Normal-Fat vs. High-Fat Diets and Olive Oil vs. CLA-Rich Dairy Fat: A Comparative Study of Their Effects on Atherosclerosis in Male Golden Syrian Hamsters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hamsters, Diets, and Experimental Design
2.2. Plasma Fatty Acid Analysis
2.3. Plasma Cholesterol, Triglyceride, Glucose, and Antioxidant Analyses
2.4. Liver and Feces Lipid Extraction and Hepatic Lipid Analysis
2.5. RNA Extraction and Gene Expression Analysis
2.6. Analysis of Atherosclerotic Lesions in the Hamster Aorta
2.7. Statistical Analysis
3. Results
3.1. Hamsters’ General Performance and Plasma Parameters
3.2. Hamsters’ Hepatic Lipids
3.3. Hepatic Gene Expression
3.4. Aortic Histology
3.5. Clustering Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khosla, P.; Sundram, K. Effects of dietary fatty acid composition on plasma cholesterol. Prog. Lipid Res. 1996, 35, 93–132. [Google Scholar] [CrossRef] [PubMed]
- Thorning, T.K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S.S.; Givens, I.; Astrup, A. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr. Res. 2016, 60, 32527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazidi, M.; Mikhailidis, D.P.; Sattar, N.; Howard, G.; Graham, I.; Banach, M. Consumption of dairy product and its association with total and cause specific mortality—A population-based cohort study and meta-analysis. Clin. Nutr. 2019, 38, 2833–2845. [Google Scholar] [CrossRef] [PubMed]
- Buccioni, A.; Decandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed. Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Virto, M.; Bustamante, M.; de Gordoa, J.C.R.; Amores, G.; Fernández-Caballero, P.N.; Mandaluniz, N.; Arranz, J.; Nájera, A.I.; Albisu, M.; Pérez-Elortondo, F.J.; et al. Interannual and geographical reproducibility of the nutritional quality of milk fat from commercial grazing flocks. J. Dairy Res. 2012, 79, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Suealek, N.; Yokoyama, W.H.; Rojpibulstit, P.; Holt, R.R.; Hackman, R.M. Thai Tea Seed (Camellia oleifera) Oil Favorably Affects Plasma Lipid Responses in Hamsters Fed High-Fat Diets. Eur. J. Lipid Sci. Technol. 2018, 121, 1800024. [Google Scholar] [CrossRef]
- Wiseman, S.A.; Tijburg, L.B.M.; van de Put, F.H.M.M. Olive oil phenolics protect LDL and spare vitamin E in the hamster. Lipids 2002, 37, 1053–1057. [Google Scholar] [CrossRef]
- Nistor, A.; Bulla, A.; Filip, D.A.; Radu, A. The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 1987, 68, 159–173. [Google Scholar] [CrossRef]
- Yin, W.; Carballo-Jane, E.; McLaren, D.G.; Mendoza, V.H.; Gagen, K.; Geoghagen, N.S.; McNamara, L.A.; Gorski, J.N.; Eiermann, G.J.; Petrov, A.; et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J. Lipid Res. 2012, 53, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, Q.; Wang, X.; Cong, P.; Xu, J.; Xue, C. Lipidomics Approach in High-Fat-Diet-Induced Atherosclerosis Dyslipidemia Hamsters: Alleviation Using Ether-Phospholipids in Sea Urchin. J. Agric. Food Chem. 2021, 69, 9167–9177. [Google Scholar] [CrossRef]
- Dillard, A.; Matthan, N.R.; Lichtenstein, A.H. Use of hamster as a model to study diet-induced atherosclerosis. Nutr. Metab. 2010, 7, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chadli, F.K.; Andre, A.; Prieur, X.; Loirand, G.; Meynier, A.; Krempf, M.; Nguyen, P.; Ouguerram, K. n-3 PUFA prevent metabolic disturbances associated with obesity and improve endothelial function in golden Syrian hamsters fed with a high-fat diet. Br. J. Nutr. 2012, 107, 1305–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bondia-Pons, I.; Morera-Pons, S.; Castellote, A.I.; López-Sabater, M.C. Determination of phospholipid fatty acids in biological samples by solid-phase extraction and fast gas chromatography. J. Chromatogr. A 2006, 1116, 204–208. [Google Scholar] [CrossRef]
- Bondia-Pons, I.; Moltó-Puigmartí, C.; Castellote, A.I.; López-Sabater, M.C. Determination of conjugated linoleic acid in human plasma by fast gas chromatography. J. Chromatogr. A 2007, 1157, 422–429. [Google Scholar] [CrossRef]
- Talvas, J.; Caris-Veyrat, C.; Guy, L.; Rambeau, M.; Lyan, B.; Minet-Quinard, R.; Lobaccaro, J.-M.A.; Vasson, M.-P.; Georgé, S.; Mazur, A.; et al. Differential effects of lycopene consumed in tomato paste and lycopene in the form of a purified extract on target genes of cancer prostatic cells. Am. J. Clin. Nutr. 2010, 91, 1716–1724. [Google Scholar] [CrossRef] [Green Version]
- Valdivielso, I.; Bustamante, M.; Aldezabal, A.; Amores, G.; Virto, M.; de Gordoa, J.R.; de Renobales, M.; Barron, L. Case study of a commercial sheep flock under extensive mountain grazing: Pasture derived lipid compounds in milk and cheese. Food Chem. 2016, 197, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.A.; Nicolosi, R.J.; Saati, A.; Kotyla, T.; Kritchevsky, D. Conjugated linoleic acid isomers reduce blood cholesterol levels but not aortic cholesterol accumulation in hypercholesterolemic hamsters. Lipids 2006, 41, 41–48. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Cholewiak, R.W.; Butcher, L.; Kettlewell, N.M. Oil red O and hematoxylin: A rapid histologic technic. Physiol. Behav. 1968, 3, 585–586. [Google Scholar] [CrossRef]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. Package “gplots”. 2020. Available online: https://cran.r-project.org/web/packages/gplots/gplots.pdf (accessed on 12 July 2021).
- Berriozabalgoitia, A.; Ruiz de Gordoa, J.C.; Amores, G.; Virto, M. Dietary fatty acid metabolism: New insights into the similarities of lipid metabolism in humans and hamsters. Food Chem. Mol. Sci. 2022, 4, 100060. [Google Scholar] [CrossRef]
- Noyes, A.M.; Dua, K.; Devadoss, R.; Chhabra, L. Cardiac adipose tissue and its relationship to diabetes mellitus and cardiovascular disease. World J. Diabetes 2014, 5, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Dorfman, S.E.; Osgood, D.P.; Lichtenstein, A.H.; Smith, D.E. Study of Diet-Induced Changes in Lipoprotein Metabolism in Two Strains of Golden-Syrian Hamsters. J. Nutr. 2003, 133, 4183–4188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valeille, K.; Férézou, J.; Parquet, M.; Amsler, G.; Gripois, D.; Quignard-Boulangé, A.; Martin, J.-C. The Natural Concentration of the Conjugated Linoleic Acid, cis-9,trans-11, in Milk Fat Has Antiatherogenic Effects in Hyperlipidemic Hamsters. J. Nutr. 2006, 136, 1305–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.-C.; Berton, A.; Ginies, C.; Bott, R.; Scheercousse, P.; Saddi, A.; Gripois, D.; Landrier, J.-F.; Dalemans, D.; Alessi, M.-C.; et al. Multilevel systems biology modeling characterized the atheroprotective efficiencies of modified dairy fats in a hamster model. Am. J. Physiol. Circ. Physiol. 2015, 309, H935–H945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spady, D.K.; Woollett, L.A.; Dietschy, J.M. Regulation of Plasma LDL-Cholesterol Levels by Dietary Cholesterol and Fatty Acids. Annu. Rev. Nutr. 1993, 13, 355–381. [Google Scholar] [CrossRef]
- Sessions, V.A.; Salter, A.M. The effects of different dietary fats and cholesterol on serum lipoprotein concentrations in hamsters. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1994, 1211, 207–214. [Google Scholar] [CrossRef]
- Kahlon, T.S.; Chow, F.I.; Irving, D.W.; Sayre, R.N. Cholesterol response and fatty streak formation in hamsters fed two levels of saturated fat and various levels of cholesterol. Nutr. Res. 1997, 17, 1693–1707. [Google Scholar] [CrossRef]
- Fungwe, T.; Cagen, L.; Wilcox, H.; Heimberg, M. Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. J. Lipid Res. 1992, 33, 179–191. [Google Scholar] [CrossRef]
- Tréguier, M.; Briand, F.; Boubacar, A.; André, A.; Magot, T.; Nguyen, P.; Krempf, M.; Sulpice, T.; Ouguerram, K. Diet-induced dyslipidemia impairs reverse cholesterol transport in hamsters. Eur. J. Clin. Investig. 2011, 41, 921–928. [Google Scholar] [CrossRef]
- Dietschy, J.M. Dietary Fatty Acids and the Regulation of Plasma Low Density Lipoprotein Cholesterol Concentrations. J. Nutr. 1998, 128, 444S–448S. [Google Scholar] [CrossRef] [Green Version]
- Daumerie, C.M.; A Woollett, L.; Dietschy, J.M. Fatty acids regulate hepatic low density lipoprotein receptor activity through redistribution of intracellular cholesterol pools. Proc. Natl. Acad. Sci. USA 1992, 89, 10797–10801. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.D.; Cuthbert, J.A.; Spady, D.K. Dietary fatty acids regulate hepatic low density lipoprotein (LDL) transport by altering LDL receptor protein and mRNA levels. J. Clin. Investig. 1993, 92, 743–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Carr, T.P. Dietary Fatty Acids Regulate Acyl-CoA:Cholesterol Acyltransferase and Cytosolic Cholesteryl Ester Hydrolase in Hamsters. J. Nutr. 2004, 134, 3239–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumsey, S.C.; Galeano, N.F.; Lipschitz, L.; Deckelbaum, R.J. Oleate and Other Long Chain Fatty Acids Stimulate Low Density Lipoprotein Receptor Activity by Enhancing Acyl Coenzyme A:Cholesterol Acyltransferase Activity and Altering Intracellular Regulatory Cholesterol Pools in Cultured Cells. J. Biol. Chem. 1995, 270, 10008–10016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonnalagadda, S.S.; Trautwein, E.A.; Hayes, K.C. Dietary fats rich in saturated fatty acids (12∶0, 14∶0, and 16∶0) enhance gallstone formation relative to monounsaturated fat (18∶1) in cholesterol-fed hamsters. Lipids 1995, 30, 415–424. [Google Scholar] [CrossRef]
- Zeng, X.Z.; Sun, D.S.; Yao, N.Y.; Chen, Y.C.; Cai, D.C.; Huang, X.H.; Gan, H.G.; Zhao, J.Z. Impaired reverse cholesterol transport and hepatic steatosis contribute to pathogenesis of high fat dietinduced hyperlipidemia in murine models. Trop. J. Pharm. Res. 2016, 15, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Berriozabalgoitia, A.; de Gordoa, J.C.R.; de Renobales, M.; Amores, G.; Barron, L.J.R.; Amiano, P.; Dorronsoro, M.; Perea, Z.; Virto, M. The Sum of Plasma Fatty Acids iso16:0, iso17:0, trans11-18:1, cis9, trans11-CLA, and cis6-18:1 as Biomarker of Dairy Intake Established in an Intervention Study and Validated in the EPIC Cohort of Gipuzkoa. Nutrients 2021, 13, 702. [Google Scholar] [CrossRef]
- Burdge, G.C.; Tricon, S.; Morgan, R.; Kliem, K.E.; Childs, C.; Jones, E.; Russell, J.J.; Grimble, R.F.; Williams, C.M.; Yaqoob, P.; et al. Incorporation of cis-9,trans-11 conjugated linoleic acid and vaccenic acid (trans-11 18:1) into plasma and leucocyte lipids in healthy men consuming dairy products naturally enriched in these fatty acids. Br. J. Nutr. 2005, 94, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Lock, A.L.; Horne, C.A.M.; Bauman, D.E.; Salter, A.M. Butter Naturally Enriched in Conjugated Linoleic Acid and Vaccenic Acid Alters Tissue Fatty Acids and Improves the Plasma Lipoprotein Profile in Cholesterol-Fed Hamsters. J. Nutr. 2005, 135, 1934–1939. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.W.; Ntambi, J.M. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc. Natl. Acad. Sci. USA 1996, 93, 9443–9448. [Google Scholar] [CrossRef]
- Mauvoisin, D.; Mounier, C. Hormonal and nutritional regulation of SCD1 gene expression. Biochimie 2011, 93, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Santora, J.E.; Palmquist, D.L.; Roehrig, K.L. Trans-Vaccenic Acid Is Desaturated to Conjugated Linoleic Acid in Mice. J. Nutr. 2000, 130, 208–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morise, A.; Combe, N.; Boué, C.; Legrand, P.; Catheline, D.; Delplanque, B.; Fénart, E.; Weill, P.; Hermier, D. Dose effect of α-linolenic acid on PUFA conversion, bioavailability, and storage in the hamster. Lipids 2004, 39, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Wien, M.; Rajaram, S.; Oda, K.; Sabaté, J. Decreasing the Linoleic Acid to α-Linolenic Acid Diet Ratio Increases Eicosapentaenoic Acid in Erythrocytes in Adults. Lipids 2010, 45, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Mangiapane, E.H.; McAteer, M.A.; Benson, G.M.; White, D.A.; Salter, A.M. Modulation of the regression of atherosclerosis in the hamster by dietary lipids: Comparison of coconut oil and olive oil. Br. J. Nutr. 1999, 82, 401–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trautwein, E.A.; Kunath-Rau, A.; Dietrich, J.; Drusch, S.; Erbersdobler, H.F. Effect of dietary fats rich in lauric, myristic, palmitic, oleic or linoleic acid on plasma, hepatic and biliary lipids in cholesterol-fed hamsters. Br. J. Nutr. 1997, 77, 605–620. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.A.; Nicolosi, R.J.; Handelman, G.; Yoganathan, S.; Kotyla, T.; Orthoefer, F.; Binford, P. Comparative effects of emu and olive oil on aortic early atherosclerosis and associated risk factors in hypercholesterolemic hamsters. Nutr. Res. 2004, 24, 395–406. [Google Scholar] [CrossRef]
- Valeille, K.; Férézou, J.; Amsler, G.; Quignard-Boulangé, A.; Parquet, M.; Gripois, D.; Dorovska-Taran, V.; Martin, J.-C. A cis-9,trans-11-conjugated linoleic acid-rich oil reduces the outcome of atherogenic process in hyperlipidemic hamster. Am. J. Physiol. Circ. Physiol. 2005, 289, H652–H659. [Google Scholar] [CrossRef] [Green Version]
- Gavino, V.C.; Gavino, G.; Leblanc, M.-J.; Tuchweber, B. An Isomeric Mixture of Conjugated Linoleic Acids But Not Pure cis-9,trans-11-Octadecadienoic Acid Affects Body Weight Gain and Plasma Lipids in Hamsters. J. Nutr. 2000, 130, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, P.L.; Langille, M.A.; Currie, D.L.; McLeod, R.S. Effect of conjugated linoleic acid isomers on lipoproteins and atherosclerosis in the Syrian Golden hamster. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2005, 1734, 269–276. [Google Scholar] [CrossRef]
- Nicolosi, R.J.; Rogers, E.J.; Kritchevsky, D.; Scimeca, J.A.; Huth, P.J. Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery 1997, 22, 266–277. [Google Scholar]
- Valeille, K.; Gripois, D.; Blouquit, M.-F.; Souidi, M.; Riottot, M.; Bouthegourd, J.-C.; Sérougne, C.; Martin, J.-C. Lipid atherogenic risk markers can be more favourably influenced by the cis-9,trans-11-octadecadienoate isomer than a conjugated linoleic acid mixture or fish oil in hamsters. Br. J. Nutr. 2004, 91, 191–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Deckere, E.A.M.; van Amelsvoort, J.M.M.; McNeill, G.P.; Jones, P. Effects of conjugated linoleic acid (CLA) isomers on lipid levels and peroxisome proliferation in the hamster. Br. J. Nutr. 1999, 82, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.A.; Nicolosi, R.J.; Chrysam, M.; Kritchevsky, D. Conjugated linoleic acid reduces early aortic atherosclerosis greater than linoleic acid in hypercholesterolemic hamsters. Nutr. Res. 2000, 20, 1795–1805. [Google Scholar] [CrossRef]
- Hennig, B.; Toborek, M.; McClain, C.J. High-Energy Diets, Fatty Acids and Endothelial Cell Function: Implications for Atherosclerosis. J. Am. Coll. Nutr. 2001, 20, 97–105. [Google Scholar] [CrossRef]
- Parker, R.A.; Sabrah, T.; Cap, M.; Gill, B.T. Relation of Vascular Oxidative Stress, α-Tocopherol, and Hypercholesterolemia to Early Atherosclerosis in Hamsters. Arter. Thromb. Vasc. Biol. 1995, 15, 349–358. [Google Scholar] [CrossRef]
- Bruen, R.; Fitzsimons, S.; Belton, O. Atheroprotective effects of conjugated linoleic acid. Br. J. Clin. Pharmacol. 2017, 83, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, Y.K.; Flintoff-Dye, N.; Omaye, S.T. Conjugated linoleic acid modulation of risk factors associated with atherosclerosis. Nutr. Metab. 2008, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecker, J.L.; Matthan, N.R.; Billheimer, J.T.; Rader, D.J.; Lichtenstein, A.H. Impact of dietary fat type within the context of altered cholesterol homeostasis on cholesterol and lipoprotein metabolism in the F1B hamster. Metab. Clin. Exp. 2010, 59, 1491–1501. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Xie, Z.; Yokoyama, W.; Yu, L.; Wang, T.T.Y. Identification of liver CYP51 as a gene responsive to circulating cholesterol in a hamster model. J. Nutr. Sci. 2016, 5, e16. [Google Scholar] [CrossRef] [Green Version]
Hamster Group | ||||
---|---|---|---|---|
Component | OO7 1 | OO21 2 | MF7 3 | MF21 4 |
g/kg | ||||
Protein | 180.8 | 216.7 | 180.6 | 216.5 |
Carbohydrates | 511.5 | 357.4 | 511.7 | 356.0 |
Fat | 70.0 | 208.3 | 70.4 | 208.5 |
Fiber | 64.6 | 60.5 | 64.6 | 60.5 |
Mineral mixture 5 | 41.4 | 52.75 | 41.4 | 52.75 |
Vitamin mixture 5 | 10 | 10 | 10 | 10 |
Cholesterol 6 | 0.155 | 0.471 | 0.157 | 0.472 |
Energy (kcal/g) | 3.4 | 4.2 | 3.4 | 4.2 |
% Energy | ||||
Protein | 21.2 | 20.8 | 21.3 | 20.8 |
Carbohydrates | 60.1 | 34.3 | 60.2 | 34.2 |
Fat | 18.6 | 45 | 18.5 | 45 |
Hamster Groups | ||||||
---|---|---|---|---|---|---|
OO7 1 | OO21 2 | MF7 3 | MF21 4 | p 5 | p 6 | |
General performance | ||||||
Initial weight (g) | 87.5 (8.4) | 93.7 (8.2) | 90.7 (7.4) | 88.2 (3.6) | 0.527 | 0.722 |
Final weight (g) | 117.5 (17.3) | 117.2 (23.1) | 121.0 (12.2) | 122.3 (8.4) | 0.698 | 0.788 |
Weight gain (g) | 32.5 (12.4) | 24.2 (14.8) | 33.3 (8.72) | 40.9 (6.33) | 0.264 | 0.933 |
Food intake (g/d) | 7.49 (0.685) | 7.45 (0.422) | 7.45 (0.630) | 7.06 (0.476) | 0.258 | 0.308 |
Energy intake (kcal/d) | 26.0 (1.74) | 31.3 (1.77) | 25.3 (2.14) | 29.6 (2.00) | 0.497 | <0.001 |
Fat in feces (g/100 g) | 1.67 (0.0423) | 2.54 (0.210) | 1.46 (0.234) | 1.85 (0.206) | 0.248 | 0.021 |
Fat in liver (g/100 g) | 6.90 (1.01) | 7.17 (1.98) | 5.56 (0.83) | 6.58 (1.61) | 0.065 | 0.306 |
Gene | OO7 1 | OO21 2 | MF7 3 | MF21 4 | p 5 | p 6 |
---|---|---|---|---|---|---|
CD-36 | 0.7967 (0.3748) | 0.5054 (0.1966) | 0.5933 (0.1163) | 0.5024 (0.1302) | 0.719 | 0.021 |
PPAR-α | 2.742 (0.6497) | 2.294 (0.4988) | 2.268 (0.8301) | 2.156 (0.7124) | 0.090 | 0.736 |
SR-B1 | 2.985 (0.6695) | 2.536 (0.9361) | 1.899 (0.4067) | 1.770 (0.908) | 0.012 | 0.312 |
ACAT | 0.3704 (0.04081) | 0.2825 (0.06138) | 0.2924 (0.04305) | 0.2827 (0.04706) | 0.040 | 0.036 |
ApoB100 | 3.387 (0.5567) | 2.988 (0.4073) | 2.570 (0.8832) | 2.774 (0.8040) | 0.341 | 0.662 |
ApoA1 | 0.4890 (0.08334) | 0.4319 (0.04819) | 0.5134 (0.2079) | 0.4949 (0.2400) | 0.382 | 0.392 |
LDLR | 0.7553 (0.1160) | 0.7059 (0.1766) | 0.4572 (0. 09785) | 0.4243 (0.2668) | 0.005 | 0.979 |
HMG-CoAR | 0.5781 (0.1295) | 1.220 (1.072) | 0.4823 (0.1212) | 0.3833 (0.1174) | 0.024 | 0.856 |
MTP | 1.488 (0.5130) | 1.013 (0.2243) | 1.359 (0.7599) | 1.079 (0.3730) | 0.607 | 0.052 |
LXR-α | 0.8654 (0.3617) | 0.6443 (0.1251) | 0.7078 (0.3158) | 0.5249 (0.1664) | 0.057 | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berriozabalgoitia, A.; Ruiz de Gordoa, J.C.; Amores, G.; Santamarina-Garcia, G.; Hernández, I.; Virto, M. Normal-Fat vs. High-Fat Diets and Olive Oil vs. CLA-Rich Dairy Fat: A Comparative Study of Their Effects on Atherosclerosis in Male Golden Syrian Hamsters. Metabolites 2023, 13, 827. https://doi.org/10.3390/metabo13070827
Berriozabalgoitia A, Ruiz de Gordoa JC, Amores G, Santamarina-Garcia G, Hernández I, Virto M. Normal-Fat vs. High-Fat Diets and Olive Oil vs. CLA-Rich Dairy Fat: A Comparative Study of Their Effects on Atherosclerosis in Male Golden Syrian Hamsters. Metabolites. 2023; 13(7):827. https://doi.org/10.3390/metabo13070827
Chicago/Turabian StyleBerriozabalgoitia, Alaitz, Juan Carlos Ruiz de Gordoa, Gustavo Amores, Gorka Santamarina-Garcia, Igor Hernández, and Mailo Virto. 2023. "Normal-Fat vs. High-Fat Diets and Olive Oil vs. CLA-Rich Dairy Fat: A Comparative Study of Their Effects on Atherosclerosis in Male Golden Syrian Hamsters" Metabolites 13, no. 7: 827. https://doi.org/10.3390/metabo13070827
APA StyleBerriozabalgoitia, A., Ruiz de Gordoa, J. C., Amores, G., Santamarina-Garcia, G., Hernández, I., & Virto, M. (2023). Normal-Fat vs. High-Fat Diets and Olive Oil vs. CLA-Rich Dairy Fat: A Comparative Study of Their Effects on Atherosclerosis in Male Golden Syrian Hamsters. Metabolites, 13(7), 827. https://doi.org/10.3390/metabo13070827