Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics
Abstract
:1. Introduction
2. Untargeted Metabolomics
2.1. Workflow
2.2. Limitations
3. Targeted Metabolomics
3.1. Workflow
3.2. Limitations
4. Simultaneous Quantitation and Discovery (SQUAD) Analysis
4.1. Nomenclature
4.2. Workflow Structures
4.2.1. Combined Targeted and Untargeted Metabolomics
4.2.2. Pseudo-Targeted Metabolomics
4.2.3. Semi-Targeted Metabolomics
4.2.4. Simultaneous Quantitation and Discovery (SQUAD) Analysis
4.3. Opportunities for SQUAD Analysis
4.4. Barriers to Adopting SQUAD
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baidoo, E.E.K.; Teixeira Benites, V. Mass Spectrometry-Based Microbial Metabolomics: Techniques, Analysis, and Applications. Methods Mol. Biol. 2019, 1859, 11–69. [Google Scholar] [CrossRef] [PubMed]
- Amer, B.; Baidoo, E.E.K. Omics-Driven Biotechnology for Industrial Applications. Front. Bioeng. Biotechnol. 2021, 9, 613307. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics-The Link between Genotypes and Phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef]
- Giraudeau, P. NMR-Based Metabolomics and Fluxomics: Developments and Future Prospects. Analyst 2020, 145, 2457–2472. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhong, F.; Zhu, J. Bridging Targeted and Untargeted Mass Spectrometry-Based Metabolomics via Hybrid Approaches. Metabolites 2020, 10, 348. [Google Scholar] [CrossRef]
- Pagani, I.; Liolios, K.; Jansson, J.; Chen, I.M.A.; Smirnova, T.; Nosrat, B.; Markowitz, V.M.; Kyrpides, N.C. The Genomes OnLine Database (GOLD) v.4: Status of Genomic and Metagenomic Projects and Their Associated Metadata. Nucleic Acids Res. 2012, 40, 571–579. [Google Scholar] [CrossRef]
- Schrimpe-rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; Mclean, J.A. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905. [Google Scholar] [CrossRef]
- Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted Metabolomics. Curr. Protoc. Mol. Biol. 2012, 98, 30.2.1–30.2.24. [Google Scholar] [CrossRef]
- Guo, J.; Huan, T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography−Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92, 8072–8080. [Google Scholar] [CrossRef]
- Nikolskiy, I.; Mahieu, N.G.; Chen, Y.; Tautenhahn, R.; Patti, G.J. An untargeted metabolomic work flow to improve structural characterization of metabolites. Anal. Chem. 2013, 85, 7713–7719. [Google Scholar] [CrossRef]
- Dudley, B.E.; Yousef, M.; Wang, Y.; Griffiths, W.J. Targeted Metabolomics and Mass Spectrometry. Adv Protein Chem Struct Biol. 2010, 80, 45–83. [Google Scholar] [CrossRef] [PubMed]
- van der Lelie, D.; Oka, A.; Taghavi, S.; Umeno, J.; Fan, T.J.; Merrell, K.E.; Watson, S.D.; Ouellette, L.; Liu, B.; Awoniyi, M.; et al. Rationally Designed Bacterial Consortia to Treat Chronic Immune-Mediated Colitis and Restore Intestinal Homeostasis. Nat. Commun. 2021, 12, 3105. [Google Scholar] [CrossRef] [PubMed]
- Hirata, Y.; Kobayashi, T.; Nishiumi, S.; Yamanaka, K.; Nakagawa, T.; Fujigaki, S.; Iemoto, T.; Kobayashi, M.; Okusaka, T.; Nakamori, S.; et al. Identification of Highly Sensitive Biomarkers That can aid the Early Detection of Pancreatic Cancer Using GC/MS/MS-Based Targeted Metabolomics. Clin. Chim. Acta 2017, 468, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kuhring, M.; Eisenberger, A.; Schmidt, V.; Kränkel, N.; Leistner, D.M.; Kirwan, J.; Beule, D. Concepts and Software Package for Efficient Quality Control in Targeted Metabolomics Studies: MeTaQuaC. Anal. Chem. 2020, 92, 10241–10245. [Google Scholar] [CrossRef]
- Mazzini, F.N.; Cook, F.; Gounarides, J.; Marciano, S.; Haddad, L.; Tamaroff, A.J.; Casciato, P.; Narvaez, A.; Mascardi, M.F.; Anders, M.; et al. Plasma and stool metabolomics to identify microbiota derived-biomarkers of metabolic dysfunction-associated fatty liver disease: Effect of PNPLA3 genotype. Metabolomics 2021, 17, 58. [Google Scholar] [CrossRef]
- Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [Google Scholar] [CrossRef]
- Costanzo, M.; Caterino, M.; Ruoppolo, M. Targeted Metabolomics; Metabolon, Inc.: Morrisville, NC, USA, 2022; ISBN 9780323850629. [Google Scholar]
- Analysis, S.L.; Reisz, J.A.; Zheng, C.; Alessandro, A.D.; Nemkov, T. High-Throughput Metabolomics; Springer: Berlin/Heidelberg, Germany, 1978; Chapter 8; pp. 121–135. [Google Scholar] [CrossRef]
- Mireault, M.; Prinville, V.; Ohlund, L.; Sleno, L. Semi-Targeted Profiling of Bile Acids by High-Resolution Mass Spectrometry in a Rat Model of Drug-Induced Liver Injury. Int. J. Mol. Sci. 2023, 24, 2489. [Google Scholar] [CrossRef]
- Rischke, S.; Hahnefeld, L.; Burla, B.; Behrens, F.; Gurke, R.; Garrett, T.J. Journal of Mass Spectrometry and Advances in the Clinical Lab Small Molecule Biomarker Discovery: Proposed Workflow for LC-MS-Based Clinical Research Projects. J. Mass Spectrom. Adv. Clin. Lab 2023, 28, 47–55. [Google Scholar] [CrossRef]
- Briscoe, C.J.; Stiles, M.R.; Hage, D.S. System Suitability in Bioanalytical LC/MS/MS. J. Pharm. Biomed. Anal. 2007, 44, 484–491. [Google Scholar] [CrossRef]
- Dunn, W.B.; Erban, A.; Weber, R.J.M.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J.; et al. Mass Appeal: Metabolite Identification in Mass Spectrometry-Focused Untargeted Metabolomics. Metabolomics 2013, 9, 44–66. [Google Scholar] [CrossRef]
- Chen, S.; Kong, H.; Lu, X.; Li, Y.; Yin, P.; Zeng, Z.; Xu, G. Pseudotargeted Metabolomics Method and Its Application in Serum Biomarker Discovery for Hepatocellular Carcinoma Based on Ultra High-Performance Liquid Chromatography/Triple Quadrupole Mass Spectrometry. Anal. Chem. 2013, 85, 8326–8333. [Google Scholar] [CrossRef] [PubMed]
- Pinel, G.; Weigel, S.; Antignac, J.P.; Mooney, M.H.; Elliott, C.; Nielen, M.W.F.; Le Bizec, B. Targeted and Untargeted Profiling of Biological Fluids to Screen for Anabolic Practices in Cattle. TrAC-Trends Anal. Chem. 2010, 29, 1269–1280. [Google Scholar] [CrossRef]
- Che, N.; Ma, Y.; Ruan, H.; Xu, L.; Wang, X.; Yang, X.; Liu, X. Integrated Semi-Targeted Metabolomics Analysis Reveals Distinct Metabolic Dysregulation in Pleural Effusion Caused by Tuberculosis and Malignancy. Clin. Chim. Acta 2018, 477, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Turi, C.E.; Murch, S.J. Targeted and Untargeted Phytochemistry of Ligusticum Canbyi: Indoleamines, Phthalides, Antioxidant Potential, and Use of Metabolomics as a Hypothesis-Generating Technique for Compound Discovery. Planta. Med. 2013, 79, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, R.; Tomás-Barberán, F.A.; Fança-Berthon, P.; Roller, M.; Zafrilla, P.; Issaly, N.; García-Conesa, M.T.; Combet, E. Targeted and Untargeted Metabolomics to Explore the Bioavailability of the Secoiridoids from a Seed/Fruit Extract (Fraxinus angustifolia Vahl) in Human Healthy Volunteers: A Preliminary Study. Molecules 2015, 20, 22202–22219. [Google Scholar] [CrossRef]
- Koulis, G.A.; Tsagkaris, A.S.; Aalizadeh, R.; Dasenaki, M.E.; Panagopoulou, E.I.; Drivelos, S.; Halagarda, M.; Georgiou, C.A.; Proestos, C.; Thomaidis, N.S. Honey Phenolic Compound Profiling and Authenticity Assessment Using Hrms Targeted and Untargeted Metabolomics. Molecules 2021, 26, 2769. [Google Scholar] [CrossRef]
- Dasenaki, M.E.; Drakopoulou, S.K.; Aalizadeh, R.; Thomaidis, N.S. Targeted and Untargeted Metabolomics as an Enhanced Tool for the Detection of Pomegranate Juice Adulteration. Foods 2019, 8, 212. [Google Scholar] [CrossRef]
- Drakopoulou, S.K.; Damalas, D.E.; Baessmann, C.; Thomaidis, N.S. Trapped Ion Mobility Incorporated in LC-HRMS Workflows as an Integral Analytical Platform of High Sensitivity: Targeted and Untargeted 4D-Metabolomics in Extra Virgin Olive Oil. J. Agric. Food Chem. 2021, 69, 15728–15737. [Google Scholar] [CrossRef]
- Vorrink, S.U.; Ullah, S.; Schmidt, S.; Nandania, J.; Velagapudi, V.; Beck, O.; Ingelman-Sundberg, M.; Lauschke, V.M. Endogenous and Xenobiotic Metabolic Stability of Primary Human Hepatocytes in Long-Term 3D Spheroid Cultures Revealed by a Combination of Targeted and Untargeted Metabolomics. FASEB J. 2017, 31, 2696–2708. [Google Scholar] [CrossRef]
- Liang, L.; Xu, J.; Zhou, W.W.; Brand, E.; Chen, H.B.; Zhao, Z.Z. Integrating Targeted and Untargeted Metabolomics to Investigate the Processing Chemistry of Polygoni Multiflori Radix. Front. Pharm. 2018, 9, 934. [Google Scholar] [CrossRef]
- Eudy, B.J.; McDermott, C.E.; Liu, X.; da Silva, R.P. Targeted and Untargeted Metabolomics Provide Insight into the Consequences of Glycine-N-Methyltransferase Deficiency Including the Novel Finding of Defective Immune Function. Physiol. Rep. 2020, 8, e14576. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Jasbi, P.; Shi, X.; Turner, C.; Hrovat, J.; Liu, L.; Rabena, Y.; Porter, P.; Gu, H. Early Breast Cancer Detection Using Untargeted and Targeted Metabolomics. J. Proteome Res. 2021, 20, 3124–3133. [Google Scholar] [CrossRef] [PubMed]
- Chaby, L.E.; Lasseter, H.C.; Contrepois, K.; Salek, R.M.; Turck, C.W.; Thompson, A.; Vaughan, T.; Haas, M.; Jeromin, A. Cross-Platform Evaluation of Commercially Targeted and Untargeted Metabolomics Approaches to Optimize the Investigation of Psychiatric Disease. Metabolites 2021, 11, 609. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.L.; Davis, D.E.; Codreanu, S.G.; Harrison, F.E.; Sherrod, S.D.; McLean, J.A. Targeted and Untargeted Mass Spectrometry Reveals the Impact of High-Fat Diet on Peripheral Amino Acid Regulation in a Mouse Model of Alzheimer’s Disease. J. Proteome Res. 2021, 20, 4405–4414. [Google Scholar] [CrossRef]
- Zhao, P.; Gu, S.; Han, C.; Lu, Y.; Ma, C.; Tian, J.; Bi, J.; Deng, Z.; Wang, Q.; Xu, Q. Targeted and Untargeted Metabolomics Profiling of Wheat Reveals Amino Acids Increase Resistance to Fusarium Head Blight. Front. Plant Sci. 2021, 12, 762605. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, W.; Zhang, C.; Li, C.; Fang, Z.; Zeng, Z.; Hu, B.; Chen, H.; Wu, W.; Wang, T.; et al. Targeted and Untargeted Metabolomic Analyses and Biological Activity of Tibetan Tea. Food Chem. 2022, 384, 132517. [Google Scholar] [CrossRef]
- Qin, N.; Qin, M.; Shi, W.; Kong, L.; Wang, L.; Xu, G.; Guo, Y.; Zhang, J.; Ma, Q. Investigation of Pathogenesis of Hyperuricemia Based on Untargeted and Targeted Metabolomics. Sci. Rep. 2022, 12, 13980. [Google Scholar] [CrossRef]
- Zeng, L.; Jin, S.; Fu, Y.; Chen, L.; Yin, J.; Xu, Y. A Targeted and Untargeted Metabolomics Analysis of “Oriental Beauty” Oolong Tea during Processing. Beverage Plant Res. 2022, 2, 20. [Google Scholar] [CrossRef]
- Monti, M.C.; Frei, P.; Weber, S.; Scheurer, E.; Mercer-Chalmers-Bender, K. Beyond Δ9-Tetrahydrocannabinol and Cannabidiol: Chemical Differentiation of Cannabis Varieties Applying Targeted and Untargeted Analysis. Anal. Bioanal. Chem. 2022, 414, 3847–3862. [Google Scholar] [CrossRef]
- Kioroglou, D.; Mas, A.; Portillo, M.C. Qualitative Factor-Based Comparison of NMR, Targeted and Untargeted GC-MS and LC-MS on the Metabolomic Profiles of Rioja and Priorat Red Wines. Foods 2020, 9, 1381. [Google Scholar] [CrossRef]
- Melnik, A.V.; Da Silva, R.R.; Hyde, E.R.; Aksenov, A.A.; Vargas, F.; Bouslimani, A.; Protsyuk, I.; Jarmusch, A.K.; Tripathi, A.; Alexandrov, T.; et al. Coupling Targeted and Untargeted Mass Spectrometry for Metabolome-Microbiome-Wide Association Studies of Human Fecal Samples. Anal. Chem. 2017, 89, 7549–7559. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling; Metabolon, Inc.: Morrisville, NC, USA, 2016; Volume 2016, ISBN 0471142727. [Google Scholar]
- Rochat, B. From Targeted Quantification to Untargeted Metabolomics: Why LC-High-Resolution-MS Will Become a Key Instrument in Clinical Labs. TrAC-Trends Anal. Chem. 2016, 84, 151–164. [Google Scholar] [CrossRef]
- Gonzalez-Riano, C.; Sanz-Rodríguez, M.; Escudero-Ramirez, J.; Lorenzo, M.P.; Barbas, C.; Cubelos, B.; Garcia, A. Target and Untargeted GC–MS Based Metabolomic Study of Mouse Optic Nerve and Its Potential in the Study of Neurological Visual Diseases. J. Pharm. Biomed. Anal. 2018, 153, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Coene, K.L.M.; Kluijtmans, L.A.J.; van der Heeft, E.; Engelke, U.F.H.; de Boer, S.; Hoegen, B.; Kwast, H.J.T.; van de Vorst, M.; Huigen, M.C.D.G.; Keularts, I.M.L.W.; et al. Next-Generation Metabolic Screening: Targeted and Untargeted Metabolomics for the Diagnosis of Inborn Errors of Metabolism in Individual Patients. J. Inherit. Metab. Dis. 2018, 41, 337–353. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Zhang, R.; He, J.; Chen, Y.; Bi, N.; Song, Y.; Wang, L.; Zhan, Q.; Abliz, Z. Development of a Metabolic Pathway-Based Pseudo-Targeted Metabolomics Method Using Liquid Chromatography Coupled with Mass Spectrometry. Talanta 2019, 192, 160–168. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, M.; Wei, X.; Zhu, H.; Zhang, J.; Zhang, Y.; Xue, L.; Huang, L.; Chen, G.; Chen, M.; et al. Pseudotargeted Metabolomic Fingerprinting and Deep Learning for Identification and Visualization of Common Pathogens. Front. Microbiol. 2022, 13, 830832. [Google Scholar] [CrossRef]
- Deng, H.; He, R.; Xia, H.; Xu, N.; Deng, Q.; Liang, D.; Lin, L.; Liao, L.; Xiong, B.; Xie, X.; et al. Ultra-HPLC-MS Pseudo-Targeted Metabolomic Profiling Reveals Metabolites and Associated Metabolic Pathway Alterations in Asian Plum (Prunus salicina) Fruits in Response to Gummosis Disease. Funct. Plant Biol. 2022, 49, 936–945. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Li, P.; He, C.; Wang, R.; Su, H.; Wan, J.B. An Improved Pseudotargeted Metabolomics Approach Using Multiple Ion Monitoring with Time-Staggered Ion Lists Based on Ultra-High Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry. Anal. Chim. Acta 2016, 927, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Jia, W.; Du, A.; Shi, L. Pseudo-Targeted Metabolomics Analysis of the Therapeutic Effect of Phenolics-Rich Extract from Se-Enriched Green Tea (Camellia sinensis) on LPS-Stimulated Murine Macrophage (RAW264.7). Food Res. Int. 2022, 159, 111666. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, W.; Xiang, Q.; Kim, J.; Dufresne, C.; Liu, Y.; Li, T.; Chen, S. Creation of a Plant Metabolite Spectral Library for Untargeted and Targeted Metabolomics. Int. J. Mol. Sci. 2023, 24, 2249. [Google Scholar] [CrossRef]
- Genta-Jouve, G.; Croué, J.; Weinberg, L.; Cocandeau, V.; Holderith, S.; Bontemps, N.; Suzuki, M.; Thomas, O.P. Two-Dimensional Ultra High Pressure Liquid Chromatography Quadrupole/Time-of-Flight Mass Spectrometry for Semi-Targeted Natural Compounds Identification. Phytochem. Lett. 2014, 10, 318–323. [Google Scholar] [CrossRef]
- Salem, M.A.; Giavalisco, P. Semi-Targeted Lipidomics of Plant Acyl Lipids Using UPLC-HR-MS in Combination with a Data-Independent Acquisition Mode. Methods Mol. Biol. 2018, 1778, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.S.; Singh, A.; Vishnu, K.V.; Ajeeshkumar, K.K.; Anandan, R.; Ashok Kumar, K.; Mathew, S. Authentication of Two Bio-Active Fish Oils by Qualitative Lipid Profiling Using Semi-Targeted Approach: An Exploratory Study. J. AOAC Int. 2021, 103, 78–82. [Google Scholar] [CrossRef]
- Castañé, H.; Iftimie, S.; Baiges-Gaya, G.; Rodríguez-Tomàs, E.; Jiménez-Franco, A.; López-Azcona, A.F.; Garrido, P.; Castro, A.; Camps, J.; Joven, J. Machine Learning and Semi-Targeted Lipidomics Identify Distinct Serum Lipid Signatures in Hospitalized COVID-19-Positive and COVID-19-Negative Patients. Metabolism 2022, 131, 155197. [Google Scholar] [CrossRef]
- Baiges-Gaya, G.; Iftimie, S.; Castañé, H.; Rodríguez-Tomàs, E.; Jiménez-Franco, A.; López-Azcona, A.F.; Castro, A.; Camps, J.; Joven, J. Combining Semi-Targeted Metabolomics and Machine Learning to Identify Metabolic Alterations in the Serum and Urine of Hospitalized Patients with COVID-19. Biomolecules 2023, 13, 163. [Google Scholar] [CrossRef]
- Jensen-Kroll, J.; Demetrowitsch, T.; Clawin-Rädecker, I.; Klempt, M.; Waschina, S.; Schwarz, K. Microbiota Independent Effects of Oligosaccharides on Caco-2 Cells -A Semi-Targeted Metabolomics Approach Using DI-FT-ICR-MS Coupled with Pathway Enrichment Analysis. Front. Mol. Biosci. 2022, 9, 968643. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.J.; Yuan, L.H.; Xiao, J.M.; Jiang, H.Y.; Sa, Y.H.; Sun, H.Q.; Song, J.Y.; Sun, Z.G. The Mechanism of Traditional Chinese Medicine Based on Semi-Targeted Metabolomics to Improve IVF Outcomes in Senile Patients. Evid. Based Complement. Altern. Med. 2021, 2021, 6696305. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.A.; Tan, J.; Li, Y.; Miao, S.; Scotland, K.B.; Chew, B.H.; Lange, D.; Chen, D.D.Y. Migration Time Correction for Dual Pressure Capillary Electrophoresis in Semi-Targeted Metabolomics Study. Electrophoresis 2022, 43, 1626–1637. [Google Scholar] [CrossRef]
- Bayle, M.L.; Wopereis, S.; Bouwman, J.; van Ommen, B.; Scalbert, A.; Pujos-Guillot, E. Semi-Targeted Metabolomic Approaches to Validate Potential Markers of Health for Micronutrients: Analytical Perspectives. Metabolomics 2012, 8, 1114–1129. [Google Scholar] [CrossRef]
- Burgess, K.; Creek, D.; Dewsbury, P.; Cook, K.; Barrett, M.P. Semi-Targeted Analysis of Metabolites Using Capillary-Flow Ion Chromatography Coupled to High-Resolution Mass Spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 3447–3452. [Google Scholar] [CrossRef]
- Kotamreddy, J.N.R.; Hansda, C.; Mitra, A. Semi-Targeted Metabolomic Analysis Provides the Basis for Enhanced Antioxidant Capacities in Pigmented Rice Grains. J. Food Meas. Charact. 2020, 14, 1183–1191. [Google Scholar] [CrossRef]
- Billet, K.; Malinowska, M.A.; Munsch, T.; Unlubayir, M.; Adler, S.; Delanoue, G.; Lanoue, A. Semi-Targeted Metabolomics to Validate Biomarkers of Grape Downy Mildew Infection under Field Conditions. Plants 2020, 9, 1008. [Google Scholar] [CrossRef] [PubMed]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass Spectrometry-Based Metabolomics: A Guide for Annotation, Quantification and Best Reporting Practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef]
- Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, O.; Rabinowitz, J.D. Metabolite Measurement: Pitfalls to Avoid and Practices to Follow. Annu. Rev. Biochem. 2017, 86, 277–304. [Google Scholar] [CrossRef] [PubMed]
- Jourdan, F.; Breitling, R.; Barrett, M.P.; Gilbert, D. MetaNetter: Inference and Visualization of High-Resolution Metabolomic Networks. Bioinformatics 2008, 24, 143–145. [Google Scholar] [CrossRef]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef]
- Lommen, A. MetAlign: Interface-Driven, Versatile Metabolomics Tool for Hyphenated Full-Scan Mass Spectrometry Data Preprocessing. Anal. Chem. 2009, 81, 3079–3086. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; Vandergheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Adams, K.J.; Pratt, B.; Bose, N.; Dubois, L.G.; St. John-Williams, L.; Perrott, K.M.; Ky, K.; Kapahi, P.; Sharma, V.; Maccoss, M.J.; et al. Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. J. Proteome Res. 2020, 19, 1447. [Google Scholar] [CrossRef]
Metabolomics Workflow | Untargeted | Targeted | SQUAD |
---|---|---|---|
Type |
|
|
|
Study/aim |
|
|
|
Advantages |
|
|
|
Key applications |
|
|
|
Limitations |
|
|
|
Key acquisition instrumentation |
|
|
|
Opportunities |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amer, B.; Deshpande, R.R.; Bird, S.S. Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics. Metabolites 2023, 13, 648. https://doi.org/10.3390/metabo13050648
Amer B, Deshpande RR, Bird SS. Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics. Metabolites. 2023; 13(5):648. https://doi.org/10.3390/metabo13050648
Chicago/Turabian StyleAmer, Bashar, Rahul R. Deshpande, and Susan S. Bird. 2023. "Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics" Metabolites 13, no. 5: 648. https://doi.org/10.3390/metabo13050648
APA StyleAmer, B., Deshpande, R. R., & Bird, S. S. (2023). Simultaneous Quantitation and Discovery (SQUAD) Analysis: Combining the Best of Targeted and Untargeted Mass Spectrometry-Based Metabolomics. Metabolites, 13(5), 648. https://doi.org/10.3390/metabo13050648