Dietary Patterns of Patients with Prediabetes and Type 2 Diabetes
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Population
2.2. Assessment of Dietary Intake
2.3. Identification of Dietary Patterns
2.4. Blood Pressure and Anthropometric Measurements
2.5. Biochemical Analyses
2.6. Data Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ojo, O. Dietary Intake and Type 2 Diabetes. Nutrients 2019, 11, 2177. [Google Scholar] [CrossRef] [Green Version]
- Tabak, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimaki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes, A. Standards of medical care in diabetes-2015 abridged for primary care providers. Clin. Diabetes 2015, 33, 97–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahn, A.; Cefalu, W.T. Clinical Considerations for Use of Initial Combination Therapy in Type 2 Diabetes. Diabetes Care 2016, 39 (Suppl. 2), S137–S145. [Google Scholar] [CrossRef] [Green Version]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef] [Green Version]
- Morgovan, C.; Cosma, S.A.; Valeanu, M.; Juncan, A.M.; Rus, L.L.; Gligor, F.G.; Butuca, A.; Tit, D.M.; Bungau, S.; Ghibu, S. An Exploratory Research of 18 Years on the Economic Burden of Diabetes for the Romanian National Health Insurance System. Int. J. Environ. Res. Public Health 2020, 17, 4456. [Google Scholar] [CrossRef]
- Hou, Y.C.; Feng, H.C.; Tzeng, I.S.; Kuo, C.Y.; Cheng, C.F.; Wu, J.H.; Yang, S.H. Dietary Patterns and the Risk of Prediabetes in Taiwan: A Cross-Sectional Study. Nutrients 2020, 12, 3322. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Min, J.Y.; Min, K.B. Association between Serum Lipid Parameters and Cognitive Performance in Older Adults. J Clin. Med. 2021, 10, 5405. [Google Scholar] [CrossRef]
- Finicelli, M.; Di Salle, A.; Galderisi, U.; Peluso, G. The Mediterranean Diet: An Update of the Clinical Trials. Nutrients 2022, 14, 2956. [Google Scholar] [CrossRef] [PubMed]
- Gherasim, A.; Arhire, L.I.; Otilia, N.I.T.A.; Strateanu, R.; Oprescu, A.C.; Graur, M.; Mihalache, L. Can the epic food frequency questionnaire be applied to the population in Romania? Med. Surg. J. 2015, 119, 856–863. [Google Scholar]
- Nishi, S.K.; Babio, N.; Gomez-Martinez, C.; Martinez-Gonzalez, M.A.; Ros, E.; Corella, D.; Castaner, O.; Martinez, J.A.; Alonso-Gomez, A.M.; Warnberg, J.; et al. Mediterranean, DASH, and MIND Dietary Patterns and Cognitive Function: The 2-Year Longitudinal Changes in an Older Spanish Cohort. Front. Aging Neurosci. 2021, 13, 782067. [Google Scholar] [CrossRef]
- Montonen, J.; Knekt, P.; Harkanen, T.; Jarvinen, R.; Heliovaara, M.; Aromaa, A.; Reunanen, A. Dietary patterns and the incidence of type 2 diabetes. Am. J. Epidemiol. 2005, 161, 219–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgi, L.; Rimm, E.B.; Willett, W.C.; Forman, J.P. Potato intake and incidence of hypertension: Results from three prospective US cohort studies. BMJ 2016, 353, i2351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; You, D.; Lu, N.; Duan, D.; Feng, X.; Astell-Burt, T.; Zhu, P.; Han, L.; Duan, S.; Zou, Z. Potatoes Consumption and Risk of Type 2 Diabetes: A Meta-analysis. Iran. J. Public Health 2018, 47, 1627–1635. [Google Scholar] [PubMed]
- Dyson, P.A.; Twenefour, D.; Breen, C.; Duncan, A.; Elvin, E.; Goff, L.; Hill, A.; Kalsi, P.; Marsland, N.; McArdle, P.; et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet. Med. 2018, 35, 541–547. [Google Scholar] [CrossRef]
- Slavin, J. Whole grains and human health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Ntzouvani, A.; Antonopoulou, S.; Nomikos, T. Effects of nut and seed consumption on markers of glucose metabolism in adults with prediabetes: A systematic review of randomised controlled trials. Br. J. Nutr. 2019, 122, 361–375. [Google Scholar] [CrossRef]
- Sabour, H.; Norouzi-Javidan, A.; Soltani, Z.; Mousavifar, S.A.; Latifi, S.; Emami-Razavi, S.H.; Ghodsi, S.M. The correlation between dietary fat intake and blood pressure among people with spinal cord injury. Iran. J. Neurol. 2016, 15, 121–127. [Google Scholar]
- Labban, M.; Itani, M.M.; Maaliki, D.; Nasreddine, L.; Itani, H.A. The Sweet and Salty Dietary Face of Hypertension and Cardiovascular Disease in Lebanon. Front. Physiol. 2021, 12, 802132. [Google Scholar] [CrossRef]
- Kolahdouz-Mohammadi, R.; Malekahmadi, M.; Clayton, Z.S.; Sadat, S.Z.; Pahlavani, N.; Sikaroudi, M.K.; Soltani, S. Effect of Egg Consumption on Blood Pressure: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Curr. Hypertens. Rep. 2020, 22, 24. [Google Scholar] [CrossRef]
- MacDonald, C.J.; Madika, A.L.; Bonnet, F.; Fagherazzi, G.; Lajous, M.; Boutron-Ruault, M.C. Cholesterol and Egg Intakes, and Risk of Hypertension in a Large Prospective Cohort of French Women. Nutrients 2020, 12, 1350. [Google Scholar] [CrossRef]
- Pestoni, G.; Riedl, A.; Breuninger, T.A.; Wawro, N.; Krieger, J.P.; Meisinger, C.; Rathmann, W.; Thorand, B.; Harris, C.; Peters, A.; et al. Association between dietary patterns and prediabetes, undetected diabetes or clinically diagnosed diabetes: Results from the KORA FF4 study. Eur. J. Nutr. 2021, 60, 2331–2341. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Beydoun, M.A. Meat consumption is associated with obesity and central obesity among US adults. Int. J. Obes. 2009, 33, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, M.H.; Salehi-Abargouei, A.; Surkan, P.J.; Azadbakht, L. Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes. Rev. 2014, 15, 740–748. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Kendall, C.W.; Blanco Mejia, S.; Cozma, A.I.; Ha, V.; Mirrahimi, A.; Jayalath, V.H.; Augustin, L.S.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled dietary trials. PLoS ONE 2014, 9, e103376. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Hu, F.B.; Tapsell, L.C.; Josse, A.R.; Kendall, C.W.C. Possible Benefit of Nuts in Type 2 Diabetes. J. Nutr. 2008, 138, 1752S–1756S. [Google Scholar] [CrossRef] [Green Version]
- Klangjareonchai, T.; Putadechakum, S.; Sritara, P.; Roongpisuthipong, C. The Effect of Egg Consumption in Hyperlipidemic Subjects during Treatment with Lipid-Lowering Drugs. J. Lipids 2012, 2012, 672720. [Google Scholar] [CrossRef] [PubMed]
- Feleke, D.G.; Gebeyehu, G.M.; Admasu, T.D. Effect of deep-fried oil consumption on lipid profile in rats. Sci. Afr. 2022, 17, e01294. [Google Scholar] [CrossRef]
- Sharma, S.P.; Chung, H.J.; Kim, H.J.; Hong, S.T. Paradoxical Effects of Fruit on Obesity. Nutrients 2016, 8, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreher, M.L.; Ford, N.A. A Comprehensive Critical Assessment of Increased Fruit and Vegetable Intake on Weight Loss in Women. Nutrients 2020, 12, 1919. [Google Scholar] [CrossRef] [PubMed]
- Aasheim, E.T.; Sharp, S.J.; Appleby, P.N.; Shipley, M.J.; Lentjes, M.A.; Khaw, K.T.; Brunner, E.; Key, T.J.; Wareham, N.J. Tinned fruit consumption and mortality in three prospective cohorts. PLoS ONE 2015, 10, e0117796. [Google Scholar] [CrossRef]
- Park, S.J.; Park, J.; Song, H.J.; Lee, C.H.; Lee, H.J. Association between dairy product intake and hypertriglyceridemia in Korean adults. Nutr. Res. Pract. 2020, 14, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Merino, J.; Mateo-Gallego, R.; Plana, N.; Bea, A.M.; Ascaso, J.; Lahoz, C.; Aranda, J.L. Hypertriglyceridemic Registry of Spanish Arteriosclerosis, S. Low-fat dairy products consumption is associated with lower triglyceride concentrations in a Spanish hypertriglyceridemic cohort. Nutr. Hosp. 2013, 28, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Alvarenga, J.C.; Ebbesson, S.O.; Ebbesson, L.O.; Tejero, M.E.; Voruganti, V.S.; Comuzzie, A.G. Polyunsaturated fatty acids effect on serum triglycerides concentration in the presence of metabolic syndrome components. The Alaska-Siberia Project. Metabolism 2010, 59, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Lampousi, A.M.; Portillo, M.P.; Romaguera, D.; Hoffmann, G.; Boeing, H. Olive oil in the prevention and management of type 2 diabetes mellitus: A systematic review and meta-analysis of cohort studies and intervention trials. Nutr. Diabetes 2017, 7, e262. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, P.; Mao, L.; Wu, F.; Wang, J.; Jiao, J.; Zhang, Y. Cooking Oil Consumption Is Positively Associated with Risk of Type 2 Diabetes in a Chinese Nationwide Cohort Study. J. Nutr. 2020, 150, 1799–1807. [Google Scholar] [CrossRef]
- Gentilcore, D.; Chaikomin, R.; Jones, K.L.; Russo, A.; Feinle-Bisset, C.; Wishart, J.M.; Rayner, C.K.; Horowitz, M. Effects of fat on gastric emptying of and the glycemic, insulin, and incretin responses to a carbohydrate meal in type 2 diabetes. J. Clin. Endocrinol. Metab. 2006, 91, 2062–2067. [Google Scholar] [CrossRef]
- McKeown, N.M.; Yoshida, M.; Shea, M.K.; Jacques, P.F.; Lichtenstein, A.H.; Rogers, G.; Booth, S.L.; Saltzman, E. Whole-grain intake and cereal fiber are associated with lower abdominal adiposity in older adults. J. Nutr. 2009, 139, 1950–1955. [Google Scholar] [CrossRef] [Green Version]
- Bazzano, L.A.; Song, Y.; Bubes, V.; Good, C.K.; Manson, J.E.; Liu, S. Dietary intake of whole and refined grain breakfast cereals and weight gain in men. Obes. Res. 2005, 13, 1952–1960. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Willett, W.C.; Manson, J.E.; Hu, F.B.; Rosner, B.; Colditz, G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am. J. Clin. Nutr. 2003, 78, 920–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, S.; Quinn, M.A.; Weideman, P.; Koh, H. Factors influencing serum CA 125 levels in normal women. Obstet. Gynecol. 1992, 79, 511–514. [Google Scholar] [PubMed]
Variables | Prediabetic (n = 264) | T2DM (n = 587) | p Value |
---|---|---|---|
Age (years) | 60.1 ± 0.7 a | 62.3 ± 0.4 b | 0.007 |
Men n, (%) | 92 (34.8%) | 232 (39.5%) | 0.194 |
Women n, (%) | 172 (65.2%) | 355 (60.5%) | |
Urban n, (%) | 165 (62.5%) | 349 (59.5%) | 0.506 |
Rural n, (%) | 99 (37.5%) | 238 (40.5%) | |
SBP (mm Hg) | 142.1 ± 1.3 a | 145.4 ± 0.8 b | 0.033 |
DBP (mm Hg) | 86.0 ± 0.7 | 86.5 ± 0.4 | 0.524 |
Weight (kg) | 86.4 ± 1.0 | 87.7 ± 0.6 | 0.304 |
WC (cm) | 102.7 ± 0.9 a | 106.1 ± 0.5 b | 0.001 |
BMI (kg/m2) | 31.4 ± 0.3 | 31.6 ± 0.2 | 0.612 |
BF (%) | 35.3 ± 0.5 | 35.6 ± 0.4 | 0.809 |
FPG (mg/dL) | 122.1 ± 2.1 a | 159.5 ± 2.4 b | 0.000 |
HbA1c (%) | 5.8 ± 0.1 a | 7.8 ± 0.1 b | 0.000 |
Serum insulin (µIU/mL) | 13.5 ± 0.7 | 14.1 ± 0.5 | 0.524 |
Total cholesterol (mg/dL) | 189.8 ± 2.9 a | 201.5 ± 2.1 b | 0.002 |
Triglycerides (mg/dL) | 135.9 ± 5.8 a | 166.5 ± 5.1 b | 0.000 |
HDL cholesterol (mg/dL) | 55.1 ± 0.9 a | 51.8 ± 0.7 b | 0.010 |
LDL cholesterol (mg/dL) | 113.1 ± 2.2 a | 120.6 ± 1.6 b | 0.000 |
Variables | Prediabetic | T2DM | p Value |
---|---|---|---|
Alcoholic beverages (g) | 20.9 ± 4.0 | 21.0 ± 2.2 | 0.984 |
Cereals and cereal products (g) | 200.6 ± 7.5 | 192.2 ± 3.7 | 0.265 |
Eggs and egg dishes (g) | 20.8 ± 1.3 | 21.1 ± 0.6 | 0.809 |
Fats and oils (g) | 7.8 ± 0.5 a | 6.4 ± 0.2 b | 0.018 |
Fish and fish products (g) | 19.4 ± 1.2 a | 22.8 ± 1.1 b | 0.047 |
Fruit (g) | 243.3 ± 9.9 a | 287.7 ± 9.3 b | 0.001 |
Meat and meat products (g) | 109.1 ± 4.2 | 103.5 ± 2.5 | 0.241 |
Milk and milk products (g) | 305.5 ± 14.2 | 302.3 ± 9.3 | 0.849 |
Non-alcoholic beverages (g) | 334.9 ± 13.2 | 337.0 ± 9.7 | 0.903 |
Nuts and seeds (g) | 4.3 ± 0.7 | 3.9 ± 0.3 | 0.514 |
Potatoes (g) | 66.6 ± 4.8 a | 57.1 ± 1.7 b | 0.024 |
Soups and sauces (g) | 223.7 ± 8.4 | 223.0 ± 5.5 | 0.943 |
Sugars, preserves and snacks (g) | 20.6 ± 1.3 a | 17.0 ± 0.8 b | 0.021 |
Vegetables (g) | 260.8 ± 9.0 | 276.8 ± 5.9 | 0.137 |
Prediabetic | T2DM | |||||
---|---|---|---|---|---|---|
Food Group | Pattern 1 | Pattern 2 | Pattern 3 | Pattern 1 | Pattern 2 | Pattern 3 |
Fats and oils | 0.700 | 0.371 | - | 0.821 | - | - |
Fruit | 0.653 | 0.375 | - | - | 0.671 | - |
Cereals and cereal products | 0.652 | 0.424 | - | 0.651 | - | - |
Sugars, preserves and snacks | 0.576 | - | 0.552 | 0.540 | 0.321 | - |
Non-alcoholic beverages | 0.448 | - | - | - | 0.535 | - |
Nuts and seeds | 0.256 | - | - | - | 0.456 | - |
Potatoes | - | 0.656 | - | 0.616 | - | 0.205 |
Soups and sauces | −0.293 | 0.616 | 0.203 | −0.226 | - | 0.670 |
Vegetables | - | 0.616 | 0.238 | - | 0.667 | 0.335 |
Milk and milk products | - | 0.358 | - | - | 0.236 | 0.272 |
Fish and fish products | - | 0.297 | - | - | 0.216 | - |
Meat and meat products | - | - | 0.769 | - | - | 0.720 |
Alcoholic beverages | - | - | 0.686 | - | - | - |
Eggs and egg dishes | - | - | 0.238 | 0.293 | - | 0.463 |
Variance explained (%) | 20.0 | 9.9 | 9.6 | 16.2 | 11.0 | 10.2 |
Variables | T1 | Pattern 1 T2 | T3 | T1 | Pattern 2 T2 | T3 | T1 | Pattern 3 T2 | T3 |
---|---|---|---|---|---|---|---|---|---|
Age (years) | 59.6 ± 1.5 | 60.1 ± 1.5 | 60.3 ± 1.1 | 56.2 ± 1.8 c | 61.8 ± 1.4 d | 61.0 ± 0.9 d | 59.7 ± 1.6 | 60.6 ± 1.5 | 60.1 ± 1.0 |
SBP (mm Hg) | 139.0 ± 3.4 | 142.2 ± 2.2 | 143.5 ± 1.7 | 133.4 ± 2.9 e | 146.4 ± 2.9 f | 143.9 ± 1.6 f | 143.7 ± 2.8 | 140.6 ± 2.2 | 142.1 ± 1.9 |
DBP (mm Hg) | 84.0 ± 1.4 | 86.4 ± 1.5 | 86.8 ± 0.9 | 82.4 ± 1.7 g | 88.5 ± 1.4 h | 86.4 ± 0.8 gh | 87.8 ± 1.7 | 85.9 ± 1.3 | 85.3 ± 0.9 |
Weight (kg) | 84.4 ± 2.2 | 87.5 ± 2.1 | 86.9 ± 1.4 | 84.3 ± 2.4 | 86.9 ± 1.7 | 87.2 ± 1.5 | 84.7 ± 2.0 | 88.4 ± 2.2 | 86.3 ± 1.4 |
WC (cm) | 102.8 ± 1.7 | 103.3 ± 1.6 | 102.4 ± 1.3 | 99.3 ± 2.0 | 103.0 ± 1.4 | 104.2 ± 1.2 | 99.8 ± 1.8 | 104.2 ± 1.7 | 103.4 ± 1.2 |
BMI (kg/m2) | 31.3 ± 0.8 | 31.6 ± 0.7 | 31.4 ± 0.4 | 30.9 ± 0.7 | 31.2 ± 0.5 | 31.8 ± 0.5 | 31.0 ± 0.7 | 31.6 ± 0.7 | 31.6 ± 0.5 |
BF (%) | 35.5 ± 0.9 | 36.0 ± 1.0 | 34.8 ± 0.7 | 35.4 ± 1.0 | 35.5 ± 0.9 | 35.1 ± 0.7 | 35.9 ± 0.9 | 35.1 ± 1.0 | 35.1 ± 0.7 |
FPG (mg/dL) | 114.6 ± 3.9 a | 119.1 ± 3.5 ab | 125.4 ± 3.4 b | 105.5 ± 3.4 i | 125.1 ± 4.4 j | 124.8 ± 3.1 j | 118.2 ± 3.5 | 125.0 ± 4.6 | 122.6 ± 3.2 |
HbA1c (%) | 5.8 ± 0.1 | 5.8 ± 0.1 | 5.8 ± 0.1 | 5.7 ± 0.1 | 5.8 ± 0.1 | 5.8 ± 0.0 | 5.8 ± 0.1 | 5.7 ± 0.1 | 5.8 ± 0.1 |
Serum insulin (uIU/mL) | 11.1 ± 0.9 | 14.3 ± 1.5 | 14.3 ± 1.2 | 9.5 ± 0.7 k | 14.4 ± 1.3 m | 14.9 ± 1.2 m | 11.2 ± 1.0 | 15.0 ± 1.2 | 13.8 ± 1.2 |
Total cholesterol (mg/dL) | 193.8 ± 5.3 | 190.6 ± 5.5 | 187.3 ± 4.3 | 194.7 ± 6.4 | 186.7 ± 5.1 | 189.1 ± 4.1 | 188.2 ± 6.0 | 186.7 ± 5.0 | 192.1 ± 4.3 |
Triglycerides (mg/dL) | 128.8 ± 9.9 | 124.6 ± 9.0 | 145.2 ± 9.6 | 120.0 ± 8.6 | 139.0 ± 10.9 | 141.8 ± 9.3 | 123.9 ± 7.9 | 152.8 ± 12.2 | 133.5 ± 9.1 |
HDL cholesterol (mg/dL) | 55.9 ± 2.1 | 56.2 ± 1.9 | 54.2 ± 1.3 | 57.9 ± 1.9 | 57.1 ± 2.1 | 52.9 ± 1.3 | 55.4 ± 1.7 | 55.3 ± 2.1 | 54.9 ± 1.4 |
LDL cholesterol (mg/dL) | 114.1 ± 4.4 | 116.0 ± 4.1 | 111.2 ± 3.3 | 117.5 ± 4.7 | 105.4 ± 4.0 | 115.2 ± 3.2 | 113.4 ± 4.4 | 106.0 ± 3.7 | 116.5 ± 3.4 |
T1 | Pattern 1 T2 | T3 | T1 | Pattern 2 T2 | T3 | T1 | Pattern 3 T2 | T3 | |
---|---|---|---|---|---|---|---|---|---|
Age (year) | 61.9 ± 0.8 | 62.9 ± 0.7 | 62.1 ± 0.5 | 61.5 ± 0.8 | 63.7 ± 0.6 | 62.0 ± 0.5 | 62.0 ± 0.9 | 62.2 ± 0.8 | 62.4 ± 0.5 |
SBP (mm Hg) | 141.4 ± 1.3 a | 146.0 ± 1.6 ab | 147.2 ± 1.3 b | 143.7 ± 1.3 | 145.2 ± 1.5 | 146.4 ± 1.3 | 142.8 ± 1.4 | 144.9 ± 1.5 | 147.6 ± 1.2 |
DBP (mm Hg) | 85.5 ± 0.9 | 86.0 ± 1.1 | 87.4 ± 0.8 | 86.4 ± 1.0 | 86.7 ± 1.0 | 86.6 ± 0.8 | 85.6 ± 0.8 | 85.6 ± 0.9 | 87.8 ± 0.8 |
Weight (kg) | 85.8 ± 1.3 | 88.7 ± 1.4 | 88.2 ± 0.9 | 87.3 ± 1.2 | 86.9 ± 1.3 | 88.3 ± 0.9 | 86.0 ± 1.2 | 87.2 ± 1.3 | 88.8 ± 0.9 |
WC (cm) | 105.0 ± 1.0 | 106.6 ± 1.2 | 106.5 ± 0.7 | 104.7 ± 1.0 | 106.2 ± 0.9 | 106.8 ± 0.8 | 104.4 ± 1.0 | 105.4 ± 1.1 | 107.4 ± 0.7 |
BMI (kg/m2) | 31.3 ± 0.4 | 32.4 ± 0.4 | 31.5 ± 0.3 | 31.5 ± 0.5 | 31.4 ± 0.4 | 31.9 ± 0.3 | 31.9 ± 0.4 | 31.4 ± 0.4 | 31.7 ± 0.3 |
BF (%) | 35.8 ± 0.6 | 36.9 ± 1.3 | 34.7 ± 0.4 | 35.8 ± 0.6 | 35.3 ± 0.6 | 35.6 ± 0.7 | 36.2 ± 0.7 | 35.4 ± 0.6 | 35.3 ± 0.7 |
FPG (mg/dL) | 153.0 ± 4.7 | 160.4 ± 4.8 | 162.3 ± 3.4 | 154.9 ± 4.8 | 159.8 ± 4.5 | 161.7 ± 3.5 | 151.1 ± 4.3 | 161.7 ± 5.1 | 162.7 ± 3.4 |
HbA1c (%) | 7.8 ± 0.1 | 7.7 ± 0.1 | 7.9 ± 1.2 | 7.8 ± 0.1 | 7.6 ± 0.1 | 7.9 ± 0.1 | 7.5 ± 0.1 c | 7.9 ± 0.1 d | 7.9 ± 0.1 d |
Serum insulin (uIU/mL) | 14.5 ± 0.9 | 15.5 ± 1.3 | 13.1 ± 0.5 | 13.7 ± 0.9 | 15.4 ± 1.2 | 13.5 ± 0.6 | 12.9 ± 0.9 | 14.8 ± 1.2 | 14.2 ± 0.6 |
Total cholesterol (mg/dL) | 202.4 ± 4.3 | 201.8 ± 4.3 | 200.8 ± 3.1 | 201.2 ± 3.9 | 197.9 ± 4.2 | 203.4 ± 3.2 | 206.3 ± 4.3 | 192.7 ± 4.1 | 203.4 ± 3.1 |
Triglycerides (mg/dL) | 174.2 ± 15.8 | 157.7 ± 6.4 | 167.1 ± 5.7 | 153.7 ± 6.3 | 167.7 ± 8.9 | 172.3 ± 8.6 | 158.6 ± 6.4 | 163.4 ± 7.7 | 172.0 ± 8.9 |
HDL cholesterol (mg/dL) | 51.2 ± 1.3 | 51.6 ± 1.2 | 52.2 ± 1.0 | 50.9 ± 1.1 | 52.0 ± 1.4 | 52.1 ± 1.0 | 52.3 ± 1.3 | 51.7 ± 1.3 | 51.6 ± 1.0 |
LDL cholesterol (mg/dL) | 119.9 ± 3.1 | 121.5 ± 3.1 | 120.4 ± 2.4 | 122.4 ± 3.0 | 116.5 ± 3.3 | 121.7 ± 2.3 | 125.1 ± 3.3 e | 113.8 ± 3.3 f | 121.7 ± 2.2 ef |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iatcu, C.O.; Gal, A.-M.; Covasa, M. Dietary Patterns of Patients with Prediabetes and Type 2 Diabetes. Metabolites 2023, 13, 532. https://doi.org/10.3390/metabo13040532
Iatcu CO, Gal A-M, Covasa M. Dietary Patterns of Patients with Prediabetes and Type 2 Diabetes. Metabolites. 2023; 13(4):532. https://doi.org/10.3390/metabo13040532
Chicago/Turabian StyleIatcu, Camelia Oana, Ana-Maria Gal, and Mihai Covasa. 2023. "Dietary Patterns of Patients with Prediabetes and Type 2 Diabetes" Metabolites 13, no. 4: 532. https://doi.org/10.3390/metabo13040532
APA StyleIatcu, C. O., Gal, A. -M., & Covasa, M. (2023). Dietary Patterns of Patients with Prediabetes and Type 2 Diabetes. Metabolites, 13(4), 532. https://doi.org/10.3390/metabo13040532