Sensitivity Intensified Ninhydrin-Based Chromogenic System by Ethanol-Ethyl Acetate: Application to Relative Quantitation of GABA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Optimization of SINICS
2.2.2. GABA Fermentation
2.2.3. Analysis of Fermentative Samples Using SINICS
2.2.4. HPLC
2.3. The Method of Statistical Analysis
3. Results and Discussion
3.1. Optimization of SINICS Chromogenic Parameters
3.1.1. Effects of Ethanol
3.1.2. Effects of Ethyl Acetate
3.1.3. Effects of Ratio of Ethanol to Ethyl Acetate
3.1.4. Effects of Temperature
3.1.5. Effects of pH
3.1.6. Effects of Sodium Acetate Concentration
3.2. Stability of Chromophore
3.3. Chromogenic Sensitivity of SINICS
3.4. Validation of SINICS
3.5. Versatility of SINICS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bombardi, C. Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid. Brain Res. 2011, 1370, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H. Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B Enzym. 2000, 10, 67–69. [Google Scholar] [CrossRef]
- Khanlari, Z.; Moayedi, A.; Ebrahimi, P.; Khomeiri, M.; Sadeghi, A. Enhancement of γ-aminobutyric acid (GABA) content in fermented milk by using Enterococcus faecium and Weissella confusa isolated from sourdough. J. Food Process. Pres. 2021, 45, e15869. [Google Scholar] [CrossRef]
- Han, S.M.; Lee, J.S. Production and its anti-hyperglycemic effects of gamma-aminobutyric acid from the wild yeast strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1. Mycobiology 2017, 45, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Duan, Q.; Wang, D.; Zhang, Y.; Zheng, C. Separation and purification of gamma-aminobutyric acid from fermentation broth by flocculation and chromatographic methodologies. J. Agric. Food Chem. 2013, 61, 1914–1919. [Google Scholar] [CrossRef]
- Li, H.; Sun, T.; Jia, M.; Wang, L.; Wei, C.; Pei, J.; Lin, Z.; Wang, S. Production of gamma-aminobutyric acid by Levilactobacillus brevis CD0817 by coupling fermentation with self-buffered whole-cell catalysis. Fermentation 2022, 8, 321. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, Y.; Wang, L.; Sun, T.; Pan, H.; Li, H. pH auto-sustain-based fermentation supports efficient gamma-aminobutyric acid production by Lactobacillus brevis CD0817. Fementation 2022, 8, 208. [Google Scholar] [CrossRef]
- Sun, L.; Bai, Y.; Zhang, X.; Zhou, C.; Zhang, J.; Su, X.; Luo, H.; Yao, B.; Wang, Y.; Tu, T. Characterization of three glutamate decarboxylases from Bacillus spp. for efficient gamma-aminobutyric acid production. Microb. Cell Fact. 2021, 20, 153. [Google Scholar] [CrossRef]
- Li, H.; Li, W.; Liu, X.; Cao, Y. gadA gene locus in Lactobacillus brevis NCL912 and its expression during fed-batch fermentation. FEMS Microbiol. Lett. 2013, 349, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Cao, Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010, 39, 1107–1116. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, L.; Gao, Q.; Yu, S.M.; Li, L.; Gao, N.F. The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl. Microbiol. Biotechnol. 2012, 94, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Kato, Y.; Furukawa, K.; Hara, S. Cloning and nucleotide sequence of the glutamate decarboxylase-encoding gene gadA from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 2002, 66, 2600–2605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siragusa, S.; De Angelis, M.; Di Cagno, R.; Rizzello, C.G.; Coda, R.; Gobbetti, M. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 2007, 73, 7283–7290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Qiu, T.; Gao, D.; Cao, Y. Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino Acids 2010, 38, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiu, T.; Huang, G.; Cao, Y. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Factories 2010, 9, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Ma, Y.; Wei, Z.; Yuan, W.; Li, Y.; Zhang, C.; Xue, X.; Zhou, H. Determination and comparison of gamma-aminobutyric acid (GABA) content in Pu-erh and other types of Chinese tea. J. Agric. Food Chem. 2011, 59, 3641–3648. [Google Scholar] [CrossRef]
- Syu, K.Y.; Lin, C.L.; Huang, H.C.; Lin, J.K. Determination of theanine, GABA, and other amino acids in green, oolong, black, and Pu-erh teas with dabsylation and high-performance liquid chromatography. J. Agric. Food Chem. 2008, 56, 7637–7643. [Google Scholar] [CrossRef]
- Golan-Goldhirsh, A.; Hogg, A.M.; Wolfe, F.H. Gas chromatographic analysis of the free amino acid pool of the potato and gas chromatography-mass spectrometry identification of γ-aminobutyric acid and ornithine. J. Agric. Food Chem. 1982, 30, 320–323. [Google Scholar] [CrossRef]
- Leurya, M.O.; Ashley, D.V. High-performance liquid chromatographic analysis of amino acids in physiological fluids: On-line precolumn derivatization with o-phthaldialdehyde. Anal. Biochem. 1983, 133, 330–335. [Google Scholar]
- Nwachukwu, I.D.; Aluko, R.E. A systematic evaluation of various methods for quantifying food protein hydrolysate peptides. Food Chem. 2019, 270, 25–31. [Google Scholar] [CrossRef]
- Rojanarata, T.; Opanasopit, P.; Ngawhirunpat, T.; Saehuan, C. Ninhydrin reaction on thiol-reactive solid and its potential for the quantitation of D-penicillamine. Talanta 2010, 82, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.; Stein, W.H. Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 1948, 176, 367–388. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Rub, M.A. Study of the reaction of ninhydrin with tyrosine in gemini micellar media. RSC Adv. 2019, 9, 22129–22136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilicer, S.L.; Wolf, C. Ninhydrin revisited: Quantitative chirality recognition of amines and amino alcohols based on nondestructive dynamic covalent chemistry. J. Org. Chem. 2020, 85, 11560–11565. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiu, T.; Cao, Y.; Yang, J.; Huang, Z. Pre-staining paper chromatography method for quantification of gamma-aminobutyric acid. J. Chromatogr. A 2009, 1216, 5057–5060. [Google Scholar] [CrossRef] [PubMed]
- Falah, F.; Vasiee, A.; Alizadeh Behbahani, B.; Tabatabaee Yazdi, F.; Mortazavi, S.A. Optimization of gamma-aminobutyric acid production by Lactobacillus brevis PML1 in dairy sludge-based culture medium through response surface methodology. Food Sci. Nutr. 2021, 9, 3317–3326. [Google Scholar] [CrossRef]
- Violi, J.P.; Bishop, D.P.; Padula, M.P.; Steele, J.R.; Rodgers, K.J. Considerations for amino acid analysis by liquid chromatography-tandem mass spectrometry: A tutorial review. Trends Anal. Chem. 2020, 131, 116018. [Google Scholar] [CrossRef]
- Qiu, T.; Li, H.; Cao, Y. Pre-staining thin layer chromatography method for amino acid detection. Afr. J. Biotechnol. 2010, 9, 8679–8681. [Google Scholar]
- Haeger, G.; Bongaerts, J.; Siegert, P. A convenient ninhydrin assay in 96-well format for amino acid-releasing enzymes using an air-stable reagent. Anal. Biochem. 2022, 654, 114819. [Google Scholar] [CrossRef]
- Friedman, M. Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. J. Agric. Food Chem. 2004, 52, 385–406. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, K.; Xie, X.; Liu, X.; Jia, M.; Nie, L.; Li, H.; Wang, S. Disassociation of glutamate from gamma-aminobutyric acid by zinc acetate-assisted differential precipitation/dissolution: Application to the quantification of gamma-aminobutyric acid. J. Chromatogr. A 2019, 1590, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiu, T.; Chen, Y.; Cao, Y. Separation of gamma-aminobutyric acid from fermented broth. J. Ind. Microbiol. Biotechnol. 2011, 38, 1955–1959. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Chang, K.; Ding, G.; Wu, H.; Chen, Y.; Jia, M.; Liu, X.; Wang, S.; Jin, Y.; Pan, H.; et al. Genomic insights into a robust gamma-aminobutyric acid-producer Lactobacillus brevis CD0817. AMB Express 2019, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, D.; Cao, Y.; Xu, H. A high γ-aminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai. Ann. Microbiol. 2008, 58, 649–653. [Google Scholar] [CrossRef]
- Fang, G.; Liu, N. Determination of eight essential amino acids in mixtures by chemometrics–spectrophotometry without separation. Anal. Chim. Acta 2001, 445, 245–253. [Google Scholar] [CrossRef]
- Troll, W.; Cannan, R.K. A modified photometric ninhydrin method for the analysis of amino and imino acids. J. Biol. Chem. 1953, 200, 803–811. [Google Scholar] [CrossRef]
- Friedman, M.; Pang, J.; Smith, G.A. Ninhydrin-reactive lysine in food proteins. J. Food Sci. 1984, 49, 10–13. [Google Scholar] [CrossRef]
- Sun, S.; Lin, Y.; Weng, Y.; Chen, M. Efficiency improvements on ninhydrin method for amino acid quantification. J. Food Compos. Anal. 2006, 19, 112–117. [Google Scholar] [CrossRef]
- Sarin, V.K.; Kent, S.B.H.; Tam, J.P.; Merrifield, R.B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal. Biochem. 1981, 117, 147–157. [Google Scholar] [CrossRef]
- Bhattarai, A.; Saha, B.; Jaffari, Z.H.; Rub, M.A.; Alghamdi, Y.G.; Kumar, D. Analysis of interaction between glutamic acid and ninhydrin in the presence of acetate buffer solvent: Impact of gemini (twin-headed) surfactants. Colloids Surf. 2021, 626, 127061. [Google Scholar] [CrossRef]
- Nnamonu, L.; Nkpa, N.N. Use of buffers in spectrophotometric determination of phosphonomethylglycine by the ninhydrin colour reaction. IOSR J. Environ. Sci. Toxicol. Food Technol. 2012, 1, 6–10. [Google Scholar] [CrossRef]
- Alhealy, F.M.; Ali, W.K.; Abdulrahman, S.H. Review: Determination of amino acids by different methods. Turk. J. Physiother. Rehabil. 2021, 32, 10193–10199. [Google Scholar]
- Jonesa, D.L.; Owena, A.G.; Farrarb, J.F. Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol. Biochem. 2002, 34, 1893–1902. [Google Scholar] [CrossRef]
- Lewkowicz, A.; Kantor, M.; Zalewski, W.; Bojarski, P.; Monka, M. Spectroscopic evidence of fluorescence by 1,8-diazafluoren-9-one aggregates-A prospective new ultrasensitive method for fingerprint trace detection. J. Forensic. Sci. 2022, 67, 1468–1475. [Google Scholar] [CrossRef]
- Wilkinson, D. Study of the reaction mechanism of 1,8-diazafluoren9-one with the amino acid, L-alanine. Forensic Sci. Int. 2000, 109, 87–103. [Google Scholar] [CrossRef]
- Zeng, Y.; Cai, W.; Shao, X. Quantitative analysis of 17 amino acids in tobacco leaves using an amino acid analyzer and chemometric resolution. J. Sep. Sci. 2015, 38, 2053–2058. [Google Scholar] [CrossRef]
- Wang, H.F.; Tsai, Y.S.; Lin, M.L.; Ou, A.S. Comparison of bioactive components in GABA tea and green tea produced in Taiwan. Food Chem. 2006, 96, 648–653. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Fu, J.; Wang, S.; Chen, Y.; Chang, K.; Li, H. Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912. Microb. Cell Factories 2018, 17, 80. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, H.; Dettmer, K.; Gronwald, W.; Oefner, P.J. Advances in amino acid analysis. Anal. Bioanal. Chem. 2009, 393, 445–452. [Google Scholar] [CrossRef]
- Sancheti, J.S.; Shaikh, M.F.; Khatwani, P.F.; Kulkarni, S.R.; Sathaye, S. Development and validation of a HPTLC method for simultaneous estimation of L-glutamic acid and γ-aminobutyric acid in mice brain. Indian J. Pharm. Sci. 2013, 75, 716–721. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, L.; Nie, L.; Liu, X.; Fu, J. Sensitivity Intensified Ninhydrin-Based Chromogenic System by Ethanol-Ethyl Acetate: Application to Relative Quantitation of GABA. Metabolites 2023, 13, 283. https://doi.org/10.3390/metabo13020283
Li H, Wang L, Nie L, Liu X, Fu J. Sensitivity Intensified Ninhydrin-Based Chromogenic System by Ethanol-Ethyl Acetate: Application to Relative Quantitation of GABA. Metabolites. 2023; 13(2):283. https://doi.org/10.3390/metabo13020283
Chicago/Turabian StyleLi, Haixing, Lingqin Wang, Lijuan Nie, Xiaohua Liu, and Jinheng Fu. 2023. "Sensitivity Intensified Ninhydrin-Based Chromogenic System by Ethanol-Ethyl Acetate: Application to Relative Quantitation of GABA" Metabolites 13, no. 2: 283. https://doi.org/10.3390/metabo13020283
APA StyleLi, H., Wang, L., Nie, L., Liu, X., & Fu, J. (2023). Sensitivity Intensified Ninhydrin-Based Chromogenic System by Ethanol-Ethyl Acetate: Application to Relative Quantitation of GABA. Metabolites, 13(2), 283. https://doi.org/10.3390/metabo13020283