endocrinol. Diabetes Y Nutr. 2021, 68, 654–663. [Google Scholar]
- Obesity and Overweight Factsheet from the WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 20 March 2023).
- Tomczak, A.; Bertrandt, J.; Kłos, A.; Bertrandt, B. Assessment of physical fitness, physical capacity and nutritional status of soldiers serving in the “GROM” Polish Special Forces Unit. Probl. Hig. Epidemiol. 2014, 95, 86–90. [Google Scholar]
- Tomczak, A. Physical activity of soldiers in the Polish Armed Force’s military administration units and special units. Biomed. Hum. Kinet. 2012, 4, 93–97. [Google Scholar] [CrossRef]
- Zhu, Q.Q.; Huang, B.B.; Li, Q.L.; Huang, L.Q.; Shu, W.B.; Xu, L.; Deng, Q.Y.; Ye, Z.L.; Li, C.Y.; Liu, P. Body mass index and waist-to-hip ratio misclassification of overweight and obesity in Chinese military personnel. J. Physiol. Anthropol. 2020, 39, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.J.; Kim, J.; Park, H.J.; Park, S.F.; Park, C.Y.; Lee, W.Y.; Oh, K.W.; Park, S.W.; Rhee, E.J. Association of Waist-Height Ratio with Diabetes Risk: A 4-Year Longitudinal Retrospective Study. Endocrinol. Metab. 2016, 31, 127–133. [Google Scholar] [CrossRef]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef]
- Khan, R.J.; Harvey, D.J.; Leistikow, B.N.; Haque, K.S.; Stewart, C.P. Relationship between obesity and coronary heart disease among urban Bangladeshi men and women. Integr. Obes. Diabetes 2015, 1, 49–55. [Google Scholar]
- Jablonowska-Lietz, B.; Wrzosek, M.; Wlodarczyk, M.; Nowicka, G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol. Pol. 2017, 75, 1185–1191. [Google Scholar] [CrossRef]
- Ashwell, M.; Hsieh, S.D. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int. J. Food Sci. Nutr. 2005, 56, 303–307. [Google Scholar] [CrossRef]
- Brończyk-Puzoń, A.; Koszowska, A.; Bieniek, J. Basic anthropometric measurements and derived ratios in dietary counseling: Part one. Nurs. Public Health 2018, 8, 217–222. [Google Scholar] [CrossRef]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A consensus statement from the international diabetes federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Oh, S.W. Optimal Waist Circumference Cutoff Values for the Diagnosis of Abdominal Obesity in Korean Adults. Endocrinol. Metab. 2014, 29, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Lean, M.E.J.; Han, T.S.; Morrison, C.E. Waist circumference as a measure for indicating need for weight management. Br. Med. J. 1995, 311, 158–161. [Google Scholar] [CrossRef]
- Yoshitomi, Y.; Ishii, T.; Kaneki, M.; Tsujibayashi, T.; Sakurai, S.I.; Nagakura, C.; Miyauchi, A. Relationship between insulin resistance and effect of atorvastatin in non-diabetic subjects. J. Atheroscler. Thromb. 2005, 12, 9–13. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Burchardt, P.; Chlebus, K. Zespół metaboliczny—Nowa definicja i postępowanie w praktyce. Nadciśnienie Tętnicze Prakt. 2022, 8, 1–26. [Google Scholar]
- Vallgarda, S.; Nielsen, M.E.J.; Hansen, A.K.K.; Cathaoir, K.O.; Hartlev, M.; Holm, L.; Christensen, B.J.; Jensen, J.D.; Sorensen, T.I.A.; Sandoe, P. Should Europe follow the US and declare obesity a disease?: A discussion of the so-called utilitarian argument. Eur. J. Clin. Nutr. 2017, 71, 1263–1267. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Kotz, C.M.; Kahan, S.; Kelly, A.S.; Heymsfield, S.B. Obesity as a Disease: The Obesity Society 2018 Position Statement. Obesity 2019, 27, 7–9. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Bianchi, A.; Maroni, P.; Iannarelli, A.; Di Daniele, N.; Iacopino, L.; Di Renzo, L. Adiposity rather than BMI determines metabolic risk. Int. J. Cardiol. 2013, 166, 111–117. [Google Scholar] [CrossRef]
- Tomczak, A.; Anyzewska, A.; Bertrandt, J.; Lepionka, T.; Kruszewski, A.; Gazdzinska, A. Assessment of the Level of Physical Activity and Body Mass Index of Soldiers of the Polish Air Force. Int. J. Environ. Res. Public Health 2022, 19, 8392. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Gratteri, S.; Gualtieri, P.; Cammarano, A.; Bertucci, P.; Di Renzo, L. Why primary obesity is a disease? J. Transl. Med. 2019, 17, 1–13. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Deurenberg, P.; Pietrantuono, M.; Di Daniele, N.; Cervelli, V.; Andreoli, A. How fat is obese? Acta Diabetol. 2003, 40, S254–S257. [Google Scholar] [CrossRef]
- Jóźwiak, J. Dyslipidemie. In Medycyna Rodzinna. Podręcznik Dla Lekarzy i Studentów; Windak, A., Mastalerz-Migas, A., Chlabicz, S., Eds.; Termedia: Warsaw, Poland, 2015. [Google Scholar]
- Banach, M.; Jankowski, P.; Jozwiak, J.; Cybulska, B.; Windak, A.; Guzik, T.; Mamcarf, A.; Broncel, M.; Tomasik, T.; Rysz, J.; et al. PoLA/CFPiP/PCS Guidelines for the Management of Dyslipidaemias for Family Physicians 2016. Arch. Med. Sci. 2017, 13, 1–45. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Studzinski, K.; Tomasik, T.; Windak, A.; Banach, M.; Wojtowicz, E.; Mastej, M.; Tomaszewski, M.; Mikhailidis, D.P.; Toth, P.P.; Catapano, A.; et al. The Differences in the Prevalence of Cardiovascular Disease, Its Risk Factors, and Achievement of Therapeutic Goals among Urban and Rural Primary Care Patients in Poland: Results from the LIPIDOGRAM 2015 Study. J. Clin. Med. 2021, 10, 5656. [Google Scholar] [CrossRef] [PubMed]
- McGraw, L.K.; Turner, B.S.; Stotts, N.A.; Dracup, K.A. A review of cardiovascular risk factors in US military personnel. J. Cardiovasc. Nurs. 2008, 23, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Ho, T.E.; Vie, L.L.; Labarthe, D.R.; Scheier, L.M.; Lester, P.B.; Seligman, M.E.P. Comparison of Cardiovascular Health Between US Army and Civilians. J. Am. Heart Assoc. 2019, 8, e009056. [Google Scholar] [CrossRef] [PubMed]
- Bornfeldt, K.E.; Tabas, I. Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metab. 2011, 14, 575–585. [Google Scholar] [CrossRef]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef]
- Salas-Salvado, J.; Bullo, M.; Babio, N.; Martinez-Gonzalez, M.A.; Ibarrola-Jurado, N.; Basora, J.; Estruch, R.; Covas, M.I.; Corella, D.; Aros, F.; et al. Reduction in the Incidence of Type 2 Diabetes with the Mediterranean Diet Results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 2011, 34, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, M.A.; de la Fuente-Arrillaga, C.; Nunez-Cordoba, J.M.; Basterra-Gortari, F.J.; Beunza, J.J.; Vazquez, Z.; Benito, S.; Tortosa, A.; Bes-Rastrollo, M. Adherence to Mediterranean diet and risk of developing diabetes: Prospective cohort study. BMJ Br. Med. J. 2008, 336, 1348–1351. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (N = 200) | Normal (N = 73) | Overweight (N = 92) | Obese (N = 35) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
X (SD) | Me | Min–Max | X (SD) | Me | X (SD) | Me | X (SD) | Me | ||
Age (years) | 37.8 (8.5) | 38.0 | 23.0–59.0 | 34.6 (8.3) | 32.0 | 38.3 (8.0) | 38.0 | 43.3 (7.0) | 43.0 | <0.001 |
Height (cm) | 178.2 (6.4) | 178.0 | 156.0–193.0 | 177.0 (7.5) | 178.0 | 179.2 (5.9) | 180.0 | 177.9 (4.5) | 177.5 | 0.118 |
Weight (kg) | 85.1 (13.4) | 85.5 | 53.9–125.2 | 72.9 (8.9) | 73.9 | 87.9 (6.9) | 87.5 | 103.2 (8.8) | 102.2 | <0.001 |
BMI (kg/m2) | 26.7 (3.7) | 26.6 | 19.1–40.0 | 23.2 (1.5) | 23.5 | 27.3 (1.3) | 27.3 | 32.6 (2.8) | 31.5 | <0.001 |
TBW (kg) | 49.1 (6.4) | 49.9 | 31.2–64.0 | 44.7 (6.2) | 46.3 | 50.9 (4.9) | 50.6 | 53.6 (4.4) | 53.8 | <0.001 |
FM (kg) | 18.2 (7.8) | 16.5 | 5.8–52.0 | 12.0 (2.8) | 11.5 | 18.5 (4.4) | 18.5 | 30.2 (7.3) | 28.6 | <0.001 |
PBF (%) | 20.8 (6.2) | 20.6 | 8.1–41.6 | 16.6 (3.9) | 16.8 | 21.0 (4.7) | 21.3 | 29.0 (5.2) | 28.4 | <0.001 |
Visceral fat | 7.4 (3.4) | 7.0 | 1.0–20.0 | 4.5( 1.6) | 4.0 | 7.7 (2.1) | 8.0 | 12.5 (2.5) | 12.0 | <0.001 |
FFM (kg) | 66.9 (8.7) | 68.0 | 42.5–87.2 | 60.9 (8.5) | 63.3 | 69.4 (6.7) | 68.9 | 73.1 (6.0) | 73.2 | <0.001 |
SMM (kg) | 38.2 (5.2) | 38.7 | 23.3–50.0 | 34.5 (5.1) | 35.9 | 39.7 (4.0) | 39.4 | 41.8 (3.6) | 41.6 | <0.001 |
WC (cm) | 93.4 (10.8) | 93.0 | 63.0–125.0 | 83.7 (6.0) | 84.0 | 95.8 (5.6) | 95.0 | 107.2 (10.2) | 108.0 | <0.001 |
HC (cm) | 101.0 (9.6) | 100.8 | 62.0–193.0 | 95.2 (4.5) | 96.0 | 103.1 (10.4) | 103.0 | 107.9 (9.0) | 109.0 | <0.001 |
WHR | 0.9 (0.1) | 0.9 | 0.5–1.1 | 0.9 (0.1) | 0.9 | 0.9 (0.1) | 0.9 | 1.0 (0.0) | 1.0 | <0.001 |
WHtR | 0.52 (0.06) | 0.52 | 0.35–0.72 | 0.47 (0.03) | 0.47 | 0.53 (0.03) | 0.54 | 0.60 (0.06) | 0.60 | <0.001 |
Variables | Total (N = 200) | Normal weight (N = 95) | Overweight (N = 74) | Obesity (N = 31) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
X (SD) | Me | Min–Max | X (SD) | Me | X (SD) | Me | X (SD) | Me | ||
Age (years) | 37.8 (8.5) | 38.0 | 23.0–59.0 | 36.5 (8.4) | 37.0 | 38.4 (8.70) | 38.0 | 40.4 (7.7) | 41.0 | 0.062 |
Height (cm) | 178.2 (6.4) | 178.0 | 156.0–193.0 | 179.4 (6.4) | 178.5 | 176.9 (6.7) | 177.3 | 177.6 (4.7) | 177.0 | 0.056 |
Weight (kg) | 85.1 (13.4) | 85.5 | 53.9–125.2 | 79.6 (10.4) | 79.4 | 85.9 (12.8) | 86.5 | 100.0 (11.1) | 97.9 | <0.001 |
BMI (kg/m2) | 26.7 (3.7) | 26.6 | 19.1–40.0 | 24.7 (2.3) | 24.7 | 27.3 (2.9) | 27.4 | 31.7 (3.7) | 30.8 | <0.001 |
TBW (kg) | 49.1 (6.4) | 49.9 | 31.2–64.0 | 49.1 (6.4) | 49.6 | 48.5 (7.0) | 49.2 | 50.5 (4.3) | 50.8 | 0.403 |
FM (kg) | 18.2 (7.8) | 16.5 | 5.8–52.0 | 12.7 (3.3) | 12.4 | 19.8 (4.0) | 19.5 | 31.2 (7.1) | 28.9 | <0.001 |
PBF (%) | 20.8 (6.2) | 20.6 | 8.1–41.6 | 15.9 (3.2) | 15.9 | 22.9 (2.3) | 22.8 | 30.9 (3.9) | 29.6 | <0.001 |
Visceral fat | 7.4 (3.4) | 7.0 | 1.0–20.0 | 4.9 (1.9) | 5.0 | 8.2 (2.1) | 8.0 | 12.8 (2.5) | 12.0 | <0.001 |
FFM (kg) | 66.9 (8.7) | 68.0 | 42.5–87.2 | 66.9 (8.7) | 67.7 | 66.1 (9.5) | 67.2 | 68.9 (5.8) | 68.9 | 0.403 |
SMM (kg) | 38.2 (5.2) | 38.7 | 23.3–50.0 | 38.2 (5.3) | 38.6 | 37.7 (5.7) | 38.5 | 39.2 (3.5) | 39.1 | 0.539 |
WC (cm) | 93.4 (10.8) | 93.0 | 63.0–125.0 | 87.8 (6.9) | 88.0 | 95.4 (9.6) | 96.0 | 105.8 (11.2) | 105.0 | <0.001 |
HC (cm) | 101.0 (9.6) | 100.8 | 62.0–193.0 | 98.1 (5.3) | 98.0 | 102.5 (12.) | 103.0 | 106.5 (9.7) | 107.0 | <0.001 |
WHR | 0.9 (0.1) | 0.9 | 0.8–1.2 | 0.9 (0.0) | 0.9 | 0.9 (0.0) | 0.9 | 1.0 (0.1) | 1.0 | <0.001 |
WHtR | 0.52 (0.06) | 0.52 | 0.35–0.72 | 0.49 (0.03) | 0.49 | 0.54 (0.05) | 0.55 | 0.60 (0.07) | 0.59 | <0.001 |
Variables | Total (N = 200) | Normal (N = 73) | Overweight (N = 92) | Obesity (N = 35) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
X (SD) | Me | Min–Max | X (SD) | Me | X (SD) | Me | X (SD) | Me | ||
Ghrelin (ng/mL) | 6.0 (4.3) | 6.9 | 0.5–15.2 | 6.0 (4.4) | 7.8 | 6.3 (4.3) | 7.6 | 4.8 (3.9) | 4.9 | 0.138 |
Glucose (mg/dL) | 95.4 (9.6) | 95.0 | 74.0–136.0 | 93.7 (9.0) | 93.0 | 95.3 (9.2) | 94.0 | 99.0 (11.2) | 97.0 | 0.077 |
TC (mg/dL) | 191.5 (32.7) | 188.0 | 120.0–276.0 | 184.2 (31.0) | 180.0 | 194.3 (32.5) | 193.0 | 199.6 (34.5) | 191.0 | 0.044 |
TG (mg/dL) | 138.5 (82.3) | 114.5 | 43.0–645.0 | 109.8 (51.7) **### | 92.0 | 147.9 (87.2) ** | 121.5 | 173.7 (101.7) ### | 150.0 | <0.001 |
LDL-C (mg/dL) | 109.1 (28.9) | 106.0 | 8.0–190.0 | 102.1 (27.4) *# | 98.0 | 112.1 (29.5) *# | 112.0 | 115.8 (28.3) # | 112.0 | 0.014 |
HDL-C (mg/dL) | 55.3 (12.7) | 53.5 | 33.0–96.0 | 60.2 (12.4) **### | 59.0 | 53.8 (12.2) ** | 51.0 | 49.1 (11.0) ### | 49.0 | <0.001 |
Insulin (mIU/L) | 8.4 (3.9) | 7.5 | 0.4–27.7 | 6.8 (2.5) *### | 6.9 | 8.2 (2.8) *$$ | 7.6 | 12.1 (5.8) ###$$ | 12.2 | <0.001 |
HOMA-IR | 2.0 (1.0) | 1.8 | 0.1–6.6 | 1.6 (0.6) *### | 1.6 | 2.0 (0.7) *$$ | 1.8 | 3.0 (1.4) ###$$ | 3.3 | <0.001 |
Variables | Total (N = 200) | Normal (N = 95) | Overweight (N = 74) | Obesity (N = 31) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
X (SD) | Me | Min–Max | X (SD) | Me | X (SD) | Me | X (SD) | Me | ||
Ghrelin (ng/mL) | 6.0 (4.3) | 6.9 | 0.5–15.2 | 6.1 (4.6) | 6.9 | 6.0 (4.0) | 6.9 | 5.4 (4.2) | 5.6 | <0.913 |
Glucose (mg/dL) | 95.4 (9.6) | 95.0 | 74.0–136.0 | 94.7 (8.6) | 93.0 | 94.7 (8.7) | 95.0 | 99.0(13.4) | 95.0 | <0.429 |
TC (mg/dL) | 191.5 (32.7) | 188.0 | 120.0–276.0 | 188.2 (32.7) | 186.0 | 192.9 (32.7) | 188.5 | 198.4 (32.4) | 197.0 | <0.234 |
TG (mg/dL) | 138.5 (82.3) | 114.5 | 43.0–645.0 | 121.4 (83.3) *### | 100.0 | 144.7 (79.7) * | 120.0 | 176.1 (72.3) ### | 168.0 | <0.001 |
LDL-C (mg/dL) | 109.1 (28.9) | 106.0 | 8.0–190.0 | 107.0 (28.6) | 103.5 | 109.2 (30.4) | 112.0 | 115.1 (26.3) | 112.0 | <0.275 |
HDL-C (mg/dL) | 55.3 (12.7) | 53.5 | 33.0–96.0 | 58.0 (12.5) ### | 57.0 | 54.9 (12.9) $ | 53.0 | 48.1 (10.0) ###$ | 47.0 | <0.001 |
Insulin (mIU/L) | 8.4 (3.9) | 7.5 | 0.4–27.7 | 7.1 (3.0) *### | 6.8 | 8.4 (2.8) *$$ | 7.7 | 12.2 (5.8) ###$$ | 11.1 | <0.001 |
HOMA-IR | 2.0 (1.0) | 1.8 | 0.1–6.6 | 1.7(0.7) *### | 1.6 | 2.0 (0.8) *$$ | 1.8 | 3.0 (1.4) ###$$ | 2.6 | <0.001 |
Variables | Total (N = 200) | Waist Circumference up 94 cm (N = 106) | Waist Circumference 94–102 cm (N = 53) | Waist Circumference > 102 cm (N = 41) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
M (SD) | Me | Min–Max | X (SD) | Me | X (SD) | Me | X (SD) | Me | ||
Ghrelin (ng/mL) | 6.0 (4.3) | 6.9 | 0.5–15.2 | 6.0 (4.4) | 7.2 | 6.4 (4.2) | 7.5 | 5.1 (4.1) | 4.9 | 0.612 |
Glucose (mg/dL) | 95.4 (9.6) | 95.0 | 74.0–136.0 | 93.7 (9) | 93.0 | 96.7 (7.5) | 96.0 | 98.2 (12.5) | 96.0 | 0.048 |
TC (mg/dL) | 191.5 (32.7) | 188.0 | 120.0–276.0 | 184.9 (31.1) * | 182 | 200.5 (36.1) * | 193.0 | 197.1 (28.6) | 194.0 | 0.017 |
TG (mg/dL) | 138.5 (82.3) | 114.5 | 43.0–645.0 | 114.4 (54.7) *### | 98.0 | 154.5 (108.1) * | 127.0 | 180.2 (83.5) ### | 176.0 | <0.001 |
LDL-C (mg/dL) | 109.1 (28.9) | 106.0 | 8.0–190.0 | 103.0 (28.2) * | 101.5 | 118.3 (31.1) * | 115.0 | 114 (25.4) | 114.0 | <0.001 |
HDL-C (mg/dL) | 55.3 (12.7) | 53.5 | 33.0–96.0 | 59 (12.8) *### | 58.0 | 53.7 (11.4) * | 53.0 | 47.8 (10.5) ### | 46.0 | <0.001 |
Insulin (mIU/L) | 8.4 (3.9) | 7.5 | 0.4–27.7 | 7.0(2.6) ***### | 6.8 | 9.2 (3.8) *** | 8.4 | 11.1 (5.0) ### | 9.8 | <0.001 |
HOMA-IR | 2.0 (1.0) | 1.8 | 0.1–6.6 | 1.6 (0.7) ***### | 1.6 | 2.2 (0.9) *** | 2.1 | 2.7 (1.2) ### | 2.4 | <0.001 |
Variables | BMI (kg/m2) | Percent Body Fat (%) | Waist Circumference (cm) | WHtR | ||||
---|---|---|---|---|---|---|---|---|
R | P | R | P | R | P | R | P | |
Ghrelin (ng/mL) | −0.07 | 0.34 | −0.09 | 0.22 | −0.02 | 0.78 | −0.03 | 0.67 |
Glucose (mg/dL) | 0.20 | 0.005 | 0.20 | 0.005 | 0.20 | 0.004 | 0.24 | 0.0005 |
TC (mg/dL) | 0.18 | 0.01 | 0.17 | 0.02 | 0.19 | 0.008 | 0.24 | 0.0007 |
TG (mg/dL) | 0.39 | <0.0001 | 0.39 | <0.0001 | 0.39 | <0.0001 | 0.44 | <0.0001 |
LDL-C (mg/dL) | 0.20 | 0.004 | 0.14 | 0.05 | 0.21 | 0.003 | 0.24 | <0.0001 |
HDL-C (mg/dL) | −0.40 | <0.0001 | −0.30 | <0.0001 | −0.42 | <0.0001 | −0.42 | <0.0001 |
Insulin (mIU/L) | 0.42 | <0.0001 | 0.45 | <0.0001 | 0.45 | <0.0001 | 0.46 | <0.0001 |
HOMA-IR | 0.43 | <0.0001 | 0.45 | <0.0001 | 0.46 | <0.0001 | 0.48 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaździńska, A.; Gaździński, S.; Jagielski, P.; Kler, P. Body Composition and Cardiovascular Risk: A Study of Polish Military Flying Personnel. Metabolites 2023, 13, 1102. https://doi.org/10.3390/metabo13101102
Gaździńska A, Gaździński S, Jagielski P, Kler P. Body Composition and Cardiovascular Risk: A Study of Polish Military Flying Personnel. Metabolites. 2023; 13(10):1102. https://doi.org/10.3390/metabo13101102
Chicago/Turabian StyleGaździńska, Agata, Stefan Gaździński, Paweł Jagielski, and Paweł Kler. 2023. "Body Composition and Cardiovascular Risk: A Study of Polish Military Flying Personnel" Metabolites 13, no. 10: 1102. https://doi.org/10.3390/metabo13101102
APA StyleGaździńska, A., Gaździński, S., Jagielski, P., & Kler, P. (2023). Body Composition and Cardiovascular Risk: A Study of Polish Military Flying Personnel. Metabolites, 13(10), 1102. https://doi.org/10.3390/metabo13101102