Metabolomics Reveal the Regulatory Effect of Polysaccharides from Fermented Barley Bran Extract on Lipid Accumulation in HepG2 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Analysis of Polysaccharides
2.2.1. The Determination of the Molecular Weight of Polysaccharides
2.2.2. The Determination of Monosaccharide Composition of Polysaccharides
2.3. Cell Culture and Cytotoxicity Assay
2.4. Evaluation of Cellular Lipid Accumulation and Oxidative Stress
2.5. Real-Time Quantitative PCR (RT-qPCR) Analysis
2.6. Cell Metabolomics Analysis
2.7. Statistical Analysis
3. Results
3.1. Effect of Fermentation on Content and Molecular Weight of Polysaccharides
3.2. Effect of Fermentation on the Monosaccharide Composition of FBBE-PS
3.3. Effect of FBBE-PS on the Lipid Accumulation in HepG2 Cells
3.4. Effect of FBBE-PS on Fatty Acid Oxidation and Adipogenesis-related Genes in HepG2 Cells
3.5. Effect of FBBE-PS on Oxidative Stress in High-Fat HepG2 Cells Induced by Sodium Oleate
3.6. Effect of FBBE-PS on Metabolism in High-Fat HepG2 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyrou, I.; Panagiotakos, D.B.; Kouli, G.-M.; Georgousopoulou, E.; Chrysohoou, C.; Tsigos, C.; Tousoulis, D.; Pitsavos, C. Lipid accumulation product in relation to 10-year cardiovascular disease incidence in Caucasian adults: The ATTICA study. Atherosclerosis 2018, 279, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shen, Y.; Wu, G.; Qi, X.; Zhang, H.; Wang, L.; Qian, H. Determination of Key Active Components in Different Edible Oils Affecting Lipid Accumulation and Reactive Oxygen Species Production in HepG2 Cells. J. Agric. Food Chem. 2018, 66, 11943–11956. [Google Scholar] [CrossRef]
- Ding, Y.; Pu, L.; Kan, J. Hypolipidemic effects of lipid-lowering granulated tea preparation from Monascus-fermented grains (adlay and barley bran) mixed with lotus leaves on Sprague–Dawley rats fed a high-fat diet. J. Funct. Foods 2017, 32, 80–89. [Google Scholar] [CrossRef]
- El Rabey, H.A.; Al-Seeni, M.N.; Amer, H.M. Efficiency of Barley Bran and Oat Bran in Ameliorating Blood Lipid Profile and the Adverse Histological Changes in Hypercholesterolemic Male Rats. BioMed Res. Int. 2013, 2013, 263594. [Google Scholar] [CrossRef]
- Hole, A.S.; Rud, I.; Grimmer, S.; Sigl, S.; Narvhus, J.; Sahlstrøm, S. Improved Bioavailability of Dietary Phenolic Acids in Whole Grain Barley and Oat Groat following Fermentation with Probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J. Agric. Food Chem. 2012, 60, 6369–6375. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, X.; Dong, Y.; Xu, T.; Wu, F. Dietary supplementation with Lactobacillus plantarum dy-1 fermented barley suppresses body weight gain in high-fat diet-induced obese rats. J. Sci. Food Agric. 2016, 96, 4907–4917. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Park, S.; Sathiyaseelan, A.; Mariadoss, A.V.A.; Park, S.; Kim, S.-J.; Wang, M.-H. Isolation of Polysaccharides from Trichoderma harzianum with Antioxidant, Anticancer, and Enzyme Inhibition Properties. Antioxidants 2021, 10, 1372. [Google Scholar] [CrossRef]
- Su, Y.; Li, L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales. Carbohydr. Polym. 2020, 229, 115407. [Google Scholar] [CrossRef]
- Cui, S.W.; Wang, Q. Cell wall polysaccharides in cereals: Chemical structures and functional properties. Struct. Chem. 2009, 20, 291–297. [Google Scholar] [CrossRef]
- Tang, T.; Song, J.; Li, J.; Wang, H.; Zhang, Y.; Suo, H. A synbiotic consisting of Lactobacillus plantarum S58 and hull-less barley β-glucan ameliorates lipid accumulation in mice fed with a high-fat diet by activating AMPK signaling and modulating the gut microbiota. Carbohydr. Polym. 2020, 243, 116398. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, C.; Bai, J.; Li, J.; Cheng, K.; Zhou, X.; Dong, Y.; Xiao, X. Fermented barley extracts with Lactobacillus plantarum dy-1 decreased fat accumulation of Caenorhabditis elegans in a daf-2-dependent mechanism. J. Food Biochem. 2020, 44, e13459. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Tan, C.; Sun, X.; Zhao, Y.; Zhang, J.; Zhu, Y.; Bai, J.; Dong, Y.; Zhou, X. Effects of fermentation on structural characteristics and in vitro physiological activities of barley β-glucan. Carbohydr. Polym. 2020, 231, 115685. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.-L.; Liu, C.-Y.; Dong, H.-Y.; Peng, H.-H.; Zhu, Z.-Y. Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from Wheat Bran. J. Mol. Struct. 2021, 1233, 130096. [Google Scholar] [CrossRef]
- He, K.; Mergens, B.; Yatcilla, M.; Zheng, Q.; Bao, Z.; Zhang, Y.; Li, X.; Xie, Z. Molecular Weight Determination of Aloe Polysaccharides Using Size Exclusion Chromatography Coupled with Multi-Angle Laser Light Scattering and Refractive Index Detectors. J. AOAC Int. 2019, 101, 1729–1740. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zhou, Y.; Tan, C.; Bai, J.; Zhu, Y.; Zhang, J.; Zhou, X.; Zhao, Y. Barley β-glucan resist oxidative stress of Caenorhabditis elegans via daf-2/daf-16 pathway. Int. J. Biol. Macromol. 2021, 193, 1021–1031. [Google Scholar] [CrossRef]
- Liu, X.; Shi, W.; Liu, Z.; Shi, S.; Ke, C.; Zhang, P.; Tan, Z.; Zhang, W. Effects of acupuncture on Luteinized Unruptured Follicle Syndrome: A meta-analysis of randomized controlled trials. Complement. Ther. Med. 2020, 49, 102319. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Yang, Y. Rapid screening of amitraz and its metabolite residues in honey using a quick, easy, cheap, effective, rugged, and safe extraction method coupled with UHPLC and Q Exactive. J. Sep. Sci. 2020, 43, 1466–1473. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, J.; Gao, F.; Zhou, J.; Xiang, Z.; Zhou, C.; Wan, L.; Chen, J.J. Structure features and in vitro hypoglycemic activities of polysaccharides from different species of Maidong. Carbohydr. Polym. 2017, 173, 215–222. [Google Scholar] [CrossRef]
- Wu, D.-T.; Liu, W.; Han, Q.-H.; Du, G.; Li, H.-Y.; Yuan, Q.; Fu, Y.; Zhao, L.; Zhang, Q.; Li, S.-Q.; et al. Physicochemical characteristics and antioxidant activities of non-starch polysaccharides from different kiwifruits. Int. J. Biol. Macromol. 2019, 136, 891–900. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Chen, Z.; Gao, X.; Yuan, G.; Pan, Y.; Chen, H.J. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Res. Int. 2018, 103, 280. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, R.; Wang, Y.; An, X.; Liu, N.; Song, M.; Yang, Y.; Yin, N.; Qi, J. Characterization and antioxidant activity of wheat bran polysaccharides modified by Saccharomyces cerevisiae and Bacillus subtilis fermentation. J. Cereal Sci. 2021, 97, 103157. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Y.; Li, G.; Wang, Z.; Lv, Y. Chemical composition and immuno-stimulating properties of polysaccharide biological response modifier isolated from Radix Angelica sinensis. Food Chem. 2008, 106, 269–276. [Google Scholar] [CrossRef]
- Du, J.; Wang, B.; Chen, J.; Zhang, Z.; Li, S.; He, L.; Lai, X.; Zhang, D.; Wang, K. Extraction, characterization and bioactivities of novel purified polysaccharides from Baphicacanthis Cusiae Rhizoma et Radix. Int. J. Biol. Macromol. 2016, 93, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Witkowski, A.; Joshi, A.K. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res. 2003, 42, 289–317. [Google Scholar] [CrossRef]
- Miyazaki, M.; Dobrzyn, A.; Man, W.C.; Chu, K.; Sampath, H.; Kim, H.-J.; Ntambi, J.M. Stearoyl-CoA Desaturase 1 Gene Expression Is Necessary for Fructose-mediated Induction of Lipogenic Gene Expression by Sterol Regulatory Element-binding Protein-1c-dependent and -independent Mechanisms. J. Biol. Chem. 2004, 279, 25164–25171. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhu, H.; Xia, H.; Yang, X.; Yang, L.; Wang, S.; Wen, J.; Sun, G. Different effects of high-fat diets rich in different oils on lipids metabolism, oxidative stress and gut microbiota. Food Res. Int. 2021, 141, 110078. [Google Scholar] [CrossRef]
- Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta 2014, 436, 332–347. [Google Scholar] [CrossRef]
- Chen, J.; Tian, J.; Ge, H.; Liu, R.; Xiao, J. Effects of tetramethylpyrazine from Chinese black vinegar on antioxidant and hypolipidemia activities in HepG2 cells. Food Chem. Toxicol. 2017, 109, 930–940. [Google Scholar] [CrossRef]
- Yan, J.; Xue, Q.; Chen, W.; Wang, K.; Peng, D.; Jiang, J.; Li, P.; Du, B. Probiotic-fermented rice buckwheat alleviates high-fat diet-induced hyperlipidemia in mice by suppressing lipid accumulation and modulating gut microbiota. Food Res. Int. 2022, 155, 111125. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Yin, N.; Wang, R.; Zheng, Y.; Yang, Y.; An, X.; Qi, J. Polysaccharides from fermented wheat bran enhanced the growth performance of zebrafish (Danio rerio) through improving gut microflora and antioxidant status. Aquac. Rep. 2022, 25, 101188. [Google Scholar] [CrossRef]
- Indiveri, C.; Iacobazzi, V.; Tonazzi, A.; Giangregorio, N.; Infantino, V.; Convertini, P.; Console, L.; Palmieri, F. The mitochondrial carnitine/acylcarnitine carrier: Function, structure and physiopathology. Mol. Asp. Med. 2011, 32, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Koves, T.R.; Li, P.; An, J.; Akimoto, T.; Slentz, D.; Ilkayeva, O.; Dohm, G.L.; Yan, Z.; Newgard, C.B.; Muoio, D.M. Peroxisome Proliferator-activated Receptor-γ Co-activator 1α-mediated Metabolic Remodeling of Skeletal Myocytes Mimics Exercise Training and Reverses Lipid-induced Mitochondrial Inefficiency. J. Biol. Chem. 2005, 280, 33588–33598. [Google Scholar] [CrossRef]
- Blasiole, D.A.; Davis, R.A.; Attie, A.D. The physiological and molecular regulation of lipoprotein assembly and secretion. Mol. BioSystems 2007, 3, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, Å.; Duan, R.-D. Absorption and lipoprotein transport of sphingomyelin. J. Lipid Res. 2006, 47, 154–171. [Google Scholar] [CrossRef] [PubMed]
- Elshorbagy, A.K.; Valdivia-Garcia, M.; Graham, I.M.; Palma Reis, R.; Sales Luis, A.; Smith, A.D.; Refsum, H. The association of fasting plasma sulfur-containing compounds with BMI, serum lipids and apolipoproteins. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 1031–1038. [Google Scholar] [CrossRef]
- Dankel, S.N.; Bjørndal, B.; Lindquist, C.; Grinna, M.L.; Rossmann, C.R.; Bohov, P.; Nygård, O.; Hallström, S.; Strand, E.; Berge, R.K. Hepatic Energy Metabolism Underlying Differential Lipidomic Responses to High-Carbohydrate and High-Fat Diets in Male Wistar Rats. J. Nutr. 2021, 151, 2610–2621. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Ji, P.; Yang, Y.S.; Xie, S.; Yu, T.J.; Xiao, Y.; Jin, M.L.; Ma, D.; Guo, L.W.; Pei, Y.C.; et al. Metabolic-Pathway-Based Subtyping of Triple-Negative Breast Cancer Reveals Potential Therapeutic Targets. Cell Metab. 2021, 33, 51–64.e59. [Google Scholar] [CrossRef]
- Jiao, W.; Sang, Y.; Wang, X.; Wang, S. Metabonomics and the gut microbiome analysis of the effect of 6-shogaol on improving obesity. Food Chem. 2023, 404, 134734. [Google Scholar] [CrossRef]
- Niemann, B.; Haufs-Brusberg, S.; Puetz, L.; Feickert, M.; Jaeckstein, M.Y.; Hoffmann, A.; Zurkovic, J.; Heine, M.; Trautmann, E.-M.; Müller, C.E.; et al. Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine. Nature 2022, 609, 361–368. [Google Scholar] [CrossRef]
- Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V., Jr. Cellular Fatty Acid Metabolism and Cancer. Cell Metab. 2013, 18, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Mw (g/mol) | Mn (g/mol) | Mw/Mn |
---|---|---|---|
RBBE-PS | 3.396 × 105 | 3.349 × 105 | 1.014 |
FBBE-PS | 2.906 × 104 | 2.356 × 104 | 1.233 |
NO | Component | Rt (min) | RBBE-PS (%) | FBBE-PS (%) |
---|---|---|---|---|
1 | Fucose | 3.375 | 0.24 | 0.37 |
2 | Rhamnose | 6.767 | 0.97 | 0.67 |
3 | Arabinose | 7.275 | 17.75 | 27.69 |
4 | Galactose | 9.217 | 10.54 | 15.91 |
5 | Glucose | 10.450 | 50.04 | 22.75 |
6 | Xylose | 12.242 | 14.46 | 22.64 |
7 | Mannose | 12.684 | 3.68 | 2.37 |
8 | Mannuronic acid | 14.600 | — | 6.46 |
NO. | Metabolites | Ionization Mode * | Molecular Formula | p-Value | VIP |
---|---|---|---|---|---|
1 | Adenine | P | C5H5N5 | 0.0427 | 1.68 |
2 | Niacinamide | P | C6H6N2O | 0.0002 | 2.65 |
3 | Zymonic acid | P | C6H6O5 | 0.0341 | 2.03 |
4 | Adenosine | P | C10H13N5O4 | 0.0370 | 1.85 |
5 | 1-Methyladenosine | P | C11H15N5O4 | 0.0126 | 2.21 |
6 | Lysyl-Tryptophan | P | C17H24N4O3 | 0.0007 | 2.38 |
7 | Pterin | P | C6H5N5O | 0.0007 | 2.46 |
8 | 1,7-Dimethylguanosine | P | C12H17N5O5 | 0.0024 | 2.61 |
9 | Prolyl-Alanine | P | C8H14N2O3 | 0.0133 | 2.05 |
10 | 5’-Deoxy−5’- (methylsulfinyl)adenosine | P | C11H15N5O4S | 0.0123 | 2.31 |
11 | Linoleamide | P | C18H33NO | 0.0102 | 1.81 |
12 | Deoxyinosine | P | C10H12N4O4 | 0.0241 | 1.98 |
13 | N6-Acetyl-L-lysine | P | C8H16N2O3 | 0.0421 | 1.73 |
14 | Trans-Hexadec-2-enoyl carnitine | P | C23H43NO4 | 0.0280 | 1.27 |
15 | Stearoylglycine | P | C20H39NO3 | 0.0202 | 2.31 |
16 | Cervonyl carnitine | P | C29H45NO4 | 0.0145 | 2.04 |
17 | Adenosine diphosphate ribose | P | C15H23N5O14P2 | 0.0460 | 1.96 |
18 | Linoleyl carnitine | P | C25H45NO4 | 0.0258 | 1.50 |
19 | Deoxyadenosine monophosphate | P | C10H14N5O6P | 0.0493 | 1.69 |
20 | SM(d18:1/16:0) | P | C39H79N2O6P | 0.0202 | 2.18 |
21 | PC(22:2(13Z,16Z)/15:0) | P | C45H86NO8P | 0.0092 | 2.26 |
22 | Cis-Vaccenic acid | N | C18H34O2 | 0.0138 | 2.23 |
23 | Eicosadienoic acid | N | C20H36O2 | 0.0093 | 2.41 |
24 | 11Z-Eicosenoic acid | N | C20H38O2 | 0.0138 | 2.22 |
25 | Cyclamic acid | N | C6H13NO3S | 0.0328 | 2.21 |
26 | Oleic acid | N | C18H34O2 | 0.0057 | 1.91 |
27 | Adenosine | N | C10H13N5O4 | 0.0203 | 1.90 |
28 | Uridine 5’-Monophosphate | N | C9H13N2O9P | 0.0461 | 1.89 |
29 | S-Adenosylhomocysteine | N | C14H20N6O5S | 0.0461 | 2.20 |
30 | Deoxyinosine | N | C10H12N4O4 | 0.0190 | 2.44 |
31 | N-Acetylvaline | N | C7H13NO3 | 0.0116 | 2.10 |
32 | Adrenochrome | N | C9H9NO3 | 0.0026 | 2.05 |
33 | Cysteic acid | N | C3H7NO5S | 0.0217 | 2.36 |
34 | Guanosine triphosphate | N | C10H16N5O14P3 | 0.0397 | 2.05 |
35 | O-Acetylserine | N | C5H9NO4 | 0.0218 | 2.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.-S.; Tong, X.-M.; Wu, X.-M.; Bai, J.; Fan, S.-T.; Zhu, Y.; Zhang, J.-Y.; Xiao, X. Metabolomics Reveal the Regulatory Effect of Polysaccharides from Fermented Barley Bran Extract on Lipid Accumulation in HepG2 Cells. Metabolites 2023, 13, 223. https://doi.org/10.3390/metabo13020223
Zhao Y-S, Tong X-M, Wu X-M, Bai J, Fan S-T, Zhu Y, Zhang J-Y, Xiao X. Metabolomics Reveal the Regulatory Effect of Polysaccharides from Fermented Barley Bran Extract on Lipid Accumulation in HepG2 Cells. Metabolites. 2023; 13(2):223. https://doi.org/10.3390/metabo13020223
Chicago/Turabian StyleZhao, Yan-Sheng, Xin-Meng Tong, Xue-Mei Wu, Juan Bai, Song-Tao Fan, Ying Zhu, Jia-Yan Zhang, and Xiang Xiao. 2023. "Metabolomics Reveal the Regulatory Effect of Polysaccharides from Fermented Barley Bran Extract on Lipid Accumulation in HepG2 Cells" Metabolites 13, no. 2: 223. https://doi.org/10.3390/metabo13020223
APA StyleZhao, Y.-S., Tong, X.-M., Wu, X.-M., Bai, J., Fan, S.-T., Zhu, Y., Zhang, J.-Y., & Xiao, X. (2023). Metabolomics Reveal the Regulatory Effect of Polysaccharides from Fermented Barley Bran Extract on Lipid Accumulation in HepG2 Cells. Metabolites, 13(2), 223. https://doi.org/10.3390/metabo13020223