Effect of Supplementation of Lambs with Whole Cottonseed: Impact on Serum Biomarkers and Infection by Gastrointestinal Parasites under Field Conditions
Abstract
:1. Introduction
2. Experimental Design
2.1. Experimental Area Description
2.2. Animals and Management
2.3. Body Weight, Fecal and Blood Samples
Egg and Oocyst Counting
2.4. Biochemical Profile
2.5. Biomarkers of Oxidative Stress
2.6. Statistical Analysis
3. Results
3.1. Natural Infection by Gastrointestinal Parasites
3.2. Body Weight and Average Daily Weight Gain
3.3. Biochemical Analytes
3.4. Antioxidant Biomarkers
3.5. Oxidant Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilmsen, M.O.; Silva, B.F.; Bassetto, C.C.; Amarante, A.F.T. Gastrointestinal nematode infections in sheep raised in Botucatu, state of São Paulo, Brazil. Rev. Bras. Parasitol. Vet. 2014, 23, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starling, R.Z.C.; Almeida, F.A.; Viana, M.V.G.; Castilhos, A.M.; Amarante, A.F.T. Losses caused by gastrointestinal nematode infections in Dorper lambs under two nutritional status. Rev. Bras. Parasitol. Vet. 2019, 28, 652–660. [Google Scholar] [CrossRef]
- Chartier, C.; Paraud, C. Coccidiosis due to Eimeria in sheep and goats, a review. Small Rumin. Res. 2012, 103, 84–92. [Google Scholar] [CrossRef]
- Amarante, A.F.T.; Barbosa, M.A. Species of coccidia occurring in lambs in São Paulo State, Brazil. Vet. Parasitol. 1992, 41, 189–193. [Google Scholar] [CrossRef]
- Costa, J.A.A.; Pariz, C.M.; Frota, M.N.L.; Reis, F.A.; Costa, C.; Araújo Neto, R.B.; Teixeira Neto, M.L.; Meirelles, P.R.L.; Feijó, G.L.D.; Castilhos, A.M.; et al. Produção de ovinos de corte em sistemas integrados. In ILPF—Inovação Com Integração de Lavoura, Pecuária e Floresta; Bungenstab, D.J., Almeida, R.G., Laura, V.A., Balbino, L.C., Ferreira, A.D., Eds.; Embrapa: Brasília, Brazil, 2019; pp. 241–261. [Google Scholar]
- Almeida, F.A.; Piza, M.L.S.T.; Bassetto, C.C.; Starling, R.Z.C.; Albuquerque, A.C.A.; Protes, V.M.; Pariz, C.M.; Castilhos, A.M.; Costa, C.; Amarante, A.F.T. Infection with gastrointestinal nematodes in lambs in different integrated crop-livestock systems (ICL). Small Rumin. Res. 2018, 166, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Rogers, G.M.; Poore, M.H.; Paschal, J.C. Feeding cotton products to cattle. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 267–294. [Google Scholar] [CrossRef]
- Knutsen, H.K.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; et al. Presence of free gossypol in whole cottonseed. EFSA J. 2017, 15, e04850. [Google Scholar] [PubMed] [Green Version]
- Kandylis, K.; Nikokyris, P.N.; Deligiannis, K. Performance of Growing-Fattening Lambs Fed Whole Cotton Seed. J. Sci. Food Agric. 1998, 78, 281–289. [Google Scholar] [CrossRef]
- Chen, C.W.; Hu, S.; Tsui, K.H.; Hwang, G.S.; Chen, S.T.; Tang, T.K.; Cheng, H.T.; Yu, J.W.; Wang, H.C.; Juang, H.H.; et al. Anti-inflammatory Effects of Gossypol on Human Lymphocytic Jurkat Cells via Regulation of MAPK Signaling and Cell Cycle. Inflammation 2018, 41, 2265–2274. [Google Scholar] [CrossRef]
- Lykkesfeldt, J.; Svendsen, O. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Vet. J. 2007, 173, 502–511. [Google Scholar] [CrossRef]
- Rubio, C.P.; Cerón, J.J. Spectrophotometric assays for evaluation of Reactive Oxygen Species (ROS) in serum: General concepts and applications in dogs and humans. BMC Vet. Res. 2021, 17, 226. [Google Scholar] [CrossRef]
- Frazzoli, C.; Bocca, B.; Mantovani, A. The One Health Perspective in Trace Elements Biomonitoring. J. Toxicol. Environ. Health B Crit. Rev. 2015, 18, 344–370. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.R.; Martins, D. Climatic classification for the Districts of Botucatu and São Manuel, SP. Irriga 2009, 14, 1–11. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, J.F.; Gomes, E.N.; Oliveira, A.P.; Soares, J. Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil. Renew. Energy 2011, 36, 169–178. [Google Scholar] [CrossRef]
- Pariz, C.M.; Costa, N.R.; Costa, C.; Crusciol, C.A.C.; Castilhos, A.M.; Meirelles, P.R.L.; Calonego, J.C.; Andreotti, M.; Souza, D.M.; Cruz, I.V.; et al. An Innovative Corn to Silage-Grass-Legume Intercropping System with Oversown Black Oat and Soybean to Silage in Succession for the Improvement of Nutrient Cycling. Front. Sustain. Food Syst. 2020, 4, 1–20. [Google Scholar] [CrossRef]
- Kluthcouski, J.; Yokoyama, L.P. Opções de integração lavoura-pecuária. In Integração Lavoura-Pecuária; Kluthcouski, J., Stone, L.F., Aidar, H., Eds.; Embrapa Arroz e Feijão: Santo Antônio de Goiás, Brazil, 2003; pp. 129–141. [Google Scholar]
- Ueno, H.; Gonçalves, P.C. Manual para Diagnóstico das Helmintoses de Ruminantes, 4th ed.; Japan International Cooperation Agency: Tokyo, Japan, 1998; pp. 25–43. [Google Scholar]
- Cornell Net Carbohydrate and Protein System. The Net Carbohydrate and Protein System for Evaluating Herd Nutrition and Nutrients Excretion, CNCPS (version 6.5). Available online: https://cals.cornell.edu/animal-science/outreach-extension/publications-resources-software/cncps (accessed on 30 April 2019).
- Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; NRC The National Academies Press: Washington, DC, USA, 2007; pp. 244–270.
- Gordon, H.M.; Whitlock, H.V. A New Technique for Counting Nematode Eggs in Sheep Faeces. J. Counc. Sci. Ind. Res. 1939, 12, 50–52. [Google Scholar]
- Rubio, C.P.; Hernández-Ruiz, J.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Ceron, J.J. Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: An update. BMC Vet. Res. 2016, 12, 166. [Google Scholar] [CrossRef] [Green Version]
- Arnao, M.B.; Cano, A.; Hernández-Ruiz, J.; García-Cánovas, F.; Acosta, M. Inhibition byl-Ascorbic Acid and Other Antioxidants of the 2,2′-Azino-bis (3-ethylbenzthiazoline-6-sulfonic Acid) Oxidation Catalyzed by Peroxidase: A New Approach for Determining Total Antioxidant Status of Foods. Anal. Biochem. 1996, 236, 255–261. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, C.; Guzmán, R.; López-Fernández, E.; Casado, Á. Evaluation of the copper (II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: The CUPRAC–BCS assay. Anal. Biochem. 2009, 392, 37–44. [Google Scholar] [CrossRef]
- Costa, C.M.; Santos, R.C.C.; Lima, E.S. A simple automated procedure for thiol measurement in human serum samples. J. Bras. Patol. Med. Lab. 2006, 42, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Fossati, P.; Prencipe, L.; Berti, G. Use of 3,5-Dichloro-2-hydroxybenzenesulfonic Acid/4-Aminophenazone Chromogenic System in Direct Enzymic Assay of Uric Acid in Serum and Urine. Clin. Chem. 1980, 26, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Tvarijonaviciute, A.; Tecles, F.; Caldin, M.; Tasca, S.; Cerón, J. Validation of spectrophotometric assays for serum paraoxonase type-1 measurement in dogs. Am. J. Vet. Res. 2012, 73, 34–41. [Google Scholar] [CrossRef]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.T.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef] [Green Version]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Arab, K.; Steghens, J.P. Plasma lipid hydroperoxides measurement by an automated xylenol orange method. Anal. Biochem. 2004, 325, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Cesarone, M.R.; Belcaro, G.; Carratelli, M.; Cornelli, U.; de Sanctis, M.T.; Incandela, L.; Barsotti, A.; Terranova, R.; Nicolaides, A. A simple test to monitor oxidative stress. Int. Angiol. 1999, 18, 127–130. [Google Scholar]
- Teye, G.A.; Ansah, T.; Adjei, B.G.K. Effect of whole cottonseed supplementation on worm load in Djallonke sheep in the Tamale Metropolis; A case study in the Saatingli and Zaagyuli communities. Dev. Spectr. 2010, 3, 83–90. [Google Scholar]
- Bottger, G.T.; Sheehan, E.T.; Lukefahr, M.J. Relation of Gossypol Content of Cotton Plants to Insect Resistance. J. Econ. Entomol. 1964, 57, 283–285. [Google Scholar] [CrossRef]
- Sihag, M.K.; Patel, A.; Kumar, V. Cottonseed (Gossypium hirsutum). In Oilseeds: Health Attributes and Food Applications; Tanwar, B., Goyal, A., Eds.; Springer: Singapore, 2021; pp. 73–92. [Google Scholar]
- Montamat, E.E.; Burgos, C.; Gerez de Burgos, N.M.; Rovai, L.E.; Blanco, A.; Segura, E.L. Inhibitory Action of Gossypol on Enzymes and Growth of Trypanosoma cruzi. Science 1982, 218, 288–289. [Google Scholar] [CrossRef]
- González-Garza, M.T.; Matlin, S.A.; Mata-Cárdenas, B.D.; Said-Fernández, S. Differential effects of the (+)- and (–)-gossypol enantiomers upon Entamoeba histolytica axenic cultures. J. Pharm. Pharmacol. 1993, 45, 144–145. [Google Scholar] [CrossRef]
- Carvalho, N.; Neves, J.H.; Pennacchi, C.S.; Castilhos, A.M.; Amarante, A.F.T. Performance of lambs under four levels of dietary supplementation and artificially mix-infected with Haemonchus contortus and Trichostrongylus colubriformis. Rev. Bras. Parasitol. Vet. 2021, 30, 1–9. [Google Scholar] [CrossRef]
- Schmidt, E.M.S.; Fachiolli, D.F.; Oliveira, R.M.; Almeida, F.A.; Pariz, C.M.; Meirelles, P.R.L.; Costa, C.; Tvarijonaviciute, A.; Erel, O.; Neselioglu, S.; et al. Changes in Serum Thiol-Disulphide Homeostasis in Sheep with Gastrointestinal Nematodes. Animals 2021, 11, 2856. [Google Scholar] [CrossRef]
- Catchpole, J.; Gregory, M.W. Pathogenicity of the coccidium Eimeria crandallis in laboratory lambs. Parasitology 1985, 91, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Mohamaden, W.I.; Sallam, N.H.; Abouelhassan, E.M. Prevalence of Eimeria species among sheep and goats in Suez Governorate, Egypt. Int. J. Vet. Sci. Med. 2018, 6, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoste, H.; Torres-Acosta, J.F.; Quijada, J.; Chan-Perez, I.; Dakheel, M.M.; Kommuru, D.S.; Mueller-Harvey, I.; Terrill, T.H. Interactions Between Nutrition and Infections with Haemonchus contortus and Related Gastrointestinal Nematodes in Small Ruminants. Adv. Parasitol. 2016, 93, 239–351. [Google Scholar] [PubMed]
- Hoste, H.; Sotiraki, S.; Landau, S.Y.; Jackson, F.; Beveridge, I. Goat-nematode interactions: Think differently. Trends Parasitol. 2010, 26, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Câmara, A.C.L.; do Vale, A.M.; Mattoso, C.R.S.; Melo, M.M.; Soto-Blanco, B. Effects of gossypol from cottonseed cake on the blood profile in sheep. Trop. Anim. Health Prod. 2016, 48, 1037–1042. [Google Scholar] [CrossRef]
- Demir, H.; Can, A. Effect of various levels of dietary whole cottonseed on blood parameters and performance of Awassi lambs under heat stress. S. Afr. J. Anim. Sci. 2019, 49, 50–55. [Google Scholar] [CrossRef]
- Machado, V.; da Silva, A.S.; Schafer, A.S.; Aires, A.R.; Tonin, A.A.; Oliveira, C.B.; Hermes, C.L.; Almeida, T.C.; Moresco, R.N.; Stefani, L.M.; et al. Relationship between oxidative stress and pathological findings in abomasum of infected lambs by Haemonchus contortus. Pathol. Res. Pract. 2014, 210, 812–817. [Google Scholar] [CrossRef]
- Baptistiolli, L.; Narciso, L.G.; Almeida, B.F.M.; Bosco, A.M.; Souza, J.C.; Torrecilha, R.B.P.; Pereira, P.P.; Figueiredo, R.N.; Garcia, J.F.; Kaneto, C.N.; et al. Systemic oxidative stress in Suffolk and Santa Ines sheep experimentally infected with Haemonchus contortus. Acta Parasitol. 2018, 63, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.T.M.; Hassanen, E.A.A.; El-Mandrawy, S.A.M. Haemonchus contortus infection in Sheep and Goats: Alterations in haematological, biochemical, immunological, trace element and oxidative stress markers. J. Appl. Anim. Res. 2020, 48, 357–364. [Google Scholar] [CrossRef]
- Rubio, C.P.; Contreras-Aguilar, M.D.; Quiles, A.; López-Arjona, M.; Cerón, J.J.; Martínez-Subiela, S.; Hevia, M.L.; Escribano, D.; Tecles, F. Biomarkers of oxidative stress in saliva of sheep: Analytical performance and changes after an experimentally induced stress. Res. Vet. Sci. 2019, 123, 71–76. [Google Scholar] [CrossRef]
- Pathak, A.K.; Dutta, N.; Pattanaik, A.K.; Sharma, K.; Banerjee, P.S.; Goswami, T.K. The effect of condensed tannins supplementation through Ficus infectoria and Psidium guajava leaf meal mixture on erythrocytic antioxidant status, immune response, and gastrointestinal nematodes in lambs (Ovis aries). Vet. Arh. 2017, 87, 139–156. [Google Scholar]
- Moretti, D.B.; Jimenez, C.; Trinca, H.; Machado-Neto, R.; Louvandini, H. Effect of maternal cottonseed feed on the immune and antioxidant status of Santa Ines lambs. Comp. Immunol. Microbiol. Infect. Dis. 2018, 62, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Risco, C.A.; Adams, A.L.; Seebohm, S.; Thatcher, M.J.; Staples, C.R.; van Horn, H.H.; McDowell, L.R.; Calhoun, M.C.; Thatcher, W.W. Effects of Gossypol from Cottonseed on Hematological Responses and Plasma α-Tocopherol Concentration of Dairy Cows. J. Dairy Sci. 2002, 85, 3395–3402. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlowski Neto, V.A.; Schmidt, E.M.d.S.; Rubio, C.P.; Silva, N.M.M.d.; Tardivo, R.; Costa, C.; Meirelles, P.R.d.L.; Cerón, J.J.; Tvarijonaviciute, A.; Amarante, A.F.T.d. Effect of Supplementation of Lambs with Whole Cottonseed: Impact on Serum Biomarkers and Infection by Gastrointestinal Parasites under Field Conditions. Metabolites 2023, 13, 398. https://doi.org/10.3390/metabo13030398
Kozlowski Neto VA, Schmidt EMdS, Rubio CP, Silva NMMd, Tardivo R, Costa C, Meirelles PRdL, Cerón JJ, Tvarijonaviciute A, Amarante AFTd. Effect of Supplementation of Lambs with Whole Cottonseed: Impact on Serum Biomarkers and Infection by Gastrointestinal Parasites under Field Conditions. Metabolites. 2023; 13(3):398. https://doi.org/10.3390/metabo13030398
Chicago/Turabian StyleKozlowski Neto, Vitoldo Antonio, Elizabeth Moreira dos Santos Schmidt, Camila Peres Rubio, Naiara Mirelly Marinho da Silva, Renata Tardivo, Ciniro Costa, Paulo Roberto de Lima Meirelles, José Joaquín Cerón, Asta Tvarijonaviciute, and Alessandro Francisco Talamini do Amarante. 2023. "Effect of Supplementation of Lambs with Whole Cottonseed: Impact on Serum Biomarkers and Infection by Gastrointestinal Parasites under Field Conditions" Metabolites 13, no. 3: 398. https://doi.org/10.3390/metabo13030398
APA StyleKozlowski Neto, V. A., Schmidt, E. M. d. S., Rubio, C. P., Silva, N. M. M. d., Tardivo, R., Costa, C., Meirelles, P. R. d. L., Cerón, J. J., Tvarijonaviciute, A., & Amarante, A. F. T. d. (2023). Effect of Supplementation of Lambs with Whole Cottonseed: Impact on Serum Biomarkers and Infection by Gastrointestinal Parasites under Field Conditions. Metabolites, 13(3), 398. https://doi.org/10.3390/metabo13030398