Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Comparison to Prior Reports
4.2. General Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef]
- Bosi, A.; Banfi, D.; Bistoletti, M.; Giaroni, C.; Baj, A. Tryptophan metabolites along the microbiota-gut-brain axis: An interkingdom communication system influencing the gut in health and disease. Int. J. Tryptophan Res. 2020, 13, 1178646920928984. [Google Scholar] [CrossRef]
- Donia, M.S.; Fischbach, M.A. Small molecules from the human microbiota. Science 2015, 24, 1254766. [Google Scholar] [CrossRef]
- Cryan, J.F.; Boehme, M.; Dinan, T.G. Is the fountain of youth in the gut microbiome? J. Physiol. 2019, 597, 2323–2324. [Google Scholar] [CrossRef]
- Galligan, J.J. Beneficial actions of microbiota-derived tryptophan metabolites. Neurogastroenterol. Motil. 2018, 30, e13283. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.L.; Farzi, A.; Zhu, W.Y. Tryptophan Metabolism: A Link between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, C.E.; Martin, J.A.; Manriquez, F.V.; Dinan, T.G.; Cryan, J.F.; Clark, G. Focus on the essentials: Tryptophan metabolism and the microbiome-gut-brain axis. Curr. Opin. Pharmacol. 2019, 48, 137–145. [Google Scholar] [CrossRef]
- Konopelski, P.; Ufnal, M. Indoles—Gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr. Drug Metab. 2018, 19, 883–890. [Google Scholar] [CrossRef]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 17, 3294. [Google Scholar] [CrossRef] [PubMed]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, E.; Bordenstein, S.R.; Quinn, J.L.; Dinan, T.G.; Cryan, J.F. Microbiota and the social brain. Science 2019, 366, eaar2016. [Google Scholar] [CrossRef]
- Sonowal, R.; Swimm, A.; Sahoo, A.; Luo, L.; Matsunaga, Y.; Wu, Z.; Bhingarde, J.A.; Ejzak, E.A.; Ranawade, A.; Qadoat, H. Indoles from commensal bacteria extend healthspan. Proc. Natl. Acad. Sci. USA 2017, 114, E7506–E7515. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.M. The quantitative determination of indolic microbial tryptophan metabolites in human and rodent samples: A systematic review. J. Chromatogr. B 2021, 1186, 123008. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Wood, T.K.; Lee, J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 2015, 23, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Konopelski, P.; Mogilnicka, I. Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals’ Health and Disease. Int. J. Mol. Sci. 2022, 23, 1222. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, F.G.; Cole, S.W. A contribution to the chemistry of proteids: Part II. The constitution of tryptophane, and the action of bacteria upon it. J. Physiol. 1903, 29, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Ward, F.W. The fate of indolepropionic acid in the animal organism. Biochem. J. 1923, 17, 907–915. [Google Scholar] [CrossRef]
- Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017, 551, 648–652. [Google Scholar] [CrossRef]
- Jennis, M.; Cavanaugh, C.R.; Leo, G.C.; Mabus, J.R.; Lenhard, J.; Hornby, P.J. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol. Motil. 2018, 30, e13178. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, T.; Vidova, V.; Bienertova-Vasku, J.; Janku, P.; Almasi, M.; Klanova, J.; Spacil, Z. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal. Chim. Acta 2017, 987, 72–80. [Google Scholar] [CrossRef]
- Bendheim, P.E.; Poeggeler, B.; Neria, E.; Ziv, V.; Pappolla, M.A.; Chain, D.G. Development of indole-3-propionic acid (OXIGON) for Alzheimer’s disease. J. Mol. Neurosci. 2002, 19, 213–217. [Google Scholar] [CrossRef]
- Hwang, I.K.; Yoo, K.Y.; Li, H.; Park, O.K.; Lee, C.H.; Choi, J.H.; Jeong, Y.G.; Lee, Y.L.; Kim, Y.M.; Kwon, Y.G.; et al. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J. Neurosci. Res. 2009, 87, 2126–2137. [Google Scholar] [CrossRef]
- Karbownik, M.; Reiter, R.J.; Garcia, J.J.; Cabrera, J.; Burkhardt, S.; Osuna, C.; Lewiński, A. Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: Relevance to cancer reduction. J. Cell Biochem. 2001, 81, 507–513. [Google Scholar] [CrossRef]
- Poeggeler, B.; Pappolla, M.A.; Hardeland, R.R.; Rassoulpour, A.; Hodgkins, P.S.; Guidetti, P.; Schwarcz, R. Indole-3-propionate: A potent hydroxyl radical scavenger in rat brain. Brain Res. 1999, 815, 382–388. [Google Scholar] [CrossRef]
- Guijas, C.; Horton, L.E.; Hoang, L.; Domingo-Almenara, X.; Billings, E.M.; Ware, B.C.; Sullivan, B.; Siuzdak, G. Microbial Metabolite 3-Indolepropionic Acid Mediates Immunosuppression. Metabolites 2022, 12, 645. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Y.; Lin, C.J.; Pan, H.C.; Lee, C.C.; Lu, S.C.; Hsieh, Y.T.; Huang, S.Y.; Huang, H.Y. Clinical association between the metabolite of healthy gut microbiota, 3-indolepropionic acid and chronic kidney disease. Clin. Nutr. 2019, 38, 2945–2948. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Zampino, M.; Moaddel, R.; Chen, T.K.; Tian, Q.; Ferrucci, L.; Semba, R.D. Plasma metabolites associated with chronic kidney disease and renal function in adults from the Baltimore Longitudinal Study of Aging. Metabolomics 2021, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Cason, C.A.; Dolan, K.T.; Sharma, G.; Tao, M.; Kulkarni, R.; Helenowski, I.B.; Doane, B.M.; Avram, M.J.; McDermott, M.M.; Ho, K.J.; et al. Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J. Vasc. Surg. 2018, 68, 1552–1562.e7. [Google Scholar] [CrossRef]
- Sehgal, R.; de Mello, V.D.; Männistö, V.; Lindström, J.; Tuomilehto, J.; Pihlajamäki, J.; Uusitupa, M. Indolepropionic Acid, a Gut Bacteria-Produced Tryptophan Metabolite and the Risk of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Nutrients 2022, 14, 4695. [Google Scholar] [CrossRef]
- Tuomainen, M.; Lindström, J.; Lehtonen, M.; Auriola, S.; Pihlajamäki, J.; Peltonen, M.; Tuomilehto, J.; Uusitupa, M.; de Mello, V.D.; Hanhineva, K. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr. Diabetes 2018, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Lécuyer, L.; Dalle, C.; Micheau, P.; Lécuyer, L.; Dalle, C.; Micheau, P.; Pétéra, M.; Centeno, D.; Lyan, B.; Lagree, M.; et al. Untargeted plasma metabolomic profiles associated with overall diet in women from the SU.VI.MAX cohort. Eur. J. Nutr. 2020, 59, 3425–3439. [Google Scholar] [CrossRef] [PubMed]
- Guertin, K.A.; Moore, S.C.; Sampson, J.N.; Huang, W.Y.; Xiao, Q.; Stolzenberg-Solomon, R.Z.; Sinha, R.; Cross, A.J. Metabolomics in nutritional epidemiology: Identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am. J. Clin. Nutr. 2014, 100, 208–217. [Google Scholar] [CrossRef]
- Anderson, G.M. Quantitation of tryptophan metabolites in rat feces by thin-layer chromatography. J. Chromatogr. 1975, 105, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Gryp, T.; De Paepe, K.; Vanholder, R.; Kerckhof, F.M.; Van Biesen, W.; Van de Wiele, T.; Verbeke, F.; Speeckaert, M.; Joossens, M.; Couttenye, M.M.; et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020, 97, 1230–1242. [Google Scholar] [CrossRef] [PubMed]
- Sirich, T.L.; Aronov, P.A.; Plummer, N.S.; Hostetter, T.H.; Meyer, T.W. Numerous protein-bound solutes are cleared by the kidney with high efficiency. Kidney Int. 2013, 84, 585–590. [Google Scholar] [CrossRef]
- Giebułtowicz, J.; Korytowska, N.; Sankowski, B.; Wroczyński, P. Development and validation of a LC-MS/MS method for quantitative analysis of uraemic toxins p-cresol sulphate and indoxyl sulphate in saliva. Talanta 2016, 150, 593–598. [Google Scholar] [CrossRef]
- Morita, I.; Kawamoto, M.; Yoshida, H. Difference in the concentration of tryptophan metabolites between maternal and umbilical foetal blood. J. Chromatogr. 1992, 576, 334–339. [Google Scholar] [CrossRef]
- Korytowska, N.; Sankowski, B.; Wyczałkowska-Tomasik, A.; Pączek, L.; Wroczyński, P.; Giebułtowicz, J. The utility of saliva testing in the estimation of uremic toxin levels in serum. Clin. Chem. Lab. Med. 2018, 57, 230–237. [Google Scholar] [CrossRef]
- Dame, Z.T.; Aziat, F.; Mandal, R. The human saliva metabolome. Metabolomics 2015, 11, 1864–1883. [Google Scholar] [CrossRef]
- Sugimoto, M.; Saruta, J.; Matsuki, C. Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics 2013, 9, 454–463. [Google Scholar] [CrossRef]
- Cooke, M.; Leeves, N.; White, C. Time profile of putrescine, cadaverine, indole and skatole in human saliva. Arch. Oral. Biol. 2003, 48, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Ujhelyi, L.; Balla, G.; Jeney, V.; Varga, Z.; Nagy, E.; Vercellotti, G.M.; Agarwal, A.; Eaton, J.W.; Balla, J. Hemodialysis reduces inhibitory effect of plasma ultrafiltrate on LDL oxidation and subsequent endothelial reactions. Kidney Int. 2006, 69, 144–151. [Google Scholar] [CrossRef]
- Conrad, M.L.; Moser, A.C.; Hage, D.S. Evaluation of indole-based probes for high-throughput screening of drug binding to human serum albumin: Analysis by high-performance affinity chromatography. J. Sep. Sci. 2009, 32, 1145–1155. [Google Scholar] [CrossRef]
- McMenamy, R.H. Association of indole analogues to defatted human serum albumin. Arch. Biochem. Biophys. 1963, 103, 409–417. [Google Scholar] [CrossRef]
- Tomasić, A.; Bertosa, B.; Tomić, S.; Soskić, M.; Magnus, V. Binding behavior of amino acid conjugates of indole-3-acetic acid to immobilized human serum albumin. J. Chromatogr. A 2007, 1154, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Bertuzzi, A.; Mingrone, G.; Gandolfi, A.; Greco, A.V.; Ringoir, S.; Vanholder, R. Binding of indole-3-acetic acid to human serum albumin and competition with L-tryptophan. Clin. Chim. Acta 1997, 265, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Kragh-Hansen, U.; Chuang, V.T.; Otagiri, M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol. Pharm. Bull. 2002, 25, 695–704. [Google Scholar] [CrossRef]
COMPOUND | PLASMA | PLASMA | SALIVA | SALIVA | RT (min) | RELATIVE RESPONSE * | LOD ** (pg) |
---|---|---|---|---|---|---|---|
ng/mL ADDED | 400 | 40 | 40 | 10 | --- | --- | --- |
ICA | 93.8 ± 1.4 | 98.9 ± 3.4 | 107.2 ± 4.3 | 99.2 ± 5.4 | 6.4 | 0.091 | 2.0 |
IAA | 96.2 ± 1.9 | 94.6 ± 2.6 | 96.9 ± 3.2 | 96.2 ± 4.8 | 7.6 | 1.04 | 0.2 |
ILA | 105.8 ± 1.1 | 105.4 ± 2.9 | 109.3 ± 3.5 | 104.2 ± 6.2 | 8.6 | 0.43 | 0.4 |
2-MeIAA | 99.3 ± 0.8 | 100.1 ± 1.4 | 108.2 ± 5.0 | 99.6 ± 7.0 | 9.6 | 0.47 | 0.4 |
IPA | 101.7 ± 0.6 | 100.5 ± 3.1 | 101.3 ± 6.0 | 101.4 ± 6.3 | 14.0 | 0.64 | 0.3 |
1-MeIAA | 99.3 ± 1.7 | 102.0 ± 4.3 | 105.5 ± 6.5 | 101.2 ± 6.3 | 16.6 | 1.0 | 0.2 |
ISO4 | 104.4 ± 1.0 | 104.5 ± 3.4 | 110.0 ± 4.9 | 102.7 ± 5.8 | 20.4 | 0.36 | 0.6 |
IND | 101.0 ± 0.3 | 104.4 ± 4.1 | 101.4 ± 0.5 | 117.8 ± 6.2 | 22.2 | 0.35 | 0.6 |
IBA | 99.0 ± 0.4 | 96.6 ± 3.5 | 91.5 ± 4.0 | 105.8 ± 5.9 | 24.4 | 0.19 | 1.0 |
INDOLE | TOTAL PLASMA CONC. (n = 14) (ng/mL) | PRIOR REPORTED TOTAL PLASMA CONCENTRATIONS (ng/mL) | ||
ICA | <2 | No Prior | ||
IAA | 225 ± 135 | 225 ± 50 summary mean ± SD [14] | ||
ILA | 107 ± 20.3 | 205 ± 124 summary mean ± SD [14] | ||
IPA | 142 ± 67.7 | 112 ± 23 summary mean ± SD [14] | ||
ISO4 | 507 ± 180 | 595 ± 576 [36], ~1030 [37], 1040 (median, IQR 650) [38] | ||
IND | 3.05 ± 3.70 | 4.1 ± 3.5 summary mean ± SD [14] | ||
IBA | <1 | No Prior | ||
INDOLE | PLASMA UF CONC. (n = 14) (ng/mL) | PRIOR REPORTED PLASMA UF (ng/mL) | PLASMA % FREE * (n = 14) | PRIOR REPORTED %-FREE |
ICA | <0.1 | No Prior | --- | No Prior |
IAA | 21.6 ± 15.8 | 19.3 ± 14.0 [39] | 9.23 ± 2.45 | 18% [39] |
ILA | 1.34 ± 0.46 | 22.6 ± 16.4 ng/mL [39] | 1.10 ± 0.63 | 18% [39] |
IPA | 0.33 ± 0.12 | No Prior | 0.26 ± 0.13 | No Prior |
ISO4 | 12.3 ± 5.5 | 27.2 [40], 11 (IQR 16) [41] | 2.56 ± 1.22 | 2.7% [40], 1% [41] |
IND | NA | No Prior | --- | No Prior |
IBA | <0.05 | No Prior | --- | No Prior |
INDOLE | SALIVA CONC. (n = 7) (ng/mL) | SALIVA CONC. (n = 7) Median (IQR) (ng/mL) | PRIOR REPORTED SALIVA CONCENTRATIONS (ng/mL) | |
ICA | <2 | --- | No Prior | |
IAA | 236 ± 287 | 94 (390) | 26.3 ± 83.7 [42], 550 ± 554 [41] | |
ILA | 12.4 ± 15.2 | 7.6 (6.2) | No Prior | |
IPA | <1 | --- | No Prior | |
ISO4 | 4.9 ± 4.1 | 3.9 (5.4) | 9.4 (IQR 7.6) [38], 8 (IQR 9) [40] | |
IND | 160 ± 269 | 26.2 (197) | 40 ± 90 [43] | |
IBA | <1 | --- | No Prior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, G.M. Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva. Metabolites 2023, 13, 602. https://doi.org/10.3390/metabo13050602
Anderson GM. Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva. Metabolites. 2023; 13(5):602. https://doi.org/10.3390/metabo13050602
Chicago/Turabian StyleAnderson, George M. 2023. "Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva" Metabolites 13, no. 5: 602. https://doi.org/10.3390/metabo13050602
APA StyleAnderson, G. M. (2023). Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva. Metabolites, 13(5), 602. https://doi.org/10.3390/metabo13050602