Using LC-MS/MS to Determine Salivary Steroid Reference Intervals in a European Older Adult Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Liquid Chromatographic Conditions
2.3. Mass Spectrometric Conditions
2.4. Saliva Samples
2.5. Calibrators, ISs and QC Samples
2.6. Sample Preparation
2.7. Linearity and LLOQ
2.8. Statistical Analysis
3. Results
3.1. Linearity, Lower Limit of Quantitation, Precision and Accuracy
3.2. Reference Intervals
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouanes, S.; Popp, J. High Cortisol and the Risk of Dementia and Alzheimer’s Disease: A Review of the Literature. Front. Aging Neurosci. 2019, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Soares, N.M.; Pereira, G.M.; Altmann, V.; de Almeida, R.M.M.; Rieder, C.R.M. Cortisol levels, motor, cognitive and behavioral symptoms in Parkinson’s disease: A systematic review. J. Neural Transm. 2019, 126, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Christensen, H.; Boysen, G.; Johannesen, H.H. Serum-cortisol reflects severity and mortality in acute stroke. J. Neurol. Sci. 2004, 217, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Hackett, R.A.; Steptoe, A.; Kumari, M. Association of diurnal patterns in salivary cortisol with type 2 diabetes in the Whitehall II study. J. Clin. Endocrinol. Metab. 2014, 99, 4625–4631. [Google Scholar] [CrossRef]
- Boss, L.; Kang, D.H.; Marcus, M.; Bergstrom, N. Endogenous sex hormones and cognitive function in older adults: A systematic review. West J. Nurs. Res. 2014, 36, 388–426. [Google Scholar] [CrossRef]
- Moffat, S.D.; Zonderman, A.B.; Metter, E.J.; Kawas, C.; Blackman, M.R.; Harman, S.M.; Resnick, S.M. Free testosterone and risk for Alzheimer disease in older men. Neurology 2004, 62, 188. [Google Scholar] [CrossRef]
- Barrett-Connor, E.; Goodman-Gruen, D.; Patay, B. Endogenous sex hormones and cognitive function in older men. J. Clin. Endocrinol. Metab. 1999, 84, 3681–3685. [Google Scholar] [CrossRef]
- Barrett-Connor, E.; Khaw, K.T. Endogenous sex hormones and cardiovascular disease in men. A prospective population-based study. Circulation 1988, 78, 539–545. [Google Scholar] [CrossRef]
- Gröschl, M. Current Status of Salivary Hormone Analysis. Clin. Chem. 2008, 54, 1759–1769. [Google Scholar] [CrossRef]
- Weckesser, L.J.; Plessow, F.; Pilhatsch, M.; Muehlhan, M.; Kirschbaum, C.; Miller, R. Do venepuncture procedures induce cortisol responses? A review, study, and synthesis for stress research. Psychoneuroendocrinology 2014, 46, 88–99. [Google Scholar] [CrossRef]
- Keevil, B.G.; MacDonald, P.; Macdowall, W.; Lee, D.M.; Wu, F.C. Salivary testosterone measurement by liquid chromatography tandem mass spectrometry in adult males and females. Ann. Clin. Biochem. 2014, 51, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Kem, D.C.; Weinberger, M.H.; Gomez-Sanchez, C.; Kramer, N.J.; Lerman, R.; Furuyama, S.; Nugent, C.A. Circadian rhythm of plasma aldosterone concentration in patients with primary aldosteronism. J. Clin. Investig. 1973, 52, 2272–2277. [Google Scholar] [CrossRef] [PubMed]
- Weitzman, E.D.; Fukushima, D.; Nogeire, C.; Roffwarg, H.; Gallagher, T.F.; Hellman, L. Twenty-four hour pattern of the episodic secretion of cortisol in normal subjects. J. Clin. Endocrinol. Metab. 1971, 33, 14–22. [Google Scholar] [CrossRef]
- Dorn, L.D.; Lucke, J.F.; Loucks, T.L.; Berga, S.L. Salivary cortisol reflects serum cortisol: Analysis of circadian profiles. Ann. Clin. Biochem. 2007, 44, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Zagoory-Sharon, O.; Feldman, R.; Lewis, J.G.; Weller, A. Measuring cortisol in human psychobiological studies. Physiol. Behav. 2007, 90, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Manolopoulou, J.; Mulatero, P.; Maser-Gluth, C.; Rossignol, P.; Spyroglou, A.; Vakrilova, Y.; Petersenn, S.; Zwermann, O.; Plouin, P.F.; Reincke, M.; et al. Saliva as a medium for aldosterone measurement in repeated sampling studies. Steroids 2009, 74, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Hellhammer, D.H.; Wüst, S.; Kudielka, B.M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 2009, 34, 163–171. [Google Scholar] [CrossRef]
- Lee, D.Y.; Kim, E.; Choi, M.H. Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. BMB Rep. 2015, 48, 209–216. [Google Scholar] [CrossRef]
- Elias, P.C.L.; Martinez, E.Z.; Barone, B.F.C.; Mermejo, L.M.; Castro, M.; Moreira, A.C. Late-night Salivary Cortisol Has a Better Performance Than Urinary Free Cortisol in the Diagnosis of Cushing’s Syndrome. J. Clin. Endocrinol. Metab. 2014, 99, 2045–2051. [Google Scholar] [CrossRef]
- Debono, M.; Harrison, R.F.; Whitaker, M.J.; Eckland, D.; Arlt, W.; Keevil, B.G.; Ross, R.J. Salivary Cortisone Reflects Cortisol Exposure Under Physiological Conditions and After Hydrocortisone. J. Clin. Endocrinol. Metab. 2016, 101, 1469–1477. [Google Scholar] [CrossRef] [Green Version]
- Blair, J.; Adaway, J.; Keevil, B.; Ross, R. Salivary cortisol and cortisone in the clinical setting. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Bacila, I.; Adaway, J.; Hawley, J.; Mahdi, S.; Krone, R.; Patel, L.; Alvi, S.; Randell, T.; Gevers, E.; Dattani, M.; et al. Measurement of Salivary Adrenal-Specific Androgens as Biomarkers of Therapy Control in 21-Hydroxylase Deficiency. J. Clin. Endocrinol. Metab. 2019, 104, 6417–6429. [Google Scholar] [CrossRef] [PubMed]
- Wyrwoll, C.S.; Holmes, M.C.; Seckl, J.R. 11β-hydroxysteroid dehydrogenases and the brain: From zero to hero, a decade of progress. Front. Neuroendocrinol. 2011, 32, 265–286. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Kim, J.D.; Lee, W.Y.; Chung, B.C.; Choi, M.H. Quantitative metabolic profiling of 21 endogenous corticosteroids in urine by liquid chromatography-triple quadrupole-mass spectrometry. Anal. Chim. Acta 2009, 632, 101–108. [Google Scholar] [CrossRef]
- Maier, B.; Vogeser, M. Target analyte quantification by isotope dilution LC-MS/MS directly referring to internal standard concentrations--validation for serum cortisol measurement. Clin. Chem. Lab. Med. 2013, 51, 833–837. [Google Scholar] [CrossRef]
- Li, X.S.; Li, S.; Kellermann, G. Simultaneous determination of three estrogens in human saliva without derivatization or liquid-liquid extraction for routine testing via miniaturized solid phase extraction with LC-MS/MS detection. Talanta 2018, 178, 464–472. [Google Scholar] [CrossRef]
- Genazzani, A.R.; Pluchino, N.; Luisi, S.; Luisi, M. Estrogen, cognition and female ageing. Hum. Reprod. Update 2007, 13, 175–187. [Google Scholar] [CrossRef]
- Cui, J.; Shen, Y.; Li, R. Estrogen synthesis and signaling pathways during aging: From periphery to brain. Trends Mol. Med. 2013, 19, 197–209. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Wartofsky, L. Requirement for Mass Spectrometry Sex Steroid Assays in the Journal of Clinical Endocrinolgy and Metabolism. J. Clin. Endocrinol. Metab. 2013, 98, 3971–3973. [Google Scholar] [CrossRef]
- Seger, C.; Salzmann, L. After another decade: LC–MS/MS became routine in clinical diagnostics. Clin. Biochem. 2020, 82, 2–11. [Google Scholar] [CrossRef]
- Thevis, M.; Beuck, S.; Höppner, S.; Thomas, A.; Held, J.; Schäfer, M.; Oomens, J.; Schänzer, W. Structure elucidation of the diagnostic product ion at m/z 97 derived from androst-4-en-3-one-based steroids by ESI-CID and IRMPD spectroscopy. J. Am. Soc. Mass Spectrom. 2012, 23, 537–546. [Google Scholar] [CrossRef]
- Chang, Y.C.; Li, C.M.; Li, L.A.; Jong, S.B.; Liao, P.C.; Chang, L.W. Quantitative measurement of male steroid hormones using automated on-line solid phase extraction-liquid chromatography-tandem mass spectrometry and comparison with radioimmunoassay. Analyst 2003, 128, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Kivipelto, M.; Molinuevo, J.L.; Tom, B.; Ritchie, C.W. European Prevention of Alzheimer’s Dementia Longitudinal Cohort Study (EPAD LCS): Study protocol. BMJ Open 2018, 8, e021017. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, C.W.; Muniz-Terrera, G.; Kivipelto, M.; Solomon, A.; Tom, B.; Molinuevo, J.L.; Consortium, E. The European Prevention of Alzheimer’s Dementia (EPAD) Longitudinal Cohort Study: Baseline Data Release V500.0. J. Prev. Alzheimer’s Dis. 2020, 7, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Bittner, T.; Zetterberg, H.; Teunissen, C.E.; Ostlund Jr, R.E.; Militello, M.; Andreasson, U.; Hubeek, I.; Gibson, D.; Chu, D.C.; Eichenlaub, U.; et al. Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1–42) in human cerebrospinal fluid. Alzheimer’s Dement. 2016, 12, 517–526. [Google Scholar] [CrossRef]
- Lifke, V.; Kollmorgen, G.; Manuilova, E.; Oelschlaegel, T.; Hillringhaus, L.; Widmann, M.; von Arnim, C.A.F.; Otto, M.; Christenson, R.H.; Powers, J.L.; et al. Elecsys(®) Total-Tau and Phospho-Tau (181P) CSF assays: Analytical performance of the novel, fully automated immunoassays for quantification of tau proteins in human cerebrospinal fluid. Clin. Biochem. 2019, 72, 30–38. [Google Scholar] [CrossRef]
- Stirland, L.E.; Russ, T.C.; Ritchie, C.W.; Muniz-Terrera, G. Associations Between Multimorbidity and Cerebrospinal Fluid Amyloid: A Cross-Sectional Analysis of the European Prevention of Alzheimer’s Dementia (EPAD) V500.0 Cohort. J. Alzheimer’s Dis. 2019, 71, 703–711. [Google Scholar] [CrossRef]
- Blennow, K.; Shaw, L.M.; Stomrud, E.; Mattsson, N.; Toledo, J.B.; Buck, K.; Wahl, S.; Eichenlaub, U.; Lifke, V.; Simon, M.; et al. Predicting clinical decline and conversion to Alzheimer’s disease or dementia using novel Elecsys Aβ(1–42), pTau and tTau CSF immunoassays. Sci. Rep. 2019, 9, 19024. [Google Scholar] [CrossRef]
- Miller, R.; Stalder, T.; Jarczok, M.; Almeida, D.M.; Badrick, E.; Bartels, M.; Boomsma, D.I.; Coe, C.L.; Dekker, M.C.J.; Donzella, B.; et al. The CIRCORT database: Reference ranges and seasonal changes in diurnal salivary cortisol derived from a meta-dataset comprised of 15 field studies. Psychoneuroendocrinology 2016, 73, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Bäcklund, N.; Brattsand, G.; Israelsson, M.; Ragnarsson, O.; Burman, P.; Edén Engström, B.; Høybye, C.; Berinder, K.; Wahlberg, J.; Olsson, T.; et al. Reference intervals of salivary cortisol and cortisone and their diagnostic accuracy in Cushing’s syndrome. Eur. J. Endocrinol. 2020, 182, 569–582. [Google Scholar] [CrossRef]
- Keevil, B.G.; Clifton, S.; Tanton, C.; Macdowall, W.; Copas, A.J.; Lee, D.; Field, N.; Mitchell, K.R.; Sonnenberg, P.; Bancroft, J.; et al. Distribution of Salivary Testosterone in Men and Women in a British General Population-Based Sample: The Third National Survey of Sexual Attitudes and Lifestyles (Natsal-3). J. Endocr. Soc. 2017, 1, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Turpeinen, U.; Hämäläinen, E.; Haanpää, M.; Dunkel, L. Determination of salivary testosterone and androstendione by liquid chromatography–tandem mass spectrometry. Clin. Chim. Acta 2012, 413, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, Y.; Higashi, T.; Shimada, K.; Odani, A.; Mizokami, A.; Konaka, H.; Koh, E.; Namiki, M. Simultaneous determination of salivary testosterone and dehydroepiandrosterone using LC–MS/MS: Method development and evaluation of applicability for diagnosis and medication for late-onset hypogonadism. J. Chromatogr. B 2009, 877, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Nadarajah, N.; Skadberg, Ø.; Adaway, J.; Brede, C. Multiplexed analysis of steroid hormones in saliva by LC-MS/MS with 2-hydrazinopyridine derivatization. Clin. Mass Spectrom. 2017, 4–5, 1–10. [Google Scholar] [CrossRef]
- Bribiescas, R.G.; Hill, K.R. Circadian variation in salivary testosterone across age classes in Ache Amerindian males of Paraguay. Am. J. Hum. Biol. 2010, 22, 216–220. [Google Scholar] [CrossRef]
- Adriaansen, B.P.H.; Kamphuis, J.S.; Schröder, M.A.M.; Olthaar, A.J.; Bock, C.; Brandt, A.; Stikkelbroeck, N.M.M.L.; Lentjes, E.G.W.M.; Span, P.N.; Sweep, F.C.G.J.; et al. Diurnal salivary androstenedione and 17-hydroxyprogesterone levels in healthy volunteers for monitoring treatment efficacy of patients with congenital adrenal hyperplasia. Clin. Endocrinol. 2022, 97, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Al-Turk, W.; Al-Dujaili, E.A. Effect of age, gender and exercise on salivary dehydroepiandrosterone circadian rhythm profile in human volunteers. Steroids 2016, 106, 19–25. [Google Scholar] [CrossRef]
- Chatterton, R.T., Jr.; Mateo, E.T.; Hou, N.; Rademaker, A.W.; Acharya, S.; Jordan, V.C.; Morrow, M. Characteristics of salivary profiles of oestradiol and progesterone in premenopausal women. J. Endocrinol. 2005, 186, 77–84. [Google Scholar] [CrossRef]
- Beltran-Frutos, E.; Casarini, L.; Santi, D.; Brigante, G. Seasonal reproduction and gonadal function: A focus on humans starting from animal studies. Biol. Reprod. 2022, 106, 47–57. [Google Scholar] [CrossRef]
- Pierre, K.; Schlesinger, N.; Androulakis, I.P. The role of the hypothalamic-pituitary-adrenal axis in modulating seasonal changes in immunity. Physiol Genom. 2016, 48, 719–738. [Google Scholar] [CrossRef] [Green Version]
- Tendler, A.; Bar, A.; Mendelsohn-Cohen, N.; Karin, O.; Korem Kohanim, Y.; Maimon, L.; Milo, T.; Raz, M.; Mayo, A.; Tanay, A.; et al. Hormone seasonality in medical records suggests circannual endocrine circuits. Proc. Natl. Acad. Sci. USA 2021, 118, e2003926118. [Google Scholar] [CrossRef]
- Costanzo, P.R.; Suárez, S.M.; Kozak, A.E.; Knoblovits, P. Seasonal Variations in Sex Steroids in a Young Male Population and Their Relationship with Plasma Levels of Vitamin D. World J. Men’s Health 2022, 40, 308–315. [Google Scholar] [CrossRef]
- Persson, R.; Garde, A.H.; Hansen, A.M.; Osterberg, K.; Larsson, B.; Orbaek, P.; Karlson, B. Seasonal variation in human salivary cortisol concentration. Chronobiol. Int. 2008, 25, 923–937. [Google Scholar] [CrossRef]
- Hadlow, N.; Brown, S.; Wardrop, R.; Conradie, J.; Henley, D. Where in the world? Latitude, longitude and season contribute to the complex co-ordinates determining cortisol levels. Clin. Endocrinol. 2018, 89, 299–307. [Google Scholar] [CrossRef]
- Schlesinger, N.; Schlesinger, M. Seasonal variation of rheumatic diseases. Discov. Med. 2005, 5, 64–69. [Google Scholar]
- Thorn, L.; Evans, P.; Cannon, A.; Hucklebridge, F.; Clow, A. Seasonal differences in the diurnal pattern of cortisol secretion in healthy participants and those with self-assessed seasonal affective disorder. Psychoneuroendocrinology 2011, 36, 816–823. [Google Scholar] [CrossRef]
- Doi, H.; Shinohara, K. Low Salivary Testosterone Level Is Associated With Efficient Attention Holding by Self Face in Women. Front. Behav. Neurosci. 2019, 13, 261. [Google Scholar] [CrossRef]
- Diago-Galmés, A.; Guillamón-Escudero, C.; Tenías-Burillo, J.M.; Soriano, J.M.; Fernández-Garrido, J. Salivary Testosterone and Cortisol as Biomarkers for the Diagnosis of Sarcopenia and Sarcopenic Obesity in Community-Dwelling Older Adults. Biology 2021, 10, 93. [Google Scholar] [CrossRef]
- Pan, X.; Wu, X.; Kaminga, A.C.; Wen, S.W.; Liu, A. Dehydroepiandrosterone and Dehydroepiandrosterone Sulfate in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2019, 11, 61. [Google Scholar] [CrossRef]
- Csernansky, J.G.; Dong, H.; Fagan, A.M.; Wang, L.; Xiong, C.; Holtzman, D.M.; Morris, J.C. Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am. J. Psychiatry 2006, 163, 2164–2169. [Google Scholar] [CrossRef]
- Pietrzak, R.H.; Laws, S.M.; Lim, Y.Y.; Bender, S.J.; Porter, T.; Doecke, J.; Ames, D.; Fowler, C.; Masters, C.L.; Milicic, L.; et al. Plasma Cortisol, Brain Amyloid-β, and Cognitive Decline in Preclinical Alzheimer’s Disease: A 6-Year Prospective Cohort Study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 45–52. [Google Scholar] [CrossRef]
- Huang, C.-W.; Lui, C.-C.; Chang, W.-N.; Lu, C.-H.; Wang, Y.-L.; Chang, C.-C. Elevated basal cortisol level predicts lower hippocampal volume and cognitive decline in Alzheimer’s disease. J. Clin. Neurosci. 2009, 16, 1283–1286. [Google Scholar] [CrossRef] [PubMed]
Steroid | Internal Standard | Q1 Mass (m/z) | Q3 Mass (m/z) | DP (V) | CE (V) | CXP (V) | Time (Min) |
---|---|---|---|---|---|---|---|
A4 1 | 13C3-A4 | 287.1 | 97.0 | 61 | 27 | 14 | 6.9 |
A4 2 | 287.1 | 78.9 | 61 | 67 | 10 | 6.9 | |
T 1 | 13C3-T | 289.1 | 97.0 | 101 | 29 | 12 | 7.6 |
T 2 | 289.1 | 109.2 | 101 | 31 | 6 | 7.6 | |
DHEA 1 | d5-DHEA | 289.1 | 253 | 121 | 15 | 46 | 8.1 |
DHEA 2 | 289.1 | 213.1 | 121 | 11 | 12 | 8.1 | |
DHT 1 | 13C3-DHT | 291.3 | 255.2 | 116 | 21 | 30 | 8.9 |
DHT 2 | 291.3 | 91.0 | 116 | 55 | 10 | 8.9 | |
P4 1 | d9-P4 | 315.0 | 97.1 | 96 | 23 | 10 | 8.9 |
P4 2 | 315.0 | 109.1 | 96 | 27 | 10 | 8.9 | |
Preg 1 | 13C2,d2-Preg | 317.1 | 281.1 | 66 | 31 | 12 | 10.3 |
Preg 2 | 317.1 | 159.0 | 66 | 29 | 12 | 10.3 | |
17αOH-Preg 1 | 13C2,d2-Preg | 333.1 | 297.1 | 36 | 13 | 22 | 9.6 |
17αOH-Preg 2 | 333.1 | 132.9 | 36 | 27 | 20 | 9.6 | |
17αOH-P4 1 | d8-17α-OHP4 | 331.1 | 109.0 | 66 | 29 | 12 | 8.1 |
17αOH-P4 2 | 339.1 | 100.1 | 66 | 31 | 12 | 8.1 | |
11-DOC 1 | d8-17α-OHP4 | 331.2 | 97.0 | 86 | 29 | 16 | 7.5 |
11-DOC 2 | 331.2 | 109.0 | 86 | 31 | 12 | 7.5 | |
A 1 | d4-F | 345.1 | 121.0 | 66 | 31 | 12 | 3.6 |
A 2 | 345.1 | 91.2 | 66 | 83 | 40 | 3.6 | |
S 1 | d5-11S | 347.1 | 97.0 | 71 | 27 | 12 | 5.7 |
S 2 | 347.1 | 109.0 | 71 | 33 | 16 | 5.7 | |
21-DF 1 | d8-21-DF | 347.1 | 311.1 | 71 | 23 | 20 | 5.2 |
21-DF 2 | 347.1 | 269.0 | 71 | 27 | 14 | 5.2 | |
B 1 | 13C3-B | 347.1 | 121.1 | 76 | 29 | 8 | 5.3 |
B 2 | 347.1 | 90.9 | 76 | 75 | 12 | 5.3 | |
E 1 | d8-E | 361.1 | 163.1 | 81 | 31 | 26 | 2.9 |
E 2 | 361.1 | 77.1 | 81 | 107 | 10 | 2.9 | |
F 1 | d4-F | 363.1 | 121.2 | 76 | 31 | 8 | 3.5 |
F 2 | 363.1 | 91.1 | 76 | 83 | 10 | 3.5 | |
Internal Standards | |||||||
13C3-Androstenedione | 290.2 | 100.1 | 61 | 27 | 14 | 6.8 | |
13C3-Testosterone | 292.1 | 100.0 | 101 | 29 | 12 | 7.6 | |
d5-Dehydroepiandrosterone | 294.1 | 258.2 | 141 | 11 | 34 | 8.1 | |
13C3-5α-DHT | 294.2 | 258.3 | 116 | 21 | 30 | 8.9 | |
13C2,d2-Pregnenolone | 321.2 | 285.2 | 141 | 17 | 18 | 9.5 | |
d9-P4 | 324.1 | 100.0 | 96 | 23 | 10 | 8.9 | |
d8-17α-OHP4 | 339.2 | 96.9 | 66 | 29 | 12 | 7.9 | |
d5-11-deoxycortisol | 352.1 | 100.1 | 71 | 27 | 12 | 5.6 | |
d8-21-deoxycortisol | 355.2 | 319.1 | 71 | 23 | 20 | 5.1 | |
d8-corticosterone | 355.3 | 125.1 | 76 | 29 | 8 | 5.0 | |
d4-cortisol | 367.3 | 121.1 | 76 | 31 | 8 | 3.4 | |
d8-cortisone | 369.2 | 169.0 | 81 | 31 | 26 | 2.8 |
Steroid | Internal Standard | Q1 Mass (m/z) | Q3 Mass (m/z) | DP (V) | CE (V) | CXP (V) | Time (Min) |
---|---|---|---|---|---|---|---|
E1 1 | 13C3-Estrone | 269.1 | 144.9 | −150 | −48 | −15 | 7.2 |
E1 2 | 269.1 | 142.9 | −150 | −70 | −15 | 7.2 | |
E2 1 | 13C3-Estradiol | 271.0 | 144.9 | −110 | −52 | −21 | 7.0 |
E2 2 | 271.0 | 182.9 | −110 | −52 | −19 | 7.0 | |
E3 1 | 13C3-16OH-E3 | 287.1 | 171.0 | −155 | −48 | −29 | 2.5 |
E3 2 | 287.1 | 145.0 | −155 | −54 | −9 | 2.5 | |
Aldo 1 | d8-Aldo | 359.1 | 188.9 | −70 | −24 | −21 | 2.6 |
Aldo 2 | 359.1 | 331.0 | −70 | −22 | −35 | 2.6 | |
Internal Standards | |||||||
13C3-Estrone | 272.0 | 147.8 | −150 | −48 | −15 | 7.2 | |
13C3-Estradiol | 273.9 | 147.9 | −110 | −52 | −21 | 7.0 | |
13C3-16OH-Estradiol | 290.2 | 173.9 | −155 | −48 | −29 | 2.5 | |
d8-Aldosterone | 367.2 | 193.9 | −70 | −24 | −21 | 2.6 |
Steroid | LLOQ (ng/mL) | LLOQ (nM) | Intra-Assay %RSD | Intra-Assay%RME | Inter-Assay %RSD | Inter-Assay%RME |
---|---|---|---|---|---|---|
A4 | 0.500 | 1.75 | 3.5 | 13.2 | 3.4 | 3.1 |
T | 0.050 | 0.17 | 5.7 | 12.3 | 4.7 | 1.4 |
DHEA | 1.250 | 4.33 | 5.6 | 18.4 | 5.2 | −2.5 |
DHT | 0.125 | 0.43 | 10.5 | 4.8 | 9.7 | 6.2 |
P4 | 1.250 | 3.98 | 8.2 | 12.2 | 4.3 | 0.8 |
Preg | 0.375 | 1.19 | 17.6 | 14.2 | 14.0 | −3.1 |
17αOH-Preg | 0.050 | 0.15 | 15.0 | 13.5 | 14.8 | 14.0 |
17αOH-P4 | 0.250 | 0.75 | 11.1 | 17.8 | 3.0 | 1.8 |
11-DOC | 0.063 | 0.19 | 8.0 | 11.5 | 17.7 | −13.7 |
A | 0.125 | 0.38 | 7.6 | 16.5 | 6.5 | 6.2 |
S | 0.125 | 0.36 | 5.4 | 10.3 | 8.4 | 4.6 |
21-DF | 0.125 | 0.36 | 5.6 | 10.3 | 8.4 | 5.1 |
B | 0.125 | 0.36 | 11.7 | 5.2 | 11.4 | 5.2 |
E | 0.050 | 0.14 | 13.2 | 14.7 | 2.8 | 0.0 |
F | 0.050 | 0.14 | 7.2 | −14.4 | 8.6 | −2.6 |
E1 | 0.063 | 0.23 | 4.8 | 10.2 | 19.2 | −8.3 |
E2 | 0.125 | 0.46 | 4.9 | 9.3 | 8.6 | 2.8 |
E3 | 0.125 | 0.43 | 7.0 | 8.8 | 8.7 | 4.2 |
Aldo | 0.063 | 0.17 | 4.0 | 10.5 | 18.4 | −7.7 |
Sample Time Point Collection | Mean Collection Time hh:mm:ss (SD) | Protocol Time hh:mm:ss | Difference hh:mm:ss |
---|---|---|---|
Time Point 1 | 08:18:01 (0.05) | 08:00:00 | 00:18:01 |
Time Point 2 | 11:24:52 (0.05) | 11:00:00 | 00:24:52 |
Time Point 3 | 15:28:37 (0.05) | 15:00:00 | 00:28:37 |
Time Point 4 | 21:43:53 (0.12) | 22:00:00 | 00:16:07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregory, S.; Denham, S.G.; Lee, P.; Simpson, J.P.; Homer, N.Z.M. Using LC-MS/MS to Determine Salivary Steroid Reference Intervals in a European Older Adult Population. Metabolites 2023, 13, 265. https://doi.org/10.3390/metabo13020265
Gregory S, Denham SG, Lee P, Simpson JP, Homer NZM. Using LC-MS/MS to Determine Salivary Steroid Reference Intervals in a European Older Adult Population. Metabolites. 2023; 13(2):265. https://doi.org/10.3390/metabo13020265
Chicago/Turabian StyleGregory, Sarah, Scott G. Denham, Patricia Lee, Joanna P. Simpson, and Natalie Z. M. Homer. 2023. "Using LC-MS/MS to Determine Salivary Steroid Reference Intervals in a European Older Adult Population" Metabolites 13, no. 2: 265. https://doi.org/10.3390/metabo13020265