Metabolic Deregulations in Patients with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Methods and Laboratory Measurements
2.3. Statistical Analysis
3. Results
Characteristic of the Study Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, F.; Gong, Z.; Fernando, T.; Zhang, L.; Zhu, X.; Shi, Y. The Lipid Profiles in Different Characteristics of Women with PCOS and the Interaction Between Dyslipidemia and Metabolic Disorder States: A Retrospective Study in Chinese Population. Front. Endocrinol. 2022, 13, 892125. [Google Scholar] [CrossRef] [PubMed]
- Kheirollahi, A.; Teimuri, M.; Karimi, M.; Vatannejad, A.; Moradi, N.; Borumandnia, N.; Sadeghi, A. Evaluation of lipid ratios and triglyceride-glucose index as risk markers of insulin resistance in Iranian polycystic ovary syndrome women. Lipids Health Disease 2020, 19, 235. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xie, Y.J.; Qu, L.H.; Zhang, M.X.; Mo, Z.C. Dyslipidemia involvement in the development of polycystic ovary syndrome. Taiwan J. Obstet. Gynecol. 2019, 58, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Lathia, T.; Joshi, A.; Behl, A.; Dhingra, A.; Kalra, B.; Dua, C.; Bajaj, K.; Verma, K.; Malhotra, N.; Galagali, P.; et al. A Practitioner’s Toolkit for Polycystic Ovary Syndrome Counselling. Indian J. Endocrinol. Metab. 2022, 26, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, G.; Gainder, S.; Suri, V.; Sachdeva, N.; Chopra, S. Comparison of the Different PCOS Phenotypes Based on Clinical Metabolic, and Hormonal Profile, and Their Response to Clomiphene. Indian J. Endocrinol. Metab. 2019, 23, 236–331. [Google Scholar] [CrossRef]
- Tao, L.C.; Xu, J.N.; Wang, T.T.; Hua, F.; Li, J.-J. Trigliceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations. Cardiovasc. Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef]
- Vine, D.F.; Wang, Y.; Jetha, M.M.; Ball, G.D.; Proctor, S.D. Impaired ApoB-Lipoprotein and Triglyceride Metabolism in Obese Adolescents with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2017, 102, 970–982. [Google Scholar] [CrossRef] [Green Version]
- Barrios, M.R.; Arata-Bellabarba, G.; Valeri, L.; Velazquez-Maldonado, E. Relationship between the triglyceride/high density lipoprotein-cholesterol ratio, insulin resistance index and cardiometabolic risk factors in women with polycystic ovary syndrome. Endocrinol. Nutr. 2009, 56, 59–65. [Google Scholar] [CrossRef]
- Kamaru, A.A.; Japhet, O.M.; Adetunji, A.D.; Musa, M.A.; Hammed, O.O.; Akinlawon, A.A.; Onifade, A.; Taofik, A.A.; Kabiru, A.; Sheu, M.; et al. Castelli Risk Index, Atherogenic Index of Plasma, and Atherogenic Coefficient: Emerging Risk Predictors of Cardiovascular Disease in HIV-Treated Patients. Saudi Pharm. J. 2017, 3, 1101–1110. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, Y.; Yang, L.; Liao, S.; An, Z.; Li, S. Comparison of the diagnostic value between triglyceride-glucose index and triglyceride to high-density lipoprotein cholesterol ratio in metabolic-associated fatty liver disease patients: A retrospective cross-sectional study. Lipids Health Disease 2022, 21, 55. [Google Scholar] [CrossRef]
- Zheng, S.; Shi, S.; Ren, X.; Han, T.; Li, Y.; Chen, Y.; Liu, W.; Hou, P.C.; Hu, Y. Triglyceride glucose-waist circumference, a novel and effective predictor of diabetes in first-degree relatives of type 2 diabetes patients: Cross-sectional and prospective cohort study. J. Transl. Med. 2016, 14, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Kim, B.; Kim, W.; Ahn, C.; Choi, H.Y.; Kim, J.G.; Kim, H.S.; Kang, J.G.; Moon, S. Lipid indices as simple and clinically useful surrogate markers for insulin resistance in the U.S. population. Nature 2021, 11, 2366. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Almeda-Valdes, P.; Gomez-Velasco, D.; Viveros-Ruiz, T.; Cruz-Bautista, I.; Romo-Romo, A.; Sánchez-Lázaro, D.; Meza-Oviedo, D.; Vargas-Vázquez, A.; Campos, O.A.; et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur. J. Endocrinol. 2018, 178, 533–544. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Jung, D.; Lee, Y.; Park, B. The Metabolic Score for Insulin Resistance (METS-IR) as a Predictor of Incident Ischemic Heart Disease: A Longitudinal Study among Korean without Diabetes. J. Pers. Med. 2021, 11, 742. [Google Scholar] [CrossRef]
- Yueqiao, S.; Liu, J.; Han, C.; Wang, R.; Liu, T.; Sun, L. The correlation of retinol-binding protein-4 and lipoprotein combine index with the prevalence and diagnosis of acute coronary syndrome. Heart Vessels 2020, 35, 1494–1501. [Google Scholar] [CrossRef]
- Naghshband, Z.; Kumar, L.; Mandappa, S.; Niranjana Murthy, A.S.; Malini, S.S. Visceral Adiposity Index and Lipid Accumulation Product as diagnostic markers of Metabolic Syndrome in South Indians with Polycystic Ovary Syndrome. J. Hum. Reprod. Sci. 2021, 14, 234–243. [Google Scholar] [CrossRef]
- Bilginer, M.C.; Tufekci, D.; Emur Gunay, Y.; Usta, O.; Coskun, H.; Ucuncu, O.; Nuhoglu, I.; Kocak, M. Evaluation of Insulin Resistance Measurement Method in Patients with Polycystic Ovary Syndrome. Turk. J. Diabetes Obes. 2021, 1, 24–31. [Google Scholar] [CrossRef]
- Li, F.; Yao, L.; Wu, H.; Cao, S. Analysis on endocrine and metabolic features of different phenotypes of polycystic ovary syndrome patients. Pak. J. Pharm. Sci. 2016, 29, 1735–1738. [Google Scholar]
- Ahn, N.; Baumeister, S.E.; Amann, U.; Rathmann, W.; Peters, A.; Huth, C.; Thorand, B.; Meisinger, C. Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes. Sci. Rep. 2019, 9, 9693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khamseh, M.E.; Malek, M.; Abbasi, R.; Taheri, H.; Lahouti, M.; Alaei-Shahmiri, F. Triglyceride Glucose Index and Related Parameters (Triglyceride Glucose-Body Mass Index and Triglyceride Glucose-Waist Circumference) Identify Nonalcoholic Fatty Liver and Liver Fibrosis in Individuals with Overweight/Obesity. Metab. Syndr. Relat. Disorders 2021, 19, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut Off Points. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA. Available online: https://www.ncbi.nlm.nih.gov/books/NBK541070/ (accessed on 9 January 2023).
- World Health Organization. Waist Circumference and Waist-Hip Ratio; Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Głuszek, S.; Cieśla, E.; Głuszek-Osuch, M.; Kozieł, D.; Kiebzak, W.; Wypchło, Ł.; Suliga, E. Anthropometric indices and cut-off points in the diagnosis of metabolic disorders. PLoS ONE 2020, 15, e0235121. [Google Scholar] [CrossRef] [PubMed]
- Nawrocka-Rutkowska, J.; Szydłowska, I.; Jakubowska, K.; Olszewska, M.; Chlubek, D.; Szczuko, M.; Starczewski, A. The role of Oxidative Stress in the Risk of Cardiovascular Disease and Identification of Risk Factors Using AIP and Castelli Atherogenicity Indicators in Patients with PCOS. Biomedicines 2022, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Abruzzese, G.A.; Cerrone, G.E.; Gamez, J.M.; Graffigna, M.N.; Belli, S.; Lioy, G.; Mormandi, E.; Otero, P.; Levalle, O.A.; Motta, A.B.; et al. Lipid accumulation product (LAP) and visceral adiposity index (VAI) as markers of insulin resistance and metabolic associated disturbances in young Argentine women with polycystic ovary syndrome. Horm. Metab. Res. 2017, 49, 23–29. [Google Scholar] [CrossRef]
- Kulik-Kupka, K.; Jabczyk, M.; Nowak, J.; Jagielski, P.; Hudzik, B.; Zubelewicz-Szkodzinska, B. Fetuin-A and Its Association with Anthropometric, Atherogenic, and Biochemical Parameters and Indices among Women with Polycystic Ovary Syndrome. Nutrients 2022, 14, 4034. [Google Scholar] [CrossRef]
- Joham, A.E.; Norman, R.J.; Stener-Victorin, E.; Legro, R.S.; Franks, S.; Moran, L.J.; Boyle, J.; Teede, H.J. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022, 10, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Hua, F.; Chen, L.; Tang, Y.; Jiang, X.; Liu, Z. Lipid accumulation product is related to metabolic syndrome in women with polycystic ovary syndrome. Exp. Clin. Endocrinol. Diabetes 2013, 121, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Wiltgen, D.; Benedetto, I.G.; Mastella, L.S.; Spritzer, P.M. Lipid accumulation product index: A reliable marker of cardiovascular risk in polycystic ovary syndrome. Hum Reprod. 2009, 24, 1726–1731. [Google Scholar] [CrossRef] [Green Version]
- Wehr, E.; Gruber, H.J.; Giuliani, A.; Möller, R.; Pieber, T.R.; Obermayer-Pietsch, B. The lipid accumulation product is associated with impaired glucose tolerance in PCOS women. J. Clin. Endocrinol. Metab. 2011, 96, E986–E990. [Google Scholar] [CrossRef] [Green Version]
- Cree-Green, M.; Cai, N.; Thurston, J.E.; Coe, G.V.; Newnes, L.; Garcia-Reyes, Y.; Baumgartner, A.D.; Pyle, L.; Nadeau, K.J. Using simple clinical measures to predict insulin resistance or hyperglycemia in girls with polycystic ovarian syndrome. Pediatr. Diabetes 2018, 8, 1370–1378. [Google Scholar] [CrossRef]
- Kakoly, N.S.; Earnest, A.; Teede, H.J.; Moran, L.J.; Joham, A.E. The impact of obesity on the incidence of Type 2 diabetes among women with polycystic ovary syndrome. Diabetes Care 2019, 42, 560–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-García, A.; Rodríguez-Gutiérrez, R.; Mancillas-Adame, L.; González-Nava, V.; Díaz González-Colmenero, A.; Solis, R.C.; Villalobos, N.A.; Gonzalez, J.G. Diagnostic accuracy of the triglyceride and glucose index for insulin resistance: A systematic review. Int. J. Endocrinol. 2020, 2020, 4678526. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendía, L.E.; Gamboa-Gómez, C.I.; Aradillas-García, C.; Rodríguez-Morán, M.; Guerrero-Romero, F. The triglyceride and glucose index is a useful biomarker to recognize glucose disorders in apparently healthy children and adolescents. Eur. J. Pediatr. 2020, 179, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Vasques, A.C.; Novaes, F.S.; de Oliveira Mda, S.; Souza, J.R.; Yamanaka, A.; Pareja, J.C.; Tambascia, M.A.; Saad, M.J.; Geloneze, B. TyG index performs better than HOMA in a Brazilian population: A hyperglycemic clamp validated study. Diabetes Res. Clin. Pract. 2011, 93, e98–e100. [Google Scholar] [CrossRef] [Green Version]
- Ghaffarzad, A.; Amani, R.; Mehrzad Sadaghiani, M.; Darabi, M.; Cheraghian, B. Correlation of Serum Lipoprotein Ratios with Insulin Resistance in Infertile Women with Polycystic Ovarian Syndrome: A Case Control Study. Int. J. Fertil. Steril. 2016, 10, 29–35. [Google Scholar] [CrossRef]
Parameter | Total Group Me (Q1–Q3) |
---|---|
Age (years) | 25 (22–29) |
Anthropometric measurements | |
Body weight (kg) | 76.20 (46.30–123.80) |
Height (cm) | 165.50 (150.50–175.00) |
Waist circumference (cm) | 88.50 (64.00–132.00) |
Hip circumference (cm) | 108.00 (86.00–139.00) |
BMI index (kg/m2) | 27.49 (18.03–43.60) |
WHR | 0.82 (0.63–1.01) |
WHtR | 0.54 (0.39–0.78) |
BAI (%) | 33.43 (23.33–45.55) |
VAI | 1.22 (0.27–6.12) |
LAP | 36.16 (3.84–170.75) |
BRI | 4.22 (1.52–10.25) |
ABSI | 0.08 (0.06–0.09) |
Biochemical parameters | |
Fasting glucose (mmol/L) | 4.94 (3.89–7.60) |
Fasting insulin (pmol/L) | 96.15 (14.35–299.20) |
Glucose after 60 min (glucose tolerance test) (mmol/L) | 7.99 (2.66–14.76) |
Insulin after 60 min (glucose tolerance test) (pmol/L) | 703.15 (173.64–2047.75) |
Glucose after 120 min (glucose tolerance test) (mmol/L) | 6.47 (4.00–13.76) |
HbA1c (%) | 5.40 (0.95–5.70) |
HOMA-IR index | 2.65 (0.35–10.80) |
Total cholesterol (mmol/L) | 4.55 (3.08–7.45) |
HDL cholesterol (mmol/L) | 1.66 (0.73–2.86) |
LDL cholesterol (mmol/L) | 2.41 (1.49–5.14) |
Triglycerides (mmol/L) | 0.93 (0.44–2.76) |
Atherogenic indices | |
Castelli’s risk index-I | 2.92 (1.83–6.94) |
Castelli’s risk index-II | 1.65 (0.72–4.61) |
AIP | −0.21 (−0.80–0.46) |
AC | 1.92 (0.83–5.94) |
LCI | 5.76 (1.27–67.20) |
TG/HDL-C ratio | 1.39 (0.36–6.66) |
METS-IR | 40.07 (21.74–68.67) |
TyG index | 8.26 (7.27–9.52) |
TyG-BMI index | 239.45 (142.70–372.00) |
TyG-WC index | 755.74 (481.74–1141.27) |
N | R | p-Value | N | R | p-Value | N | R | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Body weight [kg] | Fasting glucose [mmol/L] | 49 | 0.43 | 0.002 | Glucose after 120 min [mmol/L] in glucose tolerance test | 40 | 0.31 | 0.051 | Glucose after 60 min [mmol/L] in glucose tolerance test) | 39 | 0.40 | 0.011 |
Waist circumference [cm] | 49 | 0.40 | 0.004 | 40 | 0.37 | 0.018 | 39 | 0.52 | 0.001 | |||
Hip circumference [cm] | 49 | 0.40 | 0.004 | 40 | 0.22 | 0.172 | 39 | 0.29 | 0.073 | |||
BMI index [kg/m2] | 49 | 0.43 | 0.002 | 40 | 0.33 | 0.035 | 39 | 0.43 | 0.006 | |||
WHR | 49 | 0.35 | 0.014 | 40 | 0.42 | 0.007 | 39 | 0.65 | 0.000 | |||
WHtR | 49 | 0.37 | 0.008 | 40 | 0.40 | 0.010 | 39 | 0.53 | 0.000 | |||
BAI [%] | 49 | 0.38 | 0.006 | 40 | 0.26 | 0.099 | 39 | 0.26 | 0.106 | |||
VAI | 49 | 0.29 | 0.042 | 40 | 0.44 | 0.004 | 39 | 0.47 | 0.002 | |||
LAP | 49 | 0.38 | 0.006 | 40 | 0.44 | 0.004 | 39 | 0.58 | 0.000 | |||
BRI | 49 | 0.37 | 0.008 | 40 | 0.40 | 0.010 | 39 | 0.53 | 0.000 | |||
ABSI | 49 | 0.15 | 0.283 | 40 | 0.30 | 0.052 | 39 | 0.60 | 0.000 | |||
Castelli’s risk index-I | 49 | 0.33 | 0.019 | 40 | 0.41 | 0.008 | 39 | 0.34 | 0.031 | |||
Castelli’s risk index-II | 49 | 0.33 | 0.017 | 40 | 0.40 | 0.010 | 39 | 0.32 | 0.047 | |||
AIP | 49 | 0.27 | 0.055 | 40 | 0.44 | 0.004 | 39 | 0.46 | 0.003 | |||
AC | 49 | 0.33 | 0.019 | 40 | 0.41 | 0.008 | 39 | 0.34 | 0.031 | |||
LCI | 49 | 0.28 | 0.046 | 40 | 0.50 | 0.001 | 39 | 0.36 | 0.024 | |||
TG/HDL-C ratio | 49 | 0.27 | 0.055 | 40 | 0.44 | 0.004 | 39 | 0.46 | 0.003 | |||
METS-IR | 49 | 0.44 | 0.002 | 40 | 0.35 | 0.024 | 39 | 0.45 | 0.004 | |||
TyG index | 49 | 0.41 | 0.003 | 40 | 0.48 | 0.002 | 39 | 0.54 | 0.000 | |||
TyG-BMI index | 49 | 0.42 | 0.002 | 40 | 0.40 | 0.009 | 39 | 0.48 | 0.002 | |||
TyG-WC index | 49 | 0.42 | 0.003 | 40 | 0.43 | 0.006 | 39 | 0.56 | 0.000 |
N | R | p-Value | N | R | p-Value | |||
---|---|---|---|---|---|---|---|---|
Body weight [kg] | Fasting insulin [pmol/L] | 49 | 0.67 | 0.000 | Insulin after 60 min [pmol/L] in glucose tolerance test | 36 | 0.33 | 0.046 |
Waist circumference [cm] | 49 | 0.71 | 0.000 | 36 | 0.39 | 0.018 | ||
Hip circumference [cm] | 49 | 0.56 | 0.000 | 36 | 0.31 | 0.058 | ||
BMI index [kg/m2] | 49 | 0.71 | 0.000 | 36 | 0.37 | 0.023 | ||
WHR | 49 | 0.69 | 0.000 | 36 | 0.41 | 0.013 | ||
WHtR | 49 | 0.70 | 0.000 | 36 | 0.40 | 0.014 | ||
BAI [%] | 49 | 0.58 | 0.000 | 36 | 0.32 | 0.054 | ||
VAI | 49 | 0.64 | 0.000 | 36 | 0.30 | 0.072 | ||
LAP | 49 | 0.70 | 0.000 | 36 | 0.36 | 0.027 | ||
BRI | 49 | 0.70 | 0.000 | 36 | 0.40 | 0.014 | ||
ABSI | 49 | 0.40 | 0.004 | 36 | 0.31 | 0.065 | ||
Castelli’s risk index-I | 49 | 0.61 | 0.000 | 36 | 0.19 | 0.254 | ||
Castelli’s risk index-II | 49 | 0.60 | 0.000 | 36 | 0.18 | 0.282 | ||
AIP | 49 | 0.63 | 0.000 | 36 | 0.30 | 0.074 | ||
AC | 49 | 0.61 | 0.000 | 36 | 0.19 | 0.254 | ||
LCI | 49 | 0.58 | 0.000 | 36 | 0.17 | 0.319 | ||
TG/HDL-C ratio | 49 | 0.63 | 0.000 | 36 | 0.30 | 0.074 | ||
METS-IR | 49 | 0.72 | 0.000 | 36 | 0.40 | 0.015 | ||
TyG index | 49 | 0.64 | 0.000 | 36 | 0.34 | 0.043 | ||
TyG-BMI index | 49 | 0.73 | 0.000 | 36 | 0.37 | 0.025 | ||
TyG-WC index | 49 | 0.73 | 0.000 | 36 | 0.41 | 0.012 |
N | R | p-Value | N | R | p-Value | |||
---|---|---|---|---|---|---|---|---|
Body weight [kg] | HbA1c [%] | 25 | 0.20 | 0.325 | HOMA-IR index | 49 | 0.66 | 0.000 |
Waist circumference [cm] | 25 | 0.16 | 0.435 | 49 | 0.68 | 0.000 | ||
Hip circumference [cm] | 25 | 0.19 | 0.346 | 49 | 0.57 | 0.000 | ||
BMI index [kg/m2] | 25 | 0.13 | 0.522 | 49 | 0.70 | 0.000 | ||
WHR | 25 | 0.13 | 0.510 | 49 | 0.62 | 0.000 | ||
WHtR | 25 | 0.05 | 0.791 | 49 | 0.66 | 0.000 | ||
BAI [%] | 25 | 0.02 | 0.914 | 49 | 0.58 | 0.000 | ||
VAI | 25 | 0.12 | 0.538 | 49 | 0.61 | 0.000 | ||
LAP | 25 | 0.14 | 0.497 | 49 | 0.68 | 0.000 | ||
BRI | 25 | 0.05 | 0.791 | 49 | 0.66 | 0.000 | ||
ABSI | 25 | 0.17 | 0.394 | 49 | 0.33 | 0.019 | ||
Castelli’s risk index-I | 25 | 0.13 | 0.533 | 49 | 0.56 | 0.000 | ||
Castelli’s risk index-II | 25 | 0.19 | 0.361 | 49 | 0.54 | 0.000 | ||
AIP | 25 | 0.10 | 0.608 | 49 | 0.61 | 0.000 | ||
AC | 25 | 0.13 | 0.533 | 49 | 0.56 | 0.000 | ||
LCI | 25 | 0.20 | 0.335 | 49 | 0.54 | 0.000 | ||
TG/HDL-C ratio | 25 | 0.10 | 0.608 | 49 | 0.61 | 0.000 | ||
METS-IR | 25 | 0.11 | 0.597 | 49 | 0.71 | 0.000 | ||
TyG index | 25 | 0.17 | 0.402 | 49 | 0.63 | 0.000 | ||
TyG-BMI index | 25 | 0.13 | 0.536 | 49 | 0.72 | 0.000 | ||
TyG-WC index | 25 | 0.24 | 0.248 | 49 | 0.71 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabczyk, M.; Nowak, J.; Jagielski, P.; Hudzik, B.; Kulik-Kupka, K.; Włodarczyk, A.; Lar, K.; Zubelewicz-Szkodzińska, B. Metabolic Deregulations in Patients with Polycystic Ovary Syndrome. Metabolites 2023, 13, 302. https://doi.org/10.3390/metabo13020302
Jabczyk M, Nowak J, Jagielski P, Hudzik B, Kulik-Kupka K, Włodarczyk A, Lar K, Zubelewicz-Szkodzińska B. Metabolic Deregulations in Patients with Polycystic Ovary Syndrome. Metabolites. 2023; 13(2):302. https://doi.org/10.3390/metabo13020302
Chicago/Turabian StyleJabczyk, Marzena, Justyna Nowak, Paweł Jagielski, Bartosz Hudzik, Karolina Kulik-Kupka, Aleksander Włodarczyk, Katarzyna Lar, and Barbara Zubelewicz-Szkodzińska. 2023. "Metabolic Deregulations in Patients with Polycystic Ovary Syndrome" Metabolites 13, no. 2: 302. https://doi.org/10.3390/metabo13020302
APA StyleJabczyk, M., Nowak, J., Jagielski, P., Hudzik, B., Kulik-Kupka, K., Włodarczyk, A., Lar, K., & Zubelewicz-Szkodzińska, B. (2023). Metabolic Deregulations in Patients with Polycystic Ovary Syndrome. Metabolites, 13(2), 302. https://doi.org/10.3390/metabo13020302