Untargeted Metabolomic Analysis of Sjögren–Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Subjects
2.2. Procedures
2.2.1. Preparation of Plasma
2.2.2. Metabolomic Analysis
2.3. Statistical Analysis
3. Results
3.1. Stratified Analysis by Sex
3.2. Metabolic Super Pathways
3.3. Metabolic Subpathways
Super Pathway | Subpathway | Metabolites Measured | SLS/Control > 1.1 | SLS/Control < 0.9 |
---|---|---|---|---|
Amino Acid | Arginine and Proline Metabolism | 21 | 0 | 5 |
Glutamate Metabolism | 12 | 2 | 0 | |
Glutathione Metabolism | 7 | 1 | 1 | |
Histidine Metabolism | 16 | 0 | 4 | |
Leucine, Isoleucine and Valine Metabolism | 31 | 0 | 2 | |
Lysine Metabolism | 20 | 2 | 1 | |
Methionine, Cysteine, SAM and Taurine Metabolism | 22 | 5 | 2 | |
Phenylalanine Metabolism | 7 | 0 | 4 | |
Tryptophan Metabolism | 23 | 1 | 6 | |
Tyrosine Metabolism | 19 | 0 | 3 | |
Carbohydrate | Glycogen Metabolism | 2 | 2 | 0 |
Glycolysis, Gluconeogenesis, and Pyruvate | 6 | 3 | 1 | |
Cofactors and Vitamins | Nicotinate and Nicotinamide | 8 | 1 | 2 |
Vitamin A | 7 | 0 | 4 | |
Lipid | Fatty Acid (Acylcarnitine, Medium Chain) | 6 | 0 | 4 |
Fatty Acid (Acylcarnitine, Monounsaturated) | 10 | 0 | 2 | |
Fatty Acid, Dicarboxylate | 33 | 0 | 2 | |
Phospholipid Metabolism | 6 | 4 | 0 | |
Phosphatidylserine Metabolism | 2 | 2 | 0 | |
Primary Bile Acid Metabolism | 11 | 0 | 3 | |
Secondary Bile Acid Metabolism | 20 | 0 | 7 | |
Sphingolipid Synthesis | 4 | 3 | 0 | |
Sphingosines | 2 | 2 | 0 | |
Sterol Metabolism | 8 | 0 | 4 | |
Nucleotide | Purine Metabolism, (Hypo)Xanthine/Inosine containing | 8 | 2 | 1 |
Purine Metabolism, Adenine containing | 7 | 2 | 0 | |
Partially Characterized Molecules | Partially Characterized Molecules | 24 | 0 | 2 |
Energy | TCA Cycle | 9 | 2 | 0 |
Xenobiotics | Chemical | 22 | 1 | 3 |
3.4. Random Forest Analysis
3.5. Metabolite Interrogation
3.5.1. Sphingolipid Metabolism
3.5.2. Sterol and Bile Acid Metabolism
3.5.3. Carbohydrate Metabolism
3.5.4. Purine Metabolism
3.5.5. Vitamin and Cofactor Metabolism
3.5.6. Amino Acid Metabolism
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rizzo, W.B. Sjögren-Larsson syndrome: Molecular genetics and biochemical pathogenesis of fatty aldehyde dehydrogenase deficiency. Mol. Genet. Metab. 2007, 90, 1–9. [Google Scholar] [CrossRef] [PubMed]
- De Laurenzi, V.; Rogers, G.R.; Hamrock, D.J.; Marekov, L.N.; Steinert, P.M.; Compton, J.G.; Markova, N.; Rizzo, W.B. Sjögren-Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat. Genet. 1996, 12, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, W.B. Fatty aldehyde and fatty alcohol metabolism: Review and importance for epidermal structure and function. Biochim. Biophys. Acta 2014, 1841, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, W.B.; Carney, G. Sjögren-Larsson syndrome: Diversity of mutations and polymorphisms in the fatty aldehyde dehydrogenase gene (ALDH3A2). Hum. Mutat. 2005, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Weustenfeld, M.; Eidelpes, R.; Schmuth, M.; Rizzo, W.B.; Zschocke, J.; Keller, M.A. Genotype and phenotype variability in Sjögren-Larsson syndrome. Hum. Mutat. 2019, 40, 177–186. [Google Scholar] [CrossRef]
- Rizzo, W.B. Genetics and prospective therapeutic targets for Sjögren-Larsson Syndrome. Expert Opin. Orphan Drugs 2016, 4, 395–406. [Google Scholar] [CrossRef]
- James, P.F.; Zoeller, R.A. Isolation of animal cell mutants defective in long-chain fatty aldehyde dehydrogenase. Sensitivity to fatty aldehydes and Schiff’s base modification of phospholipids: Implications for Sjögren-Larsson syndrome. J. Biol. Chem. 1997, 272, 23532–23539. [Google Scholar] [CrossRef]
- Rizzo, W.B.; Craft, D.A. Sjögren-Larsson syndrome: Accumulation of free fatty alcohols in cultured fibroblasts and plasma. J. Lipid Res. 2000, 41, 1077–1081. [Google Scholar] [CrossRef]
- Rizzo, W.B.; Craft, D.A.; Somer, T.; Carney, G.; Trafrova, J.; Simon, M. Abnormal fatty alcohol metabolism in cultured keratinocytes from patients with Sjögren-Larsson syndrome. J. Lipid Res. 2008, 49, 410–419. [Google Scholar] [CrossRef]
- S’aulis, D.; Khoury, E.A.; Zabel, M.; Rizzo, W.B. 1-O-Alkylglycerol accumulation reveals abnormal ether glycerolipid metabolism in Sjögren-Larsson syndrome. Mol. Genet. Metab. 2020, 131, 253–258. [Google Scholar] [CrossRef]
- Staps, P.; Rizzo, W.B.; Vaz, F.M.; Bugiani, M.; Giera, M.; Heijs, B.; van Kampen, A.H.C.; Pras-Raves, M.L.; Breur, M.; Groen, A.; et al. Disturbed brain ether lipid metabolism and histology in Sjögren-Larsson syndrome. J. Inherit. Metab. Dis. 2020, 43, 1265–1278. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.M.; DeHaven, C.D.; Barrett, T.; Mitchell, M.; Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal. Chem. 2009, 81, 6656–6667. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Milburn, M.V.; Ryals, J.A.; Lonergan, S.C.; Mitchell, M.W.; Wulff, J.E.; Alexander, D.C.; Evans, A.M.; Bridgewater, B.; Miller, L.; et al. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc. Natl. Acad. Sci. USA 2015, 112, E4901–E4910. [Google Scholar] [CrossRef] [PubMed]
- Coene, K.L.M.; Kluijtmans, L.A.J.; van der Heeft, E.; Engelke, U.F.H.; de Boer, S.; Hoegen, B.; Kwast, H.J.T.; van de Vorst, M.; Huigen, M.C.D.G.; Keularts, I.M.L.W.; et al. Next-generation metabolic screening: Targeted and untargeted metabolomics for the diagnosis of inborn errors of metabolism in individual patients. J. Inherit. Metab. Dis. 2018, 41, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Mordaunt, D.; Cox, D.; Fuller, M. Metabolomics to improve the diagnostic efficiency of inborn errors of metabolism. Int. J. Mol. Sci. 2020, 21, 1195. [Google Scholar] [CrossRef] [PubMed]
- Hoegen, B.; Zammit, A.; Gerritsen, A.; Engelke, U.F.H.; Castelein, S.; van de Vorst, M.; Kluijtmans, L.A.J.; Huigen, M.C.D.G.; Wevers, R.A.; van Gool, A.J.; et al. Metabolomics-based screening of inborn errors of metabolism: Enhancing clinical application with a robust computational pipeline. Metabolites 2021, 11, 568. [Google Scholar] [CrossRef]
- Liu, N.; Xiao, J.; Gijavanekar, C.; Pappan, K.L.; Glinton, K.E.; Shayota, B.J.; Kennedy, A.D.; Sun, Q.; Sutton, V.R.; Elsea, S.H. Comparison of untargeted metabolomic profiling vs. traditional metabolic screening to identify inborn errors of metabolism. JAMA Netw. Open 2021, 4, e2114155. [Google Scholar] [CrossRef]
- Sarode, G.V.; Kim, K.; Kieffer, D.A.; Shibata, N.M.; Litwin, T.; Czlonkowska, A.; Medici, V. Metabolomics profiles of patients with Wilson disease reveal a distinct metabolic signature. Metabolomics 2019, 15, 43. [Google Scholar] [CrossRef]
- Burrage, L.C.; Thistlethwaite, L.; Stroup, B.M.; Sun, Q.; Miller, M.J.; Nagamani, S.C.S.; Craigen, W.; Scaglia, F.; Sutton, V.R.; Graham, B.; et al. Untargeted metabolomic profiling reveals multiple pathway perturbations and new clinical biomarkers in urea cycle disorders. Genet. Med. 2019, 21, 1977–1986. [Google Scholar] [CrossRef]
- Tebani, A.; Abily-Donval, L.; Schmitz-Afonso, I.; Piraud, M.; Ausseil, J.; Zerimech, F.; Pilon, C.; Pereira, T.; Marret, S.; Afonso, C.; et al. Analysis of mucopolysaccharidosis type VI through integrative functional metabolomics. Int. J. Mol. Sci. 2019, 20, 446. [Google Scholar] [CrossRef]
- Mussap, M.; Zaffanello, M.; Fanos, V. Metabolomics: A challenge for detecting and monitoring inborn errors of metabolism. Ann. Transl. Med. 2018, 6, 338. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Przybilla, M.J.; Whitley, C.B. Metabolomics profiling reveals profound metabolic impairments in mice and patients with Sandhoff disease. Mol. Genet. Metab. 2019, 126, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Mandal, R.; Chamot, D.; Wishart, D.S. The role of the Human Metabolome Database in inborn errors of metabolism. J. Inherit. Metab. Dis. 2018, 41, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Dehaven, C.D.; Evans, A.M.; Dai, H.; Lawton, K.A. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J. Cheminform. 2010, 2, 9. [Google Scholar] [CrossRef]
- van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Liu, G.; Lin, C.J.; Yates, C.R.; Prasad, G.L. Metabolomic analysis identified reduced levels of xenobiotics, oxidative stress, and improved vitamin metabolism in smokers switched to Vuse electronic nicotine delivery system. Nicotine Tob. Res. 2021, 23, 1133–1142. [Google Scholar] [CrossRef]
- Nakahara, K.; Ohkuni, A.; Kitamura, T.; Abe, K.; Naganuma, T.; Ohno, Y.; Zoeller, R.A.; Kihara, A. The Sjögren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol. Cell 2012, 46, 461–471. [Google Scholar] [CrossRef]
- Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: From synthesis to breakdown. In Sphingolipids as Signaling and Regulatory Molecules; Springer: Berlin/Heidelberg, Germany, 2010; Volume 688, pp. 1–23. [Google Scholar]
- Quinville, B.M.; Deschenes, N.M.; Ryckman, A.E.; Walia, J.S. A comprehensive review: Sphingolipid metabolism and implications of disruption in sphingolipid homeostasis. Int. J. Mol. Sci. 2021, 22, 5793. [Google Scholar] [CrossRef]
- Serra, M.; Saba, J.D. Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv. Enzym. Regul. 2010, 50, 349–362. [Google Scholar] [CrossRef]
- Kumar, A.; Byun, H.-S.; Bittman, R.; Saba, J.D. The sphingolipid degradation product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-dependent manner. Cell. Signal. 2011, 23, 1144–1152. [Google Scholar] [CrossRef]
- Jarugumilli, G.K.; Choi, J.R.; Chan, P.; Yu, M.; Sun, Y.; Chen, B.; Niu, J.; DeRan, M.; Zheng, B.; Zoeller, R.; et al. Chemical probe to identify the cellular targets of the reactive lipid metabolite 2- trans-hexadecenal. ACS Chem. Biol. 2018, 13, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Fouzdar-Jain, S.; Suh, D.W.; Rizzo, W.B. Sjögren-Larsson syndrome: A complex metabolic disease with a distinctive ocular phenotype. Ophthalmic Genet. 2019, 40, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Liu, L.; Shi, Y.; Guo, F.; He, X.; Zhao, X.; Zhong, D.; Li, G. Recent advances of the function of sphingosine 1-phosphate (S1P) receptor S1P3. J. Cell. Physiol. 2021, 236, 1564–1578. [Google Scholar] [CrossRef] [PubMed]
- Książek, M.; Chacińska, M.; Chabowski, A.; Baranowski, M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J. Lipid Res. 2015, 56, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Chiricozzi, E.; Loberto, N.; Schiumarini, D.; Samarani, M.; Mancini, G.; Tamanini, A.; Lippi, G.; Dechecchi, M.C.; Bassi, R.; Giussani, P.; et al. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection. J. Leukoc. Biol. 2018, 103, 445–456. [Google Scholar] [CrossRef]
- Wigger, D.; Schumacher, F.; Schneider-Schaulies, S.; Kleuser, B. Sphingosine 1-phosphate metabolism and insulin signaling. Cell. Signal. 2021, 82, 109959. [Google Scholar] [CrossRef]
- Kowalski, G.M.; Carey, A.L.; Selathurai, A.; Kingwell, B.A.; Bruce, C.R. Plasma sphingosine-1-phosphate is elevated in obesity. PLoS ONE 2013, 8, e72449. [Google Scholar] [CrossRef]
- Park, W.J.; Song, J.H.; Kim, G.T.; Park, T.S. Ceramide and sphingosine 1-phosphate in liver diseases. Mol. Cells 2020, 43, 419–430. [Google Scholar]
- Czubowicz, K.; Jęśko, H.; Wencel, P.; Lukiw, W.J.; Strosznajder, R.P. The role of ceramide and sphingosine-1-phosphate in Alzheimer’s disease and other neurodegenerative disorders. Mol. Neurobiol. 2019, 56, 5436–5455. [Google Scholar] [CrossRef]
- van Smeden, J.; Janssens, M.; Gooris, G.C.; Bouwstra, J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta 2014, 1841, 295–313. [Google Scholar] [CrossRef]
- Jennemann, R.; Sandhoff, R.; Langbein, L.; Kaden, S.; Rothermel, U.; Gallala, H.; Sandhoff, K.; Weigandt, H.; Gröne, H.-J. Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J. Biol. Chem. 2007, 282, 3083–3094. [Google Scholar] [CrossRef] [PubMed]
- Rabionet, M.; Gorgas, K.; Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta 2014, 1841, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Masuda-Kuroki, K.; DiNardo, A. Sphingosine 1-phosphate signaling at the skin barrier interface. Biology 2022, 11, 809. [Google Scholar] [CrossRef] [PubMed]
- Paige, D.G.; Morse-Fisher, N.; Harper, J.I. Quantification of stratum corneum ceramides and lipid envelope ceramides in the hereditary ichthyoses. Br. J. Dermatol. 1994, 131, 23–27. [Google Scholar] [CrossRef]
- Nakajima, K.; Sano, S.; Uchida, Y.; Akiyama, M.; Morita, Y.; Shimizu, H. Altered lipid profiles in the stratum corneum of Sjögren-Larsson syndrome. J. Dermatol. Sci. 2011, 63, 64–66. [Google Scholar] [CrossRef]
- Arai, A.; Takeichi, T.; Wakamoto, H.; Sassa, T.; Ito, Y.; Murase, Y.; Ogi, T.; Akiyama, M.; Kihara, A. Ceramide profiling of stratum corneum in Sjögren-Larsson syndrome. J. Dermatol. Sci. 2022, 107, 114–122. [Google Scholar] [CrossRef]
- Rizzo, W.B.; S’aulis, D.; Jennings, M.A.; Crumrine, D.A.; Williams, M.L.; Elias, P.M. Ichthyosis in Sjögren-Larsson syndrome reflects defective barrier function due to abnormal lamellar body structure and secretion. Arch. Dermatol. Res. 2010, 302, 443–451. [Google Scholar] [CrossRef]
- Elias, P.M.; Williams, M.; Feingold, K.R. Abnormal barrier function in the pathogenesis of ichthyosis: Therapeutic implications for lipid metabolic disorders. Clin. Dermatol. 2012, 30, 311–322. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Saba, J.D. Sphingosine phosphate lyase insufficiency syndrome (SPLIS); A novel inborn error of sphingolipid metabolism. Adv. Biol. Regul. 2019, 71, 128–140. [Google Scholar] [CrossRef]
- Gertler, M.M.; Garn, S.M.; Lerman, J. The interrelationships of serum cholesterol, cholesterol esters and phospholipids in health and in coronary artery disease. Circulation 1950, 2, 205–214. [Google Scholar] [CrossRef]
- Šarenac, T.M.; Mikov, M. Bile acid synthesis: From nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front. Pharmacol. 2018, 9, 939. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y. Regulation of bile acid synthesis: Pathways, nuclear receptors, and mechanisms. J. Hepatol. 2004, 40, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Pandak, W.M.; Kakiyama, G. The acidic pathway of bile acid synthesis: Not just an alternative pathway. Liver Res. 2019, 3, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Alnouti, Y. Bile acid sulfation: A pathway of bile acid elimination and detoxification. Toxicol. Sci. 2009, 108, 225–246. [Google Scholar] [CrossRef]
- Xiang, X.; Backman, J.T.; Neuvonen, P.J.; Niemi, M. Gender, but not CYP7A1 or SLCO1B1 polymorphism, affects the fasting plasma concentrations of bile acids in human beings. Basic Clin. Pharmacol. Toxicol. 2012, 110, 245–252. [Google Scholar] [CrossRef]
- Wan, Y.Y.; Sheng, L. Regulation of bile acid receptor activity. Liver Res. 2018, 2, 180–185. [Google Scholar] [CrossRef]
- de Aguiar Vallim, T.Q.; Tarling, E.J.; Edwards, P.A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013, 17, 657–669. [Google Scholar] [CrossRef]
- Grant, S.M.; DeMorrow, S. Bile acid signaling in neurodegenerative and neurological disorders. Int. J. Mol. Sci. 2020, 21, 5982. [Google Scholar] [CrossRef]
- Kwong, E.; Li, Y.; Hylemon, P.B.; Zhou, H. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism. Acta Pharm. Sin. B 2015, 5, 151–157. [Google Scholar] [CrossRef]
- Fang, Y.; Studer, E.; Mitchell, C.; Grant, S.; Pandak, W.M.; Hylemon, P.B.; Dent, P. Conjugated bile acids regulate hepatocyte glycogen synthase activity in vitro and in vivo via Galphai signaling. Mol. Pharmacol. 2007, 71, 1122–1128. [Google Scholar] [CrossRef]
- Cao, R.; Cronk, Z.X.; Zha, W.; Sun, L.; Wang, X.; Fang, Y.; Studer, E.; Zhou, H.; Pandak, W.M.; Dent, P.; et al. Bile acids regulate hepatic gluconeogenic genes and farnesoid X receptor via G(alpha)i-protein-coupled receptors and the AKT pathway. J. Lipid Res. 2010, 51, 2234–2244. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006, 439, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Liao, S. Cholestenoic acid is a naturally occurring ligand for liver X receptor alpha. Endocrinology 2000, 141, 4180–4184. [Google Scholar] [CrossRef] [PubMed]
- Theofilopoulos, S.; Griffiths, W.J.; Crick, P.J.; Yang, S.; Meljon, A.; Ogundare, M.; Kitambi, S.S.; Lockhart, A.; Tuschl, K.; Clayton, P.T.; et al. Cholestenoic acids regulate motor neuron survival via liver X receptors. J. Clin. Investig. 2014, 124, 4829–4842. [Google Scholar] [CrossRef]
- Wester, P.; Bergstrom, U.; Brun, A.; Jagell, S.; Karlsson, B.; Eriksson, A. Monoaminergic dysfunction in Sjögren-Larsson syndrome. Mol. Chem. Neuropathol. 1991, 15, 13–28. [Google Scholar] [CrossRef]
- Martin, A.M.; Young, R.L.; Leong, L.; Rogers, G.B.; Spencer, N.J.; Jessup, C.F.; Keating, D.J. The diverse metabolic roles of peripheral serotonin. Endocrinology 2017, 158, 1049–1063. [Google Scholar] [CrossRef]
- Sumara, G.; Sumara, O.; Kim, J.K.; Karsenty, G. Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metab. 2012, 16, 588–600. [Google Scholar] [CrossRef]
- Tudhope, S.J.; Wang, C.C.; Petrie, J.L.; Potts, L.; Malcomson, F.; Kieswich, J.; Yaqoob, M.M.; Arden, C.; Hampson, L.J.; Agius, L. A novel mechanism for regulating hepatic glycogen synthesis involving serotonin and cyclin-dependent kinase-5. Diabetes 2012, 61, 49–60. [Google Scholar] [CrossRef]
- Morita, T.; McClain, S.P.; Batia, L.M.; Pellegrino, M.; Wilson, S.R.; Kienzler, M.A.; Lyman, K.; Olsen, A.S.B.; Wong, J.F.; Stucky, C.L.; et al. HTR7 mediates serotonergic acute and chronic itch. Neuron 2015, 87, 124–138. [Google Scholar] [CrossRef]
- Akiyama, T.; Ivanov, M.; Nagamine, M.; Davoodi, A.; Carstens, M.I.; Ikoma, A.; Cevikbas, F.; Kempkes, C.; Buddenkotte, J.; Steinhoff, M.; et al. Involvement of TRPV4 in serotonin-evoked scratching. J. Investig. Dermatol. 2016, 136, 154–160. [Google Scholar] [CrossRef]
- Zylicz, Z.; Krajnik, M.; Sorge, A.A.; Costantini, M. Paroxetine in the treatment of severe non-dermatological pruritus: A randomized, controlled trial. J. Pain Symptom. Manag. 2003, 26, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Ständer, S.; Böckenholt, B.; Schürmeyer-Horst, F.; Weishaupt, C.; Heuft, G.; Luger, T.A.; Schneider, G. Treatment of chronic pruritus with the selective serotonin re-uptake inhibitors paroxetine and fluvoxamine: Results of an open-labelled, two-arm proof-of-concept study. Acta Derm. Venereol. 2009, 89, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Koofy, N.E.; Yassin, N.; Okasha, S.; William, H.; Elakel, W.; Elshiwy, Y. Evaluation of the role of bile acids and serotonin as markers of pruritus in children with chronic cholestatic liver disease. Arab, J. Gastroenterol. 2021, 22, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Earle-Payne, K.; Kidd, M.T. Taurine as a natural antioxidant: From direct antioxidant effects to protective action in various toxicological models. Antioxidants 2021, 10, 1876. [Google Scholar] [CrossRef]
- Willemsen, A.A.P.; Rotteveel, J.J.; de Jong, J.G.N.; Wanders, R.J.A.; IJlst, L.; Hoffmann, G.F.; Mayatepek, E. Defective metabolism of leukotriene B4 in the Sjögren-Larsson syndrome. J. Neurol. Sci. 2001, 183, 61–67. [Google Scholar] [CrossRef]
- KEGG: Kyoto Encyclopedia of Genes and Genomes. Available online: https://www.genome.jp/kegg (accessed on 30 December 2022).
- Human Metabolome Database. Available online: https://hmdb.ca (accessed on 30 December 2022).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 30 December 2022).
ANOVA Contrasts | SLS vs. Control | Male vs. Female | ||||
---|---|---|---|---|---|---|
Stratified Analysis | Overall | Male | Female | SLS | Control | |
Total Biochemicals (n = 823) | 121 (7|4) | 37 (16 |21) | 77 (|3) | 0 | 0 | |
Super Pathway | p-value | |||||
Amino Acid (n = 210) | 43 (31|12) | 0.0285 | 11 (7|4) | 21 (12|9) | 0 | 0 |
Carbohydrate (n = 23) | 8 (1|7) | 0.0154 | 4 (0|4) | 7 (1|6) | 0 | 0 |
Cofactors and Vitamins (n = 37) | 10 (8|2) | 0.0422 | 1 (0|1) | 3 (2|1) | 0 | 0 |
Energy (n = 10) | 2 (0|2) | 0.4478 | 1 (0|1) | 1 (0|1) | 0 | 0 |
Lipid (n = 292) | 41 (27|14) | 0.6415 | 15 (6|9) | 34 (21|13) | 0 | 0 |
Nucleotide (n = 38) | 7 (2|5) | 0.3306 | 3 (1|2) | 6 (1|5) | 0 | 0 |
Partially Characterized Molecules (n = 24) | 2 (2|0) | 0.8860 | 0 (0|0) | 1 (1|0) | 0 | 0 |
Peptide (n = 34) | 2 (1|1) | 0.9679 | 1 (1|0) | 0 (0|0) | 0 | 0 |
Xenobiotics (n = 155) | 6 (5|1) | 0.9999 | 1 (1|0) | 4 (2|2) | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, H.D.; Qiu, F.; Jackson, K.; Fruttiger, M.; Rizzo, W.B. Untargeted Metabolomic Analysis of Sjögren–Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways. Metabolites 2023, 13, 682. https://doi.org/10.3390/metabo13060682
Dai HD, Qiu F, Jackson K, Fruttiger M, Rizzo WB. Untargeted Metabolomic Analysis of Sjögren–Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways. Metabolites. 2023; 13(6):682. https://doi.org/10.3390/metabo13060682
Chicago/Turabian StyleDai, Hongying Daisy, Fang Qiu, Kimberly Jackson, Marcus Fruttiger, and William B. Rizzo. 2023. "Untargeted Metabolomic Analysis of Sjögren–Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways" Metabolites 13, no. 6: 682. https://doi.org/10.3390/metabo13060682
APA StyleDai, H. D., Qiu, F., Jackson, K., Fruttiger, M., & Rizzo, W. B. (2023). Untargeted Metabolomic Analysis of Sjögren–Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways. Metabolites, 13(6), 682. https://doi.org/10.3390/metabo13060682