Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture, Reagents, and the Use of Adenovirus
2.2. Human and Rodent Islet Experiments
2.3. Apoptosis Assays
2.4. Immunoblot Analysis
2.5. Quantitative RT-PCR Analysis
2.6. Statistical Analysis
3. Results
3.1. GLT and ER Stress Attenuate EGFR Activation in Rodent Beta Cells and Human Islets
3.2. EGFR Feedback Inhibitor Mig6 Is Elevated in GLT-Treated Beta Cells and T2D Human Islets
3.3. Mig6 Inhibits EGFR in Pancreatic Beta Cells and Promotes Death during GLT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shcheglova, E.; Blaszczyk, K.; Borowiak, M. Mitogen Synergy: An Emerging Route to Boosting Human Beta Cell Proliferation. Front. Cell Dev. Biol. 2021, 9, 734597. [Google Scholar] [CrossRef] [PubMed]
- Hakonen, E.; Ustinov, J.; Mathijs, I.; Palgi, J.; Bouwens, L.; Miettinen, P.J.; Otonkoski, T. Epidermal growth factor (EGF)-receptor signalling is needed for murine beta cell mass expansion in response to high-fat diet and pregnancy but not after pancreatic duct ligation. Diabetologia 2011, 54, 1735–1743. [Google Scholar] [CrossRef]
- Hakonen, E.; Ustinov, J.; Palgi, J.; Miettinen, P.J.; Otonkoski, T. EGFR signaling promotes beta-cell proliferation and survivin expression during pregnancy. PLoS ONE 2014, 9, e93651. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.A.; Gannon, M. The Beta Cell in Type 2 Diabetes. Curr. Diabetes Rep. 2019, 19, 81. [Google Scholar] [CrossRef]
- Cousin, S.P.; Hugl, S.R.; Wrede, C.E.; Kajio, H.; Myers, M.G., Jr.; Rhodes, C.J. Free fatty acid-induced inhibition of glucose and insulin-like growth factor I-induced deoxyribonucleic acid synthesis in the pancreatic beta-cell line INS-1. Endocrinology 2001, 142, 229–240. [Google Scholar] [CrossRef]
- Srinivasan, S.; Ohsugi, M.; Liu, Z.; Fatrai, S.; Bernal-Mizrachi, E.; Permutt, M.A. Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in mouse insulinoma cells. Diabetes 2005, 54, 968–975. [Google Scholar] [CrossRef]
- Wrede, C.E.; Dickson, L.M.; Lingohr, M.K.; Briaud, I.; Rhodes, C.J. Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1). J. Biol. Chem. 2002, 277, 49676–49684. [Google Scholar] [CrossRef] [PubMed]
- Hakonen, E.; Ustinov, J.; Eizirik, D.L.; Sariola, H.; Miettinen, P.J.; Otonkoski, T. In vivo activation of the PI3K-Akt pathway in mouse beta cells by the EGFR mutation L858R protects against diabetes. Diabetologia 2014, 57, 970–979. [Google Scholar] [CrossRef]
- Alejandro, E.U.; Johnson, J.D. Inhibition of Raf-1 alters multiple downstream pathways to induce pancreatic beta-cell apoptosis. J. Biol. Chem. 2008, 283, 2407–2417. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Colvin, E.S.; Maier, B.F.; Mirmira, R.G.; Fueger, P.T. Mitogen-inducible gene 6 triggers apoptosis and exacerbates ER stress-induced beta-cell death. Mol. Endocrinol. 2013, 27, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Colvin, E.S.; Ma, H.Y.; Chen, Y.C.; Hernandez, A.M.; Fueger, P.T. Glucocorticoid-induced suppression of beta-cell proliferation is mediated by Mig6. Endocrinology 2013, 154, 1039–1046. [Google Scholar] [CrossRef]
- Hohmeier, H.E.; Mulder, H.; Chen, G.; Henkel-Rieger, R.; Prentki, M.; Newgard, C.B. Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 2000, 49, 424–430. [Google Scholar] [CrossRef]
- Tran, V.V.; Chen, G.; Newgard, C.B.; Hohmeier, H.E. Discrete and complementary mechanisms of protection of beta-cells against cytokine-induced and oxidative damage achieved by bcl-2 overexpression and a cytokine selection strategy. Diabetes 2003, 52, 1423–1432. [Google Scholar] [CrossRef]
- Bain, J.R.; Schisler, J.C.; Takeuchi, K.; Newgard, C.B.; Becker, T.C. An adenovirus vector for efficient RNA interference-mediated suppression of target genes in insulinoma cells and pancreatic islets of langerhans. Diabetes 2004, 53, 2190–2194. [Google Scholar] [CrossRef]
- Milburn, J.L., Jr.; Hirose, H.; Lee, Y.H.; Nagasawa, Y.; Ogawa, A.; Ohneda, M.; BeltrandelRio, H.; Newgard, C.B.; Johnson, J.H.; Unger, R.H. Pancreatic beta-cells in obesity. Evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J. Biol. Chem. 1995, 270, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Naber, S.P.; McDonald, J.M.; Jarett, L.; McDaniel, M.L.; Ludvigsen, C.W.; Lacy, P.E. Preliminary characterization of calcium binding in islet-cell plasma membranes. Diabetologia 1980, 19, 439–444. [Google Scholar] [CrossRef]
- Segatto, O.; Anastasi, S.; Alema, S. Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors. J. Cell Sci. 2011, 124, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, P.J.; Ustinov, J.; Ormio, P.; Gao, R.; Palgi, J.; Hakonen, E.; Juntti-Berggren, L.; Berggren, P.O.; Otonkoski, T. Downregulation of EGF receptor signaling in pancreatic islets causes diabetes due to impaired postnatal beta-cell growth. Diabetes 2006, 55, 3299–3308. [Google Scholar] [CrossRef] [PubMed]
- Grempler, R.; Leicht, S.; Kischel, I.; Eickelmann, P.; Redemann, N. Inhibition of SH2-domain containing inositol phosphatase 2 (SHIP2) in insulin producing INS1E cells improves insulin signal transduction and induces proliferation. FEBS Lett. 2007, 581, 5885–5890. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Wu, H.; Gu, P.; Du, H.; Shao, J.; Wang, J.; Zou, D. Improved glucose-stimulated insulin secretion by intra-islet inhibition of protein-tyrosine phosphatase 1B expression in rats fed a high-fat diet. J. Endocrinol. Investig. 2012, 35, 63–70. [Google Scholar] [CrossRef]
- Frosi, Y.; Anastasi, S.; Ballaro, C.; Varsano, G.; Castellani, L.; Maspero, E.; Polo, S.; Alema, S.; Segatto, O. A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J. Cell Biol. 2010, 189, 557–571. [Google Scholar] [CrossRef]
- Anastasi, S.; Fiorentino, L.; Fiorini, M.; Fraioli, R.; Sala, G.; Castellani, L.; Alema, S.; Alimandi, M.; Segatto, O. Feedback inhibition by RALT controls signal output by the ErbB network. Oncogene 2003, 22, 4221–4234. [Google Scholar] [CrossRef] [PubMed]
- Pante, G.; Thompson, J.; Lamballe, F.; Iwata, T.; Ferby, I.; Barr, F.A.; Davies, A.M.; Maina, F.; Klein, R. Mitogen-inducible gene 6 is an endogenous inhibitor of HGF/Met-induced cell migration and neurite growth. J. Cell Biol. 2005, 171, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Makkinje, A.; Kyriakis, J.M. Gene 33 is an endogenous inhibitor of epidermal growth factor (EGF) receptor signaling and mediates dexamethasone-induced suppression of EGF function. J. Biol. Chem. 2005, 280, 2924–2933. [Google Scholar] [CrossRef] [PubMed]
- Makkinje, A.; Quinn, D.A.; Chen, A.; Cadilla, C.L.; Force, T.; Bonventre, J.V.; Kyriakis, J.M. Gene 33/Mig-6, a transcriptionally inducible adapter protein that binds GTP-Cdc42 and activates SAPK/JNK. A potential marker transcript for chronic pathologic conditions, such as diabetic nephropathy. Possible role in the response to persistent stress. J. Biol. Chem. 2000, 275, 17838–17847. [Google Scholar] [CrossRef]
- Mabuchi, R.; Sasazuki, T.; Shirasawa, S. Mapping of the critical region of mitogene-inducible gene-6 for NF-kappaB activation. Oncol. Rep. 2005, 13, 473–476. [Google Scholar] [PubMed]
- Hopkins, S.; Linderoth, E.; Hantschel, O.; Suarez-Henriques, P.; Pilia, G.; Kendrick, H.; Smalley, M.J.; Superti-Furga, G.; Ferby, I. Mig6 is a sensor of EGF receptor inactivation that directly activates c-Abl to induce apoptosis during epithelial homeostasis. Dev. Cell 2012, 23, 547–559. [Google Scholar] [CrossRef]
- Li, C.; Park, S.; Zhang, X.; Eisenberg, L.M.; Zhao, H.; Darzynkiewicz, Z.; Xu, D. Nuclear Gene 33/Mig6 regulates the DNA damage response through an ATM serine/threonine kinase-dependent mechanism. J. Biol. Chem. 2017, 292, 16746–16759. [Google Scholar] [CrossRef]
- Chen, Y.C.; Colvin, E.S.; Griffin, K.E.; Maier, B.F.; Fueger, P.T. Mig6 haploinsufficiency protects mice against streptozotocin-induced diabetes. Diabetologia 2014, 57, 2066–2075. [Google Scholar] [CrossRef]
- Goldkorn, T.; Ravid, T.; Khan, E.M. Life and death decisions: Ceramide generation and EGF receptor trafficking are modulated by oxidative stress. Antioxid. Redox Signal. 2005, 7, 119–128. [Google Scholar] [CrossRef]
- Knebel, A.; Rahmsdorf, H.J.; Ullrich, A.; Herrlich, P. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J. 1996, 15, 5314–5325. [Google Scholar] [CrossRef] [PubMed]
- Portero-Otin, M.; Pamplona, R.; Bellmunt, M.J.; Ruiz, M.C.; Prat, J.; Salvayre, R.; Negre-Salvayre, A. Advanced glycation end product precursors impair epidermal growth factor receptor signaling. Diabetes 2002, 51, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Zarrouki, B.; Benterki, I.; Fontes, G.; Peyot, M.L.; Seda, O.; Prentki, M.; Poitout, V. Epidermal Growth Factor Receptor Signaling Promotes Pancreatic beta-Cell Proliferation in Response to Nutrient Excess in Rats through mTOR and FOXM1. Diabetes 2013, 63, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Golson, M.L.; Misfeldt, A.A.; Kopsombut, U.G.; Petersen, C.P.; Gannon, M. High Fat Diet Regulation of beta-Cell Proliferation and beta-Cell Mass. Open Endocrinol. J. 2010, 4, 66–77. [Google Scholar] [CrossRef]
- Basavarajappa, H.D.; Irimia, J.M.; Bauer, B.M.; Fueger, P.T. The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis. Int. J. Mol. Sci. 2023, 24, 3308. [Google Scholar] [CrossRef] [PubMed]
Name | Vendor, Model Number | Dilution |
---|---|---|
Anti-Actin | MP Biomedicals, #691002 | 1:5000 |
Anti-Akt | Cell Signaling, #2920 | 1:1000 |
Anti-caspase 3 | Cell Signaling, #9662 | 1:1000 |
Anti-CHOP | Santa Cruz, #7351 | 1:250 |
Anti-EGFR | Sigma-Aldrich, #E3138 | 1:1000 |
Anti-eIF2α | Cell Signaling, #5324 | 1:1000 |
Anti-ERK1/2 | Cell Signaling, #4696 | 1:1000 |
Anti-γ-tubulin | Sigma-Aldrich, #T6557 | 1:5000 |
Anti-GAPDH | Abcam, #Ab9483 | 1:5000 |
Anti-Mig6 | Santa Cruz, #D-1 | 1:250 |
Anti-phospho-Akt (Thr308) | Cell Signaling, #4056 | 1:1000 |
Anti-phospho-EGFR (Tyr1068) | Cell Signaling, #3777 | 1:1250 |
Anti-phospho-eIF2α (Ser51) | Cell Signaling, #3398 | 1:1000 |
Anti-phospho-ERK1/2 (Thr202/Tyr204) | Cell Signaling, #4370 | 1:2000 |
IRDye 800 or 700 fluorophore-conjugated antibodies | LI-COR | 1:10,000 |
Name | Vendor | Assay ID |
---|---|---|
Rat Mig6 | ThermoFisher Scientific | Rn01520744_g1 |
Human errfi1 (Mig6) | ThermoFisher Scientific | Hs00219060_m1 |
Rat Socs4 | ThermoFisher Scientific | Rn01414734_m1 |
Rat Socs5 | ThermoFisher Scientific | Rn01769079_m1 |
Rat Frs3 | ThermoFisher Scientific | Rn01512038_m1 |
Rat Lrig1 | ThermoFisher Scientific | Rn01421201_m1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Lutkewitte, A.J.; Basavarajappa, H.D.; Fueger, P.T. Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death. Metabolites 2023, 13, 627. https://doi.org/10.3390/metabo13050627
Chen Y-C, Lutkewitte AJ, Basavarajappa HD, Fueger PT. Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death. Metabolites. 2023; 13(5):627. https://doi.org/10.3390/metabo13050627
Chicago/Turabian StyleChen, Yi-Chun, Andrew J. Lutkewitte, Halesha D. Basavarajappa, and Patrick T. Fueger. 2023. "Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death" Metabolites 13, no. 5: 627. https://doi.org/10.3390/metabo13050627
APA StyleChen, Y. -C., Lutkewitte, A. J., Basavarajappa, H. D., & Fueger, P. T. (2023). Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death. Metabolites, 13(5), 627. https://doi.org/10.3390/metabo13050627