Comparison of Compound Identification Tools Using Data Dependent and Data Independent High-Resolution Mass Spectrometry Spectra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Solvent Standard and Spiked Feed Extract Preparation
2.3. Instrumental Analysis
2.4. Data Processing
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pourchet, M.; Debrauwer, L.; Klanova, J.; Price, E.J.; Covaci, A.; Caballero-Casero, N.; Oberacher, H.; Lamoree, M.; Damont, A.; Fenaille, F.; et al. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. Environ. Int. 2020, 139, 105545. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.R.; Dorrestein, P.C.; Quinn, R.A. Illuminating the dark matter in metabolomics. Proc. Natl. Acad. Sci. USA 2015, 112, 12549–12550. [Google Scholar] [CrossRef] [Green Version]
- Theodoridis, G.; Gika, H.; Raftery, D.; Goodacre, R.; Plumb, R.S.; Wilson, I.D. Ensuring Fact-Based Metabolite Identification in Liquid Chromatography–Mass Spectrometry-Based Metabolomics. Anal. Chem. 2023, 95, 3909–3916. [Google Scholar] [CrossRef] [PubMed]
- Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Zhou, Z.; Zhu, Z.-J. Advanced analytical and informatic strategies for metabolite annotation in untargeted metabolomics. TrAC Trends Anal. Chem. 2023, 58, 116903. [Google Scholar] [CrossRef]
- Kind, T.; Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinform. 2007, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Trier, X.; van Leeuwen, S.P.J.; Brambilla, G.; Weber, R.; Webster, T.F. Lack of chemical reference standards hinders (generation of) scientific evidence of chemical risks and their control. Environ. Health Perspect 2023, under review. [Google Scholar]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Thermo Scientific, mzCloud Advanced Mass Spectral Database. Available online: https://www.mzCloud.org (accessed on 1 November 2020).
- Bittremieux, W.; Wang, M.; Dorrestein, P.C. The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics 2022, 18, 1–16. [Google Scholar] [CrossRef]
- Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S.S.; Wohlgemuth, G.; Barupal, D.K.; Showalter, M.R.; Arita, M.; et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018, 37, 513–532. [Google Scholar] [CrossRef]
- De Vijlder, T.; Valkenborg, D.; Lemière, F.; Romijn, E.P.; Laukens, K.; Cuyckens, F. A tutorial in small molecule identification via electrospray ionization-mass spectrometry: The practical art of structural elucidation. Mass Spectrom. Rev. 2018, 37, 607–629. [Google Scholar] [CrossRef]
- BMisra, B.B. New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics 2021, 17, 1–24. [Google Scholar] [CrossRef]
- Djoumbou-Feunang, Y.; Pon, A.; Karu, N.; Zheng, J.; Li, C.; Arndt, D.; Gautam, M.; Allen, F.; Wishart, D.S. CFM-ID 3.0: Significantly Improved ESI-MS/MS Prediction and Compound Identification. Metabolites 2019, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Laponogov, I.; Sadawi, N.; Galea, D.; Mirnezami, R.; Veselkov, K. ChemDistiller: An engine for metabolite annotation in mass spectrometry. Bioinformatics 2018, 34, 2096–2102. [Google Scholar] [CrossRef] [Green Version]
- Tsugawa, H.; Kind, T.; Nakabayashi, R.; Yukihira, D.; Tanaka, W.; Cajka, T.; Saito, K.; Fiehn, O.; Arita, M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016, 88, 7946–7958. [Google Scholar] [CrossRef]
- Zomer, P.; Mol, H.G. Simultaneous quantitative determination, identification and qualitative screening of pesticides in fruits and vegetables using LC-Q-Orbitrap™-MS. Food Addit. Contam. Part A 2015, 32, 1628–1636. [Google Scholar] [CrossRef]
- Guo, J.; Shen, S.; Xing, S.; Huan, T. DaDIA: Hybridizing Data-Dependent and Data-Independent Acquisition Modes for Generating High-Quality Metabolomic Data. Anal. Chem. 2021, 93, 2669–2677. [Google Scholar] [CrossRef]
- Hilaire, P.B.S.; Rousseau, K.; Seyer, A.; Dechaumet, S.; Damont, A.; Junot, C.; Fenaille, F. Comparative Evaluation of Data Dependent and Data Independent Acquisition Workflows Implemented on an Orbitrap Fusion for Untargeted Metabolomics. Metabolites 2020, 10, 158. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.D.; Camillo-Andrade, A.C.; Kurt, L.U.; Clasen, M.A.; Lyra, E.; Gozzo, F.C.; Batista, M.; Valente, R.H.; Brunoro, G.V.; Barbosa, V.C.; et al. Mixed-Data Acquisition: Next-Generation Quantitative Proteomics Data Acquisition. J. Proteom. 2020, 222, 103803. [Google Scholar] [CrossRef]
- Blaženović, I.; Kind, T.; Torbašinović, H.; Obrenović, S.; Mehta, S.S.; Tsugawa, H.; Wermuth, T.; Schauer, N.; Jahn, M.; Biedendieck, R.; et al. Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: Database boosting is needed to achieve 93% accuracy. J. Chemin. 2017, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schymanski, E.L.; Neumann, S. CASMI: And the winner is…. Metabolites 2013, 3, 412–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Formula | High (µg/L) | Low (µg/L) | Mix |
---|---|---|---|---|
Albendazole-sulfone | C12H15N3O4S | 2000 | 1000 | A |
Albendazole-sulfoxide | C12H15N3O3S | 2000 | 1000 | C |
Clomazone | C12H14ClNO2 | 100 | 50 | A |
Cyproconazole | C15H18ClN3O | 100 | 50 | A |
Doxycycline | C22H24N2O8 | 2000 | 1000 | C |
Epi-Doxycycline | C22H24N2O8 | 2000 | 1000 | B |
Fenbendazole-sulfoxide | C15H13N3O3S | 200 | 100 | A |
Fenbufen | C16H14O3 | 500 | 250 | A |
Foramsulfuron | C17H20N6O7S | 100 | 50 | A |
Indoprofen | C17H15NO3 | 500 | 250 | C |
Ketoprofen | C16H14O3 | 500 | 250 | C |
Levamisole | C11H12N2S | 40 | 20 | A |
Levofloxacin | C18H20FN3O4 | 1000 | 500 | B |
Mebendazole-hydroxy | C16H15N3O3 | 40 | 20 | C |
Minocycline | C23H27N3O7 | 2000 | 1000 | B |
Naproxen | C14H14O3 | 200 | 100 | A |
Niflumic acid | C13H9F3N2O2 | 500 | 250 | A |
Ofloxacin | C18H20FN3O4 | 1000 | 500 | C |
Oxytetracycline | C22H24N2O9 | 2000 | 1000 | C |
Propyphenazone | C14H18N2O | 500 | 250 | C |
Spinosyn-A | C41H65NO10 | 100 | 50 | A |
Sulfacetamide | C8H10N2O3S | 2000 | 1000 | A |
Sulfadimethoxine | C12H14N4O4S | 2000 | 1000 | B |
Sulfadoxine | C12H14N4O4S | 2000 | 1000 | C |
Sulfaguanidine | C7H10N4O2S | 2000 | 1000 | C |
Sulfalene | C11H12N4O3S | 2000 | 1000 | B |
Sulfamonomethoxine | C11H12N4O3S | 2000 | 1000 | A |
Sulfamoxole | C11H13N3O3S | 2000 | 1000 | A |
Sulfisoxazole | C11H13N3O3S | 2000 | 1000 | A |
Tetracycline | C22H24N2O8 | 2000 | 1000 | B |
Epi-tetracycline | C22H24N2O8 | 2000 | 1000 | B |
Tetramisole | C11H12N2S | 40 | 20 | C |
Solvent Standard High Concentration | Spiked Feed Extract High Concentration | Spiked Feed Extract Low Concentration | ||
---|---|---|---|---|
DDA | MSfinder | 75% | 78% | 81% |
CFM-ID | 81% | 81% | 72% | |
Chemdistiller | 69% (76% *) | 69% (76% *) | 66% (72% *) | |
mzCloud | 84% | 88% | 84% | |
DIA | MSfinder | 72% | 75% | 72% |
CFM-ID | 72% | 72% | 63% | |
Chemdistiller | 59% (66% *) | 47% (52% *) | 34% (38% *) | |
mzCloud | 66% | 44% | 31% |
DDA | DIA | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solvent Standard | Spiked Feed Extracts | Spiked Feed Extracts | Solvent Standard | Spiked Feed Extracts | Spiked Feed Extracts | |||||||||||||||||||
High Concentration | High Concentration | Low Concentration | High Concentration | High Concentration | Low Concentration | |||||||||||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
Albendazole sulfone | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | F | T | T | T | F |
Albendazole sulfoxide | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | F | F |
Clomazone | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | F | T | T | T | F | T | T | T | F |
Cyproconazole | F | T | F | T | F | T | F | F | F | F | F | F | F | T | F | F | F | T | F | F | F | T | F | F |
Doxycycline | T | T | T | T | T | T | T | T | T | T | F | T | T | F | F | F | T | T | F | F | T | T | F | F |
epi-doxycycline * | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F | F |
epi-tetracycline * | F | F | F | F | F | F | F | T | F | F | F | T | F | T | F | T | F | F | F | F | F | F | F | F |
Fenbendazole sulfoxide | F | T | T | T | T | T | T | T | T | T | T | T | T | F | T | T | T | T | T | F | F | F | T | F |
Fenbufen | F | F | T | T | F | F | T | T | F | F | T | T | F | T | T | T | F | F | T | F | F | F | T | F |
Foramsulfuron | T | T | T | T | T | T | T | T | T | T | T | T | F | F | T | F | T | F | F | F | T | F | F | F |
Indoprofen | T | F | T | T | T | F | T | T | T | F | F | T | T | F | T | T | F | F | T | T | T | F | T | F |
Ketoprofen | T | T | T | T | T | T | T | T | T | T | T | T | T | F | T | T | T | T | T | T | T | T | T | T |
Levamisole | T | T | T | T | T | T | T | T | T | T | T | T | T | T | F | T | F | T | F | F | F | T | F | F |
Levofloxacin | T | T | F | T | T | T | F | T | T | T | F | T | T | T | F | T | T | T | F | T | T | T | F | T |
Mebendazole-hydroxy * | T | F | F | T | F | F | F | T | T | F | F | T | F | T | F | F | T | F | F | F | T | F | F | F |
Minocycline | T | T | T | T | T | T | F | T | T | T | T | T | T | T | T | T | T | T | F | F | T | T | F | F |
Naproxen | T | T | T | T | T | T | T | T | T | T | T | F | T | T | T | T | T | F | F | F | F | F | F | F |
Niflumic acid | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | F | F | T | F | F | F |
Ofloxacin | F | T | T | T | T | T | T | T | T | T | T | T | F | T | T | T | T | T | T | T | T | T | F | T |
Oxytetracycline | T | T | T | T | T | T | T | T | T | T | T | T | T | F | T | T | T | F | F | F | T | T | F | F |
Propyphenazone | F | T | F | T | T | T | T | T | T | T | T | T | F | F | F | T | T | T | T | T | T | T | T | T |
Spinosin A | T | T | F | F | T | T | F | T | T | F | F | T | T | T | F | F | T | T | F | F | T | F | F | F |
Sulfacetamide | T | T | T | F | T | T | T | T | T | T | T | T | T | T | T | F | T | T | T | T | T | T | T | F |
Sulfadimethoxine | T | T | T | T | T | T | F | T | T | T | F | T | T | T | F | T | T | T | T | T | T | T | F | T |
Sulfadoxine | T | T | F | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
Sulfaguanidine | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T |
Sulfalene | T | T | F | T | T | T | T | F | T | F | T | F | T | T | F | F | T | T | F | F | T | F | F | F |
Sulfamonomethoxine | F | T | T | T | F | T | T | T | F | T | T | T | F | T | T | T | F | T | F | T | F | T | F | T |
Sulfamoxole | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | T | F | T |
Sulfisoxazole | T | T | F | T | T | T | F | T | T | T | F | T | T | T | F | F | T | T | F | T | T | T | F | T |
Tetracycline | T | T | T | T | T | T | F | T | T | T | F | T | T | T | F | T | T | T | F | T | T | T | F | F |
Tetramisole | T | F | T | F | F | F | T | F | F | F | T | F | T | F | T | F | F | F | T | F | F | F | T | F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nijssen, R.; Blokland, M.H.; Wegh, R.S.; de Lange, E.; van Leeuwen, S.P.J.; Berendsen, B.J.A.; van de Schans, M.G.M. Comparison of Compound Identification Tools Using Data Dependent and Data Independent High-Resolution Mass Spectrometry Spectra. Metabolites 2023, 13, 777. https://doi.org/10.3390/metabo13070777
Nijssen R, Blokland MH, Wegh RS, de Lange E, van Leeuwen SPJ, Berendsen BJA, van de Schans MGM. Comparison of Compound Identification Tools Using Data Dependent and Data Independent High-Resolution Mass Spectrometry Spectra. Metabolites. 2023; 13(7):777. https://doi.org/10.3390/metabo13070777
Chicago/Turabian StyleNijssen, Rosalie, Marco H. Blokland, Robin S. Wegh, Erik de Lange, Stefan P. J. van Leeuwen, Bjorn J. A. Berendsen, and Milou G. M. van de Schans. 2023. "Comparison of Compound Identification Tools Using Data Dependent and Data Independent High-Resolution Mass Spectrometry Spectra" Metabolites 13, no. 7: 777. https://doi.org/10.3390/metabo13070777
APA StyleNijssen, R., Blokland, M. H., Wegh, R. S., de Lange, E., van Leeuwen, S. P. J., Berendsen, B. J. A., & van de Schans, M. G. M. (2023). Comparison of Compound Identification Tools Using Data Dependent and Data Independent High-Resolution Mass Spectrometry Spectra. Metabolites, 13(7), 777. https://doi.org/10.3390/metabo13070777