LDH-A Promotes Metabolic Rewiring in Leucocytes from the Intestine of Rats Treated with TNBS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Induction of Colitis in Rats with TNBS
2.3. Assessment of Colitis
2.4. Tissue Collection
2.5. Haematoxylin and Eosin Staining
2.6. Epithelial Cell Isolation
2.7. Protein Quantification
2.8. Assessment of Enzymatic Activities in Cellular Fractions
2.9. Plasma Lactate Measurement
2.10. Quantification of Superoxide Anion Using Electron Paramagnetic Resonance
2.11. Immunohistochemistry LDH-A in TNBS-Induced Colitis in Rats
2.12. Statistical Analysis
3. Results
3.1. A Rise in the Disease Activity Index (DAI) in TNBS-Induced Colitis in Rats
3.2. Morphological Changes in TNBS-Induced Colitis in Rats Rats
3.3. TNBS-Induced Colitis in Rats Modifies the Enzymatic Activity in Epithelial Cells
3.4. TNBS-Induced Colitis in Rats Modifies the Enzymatic Activity of Leukocytes in the Lamina Propria
3.5. LDH-A Presence in the Colon Inflammatory Infiltrate of TNBS-Induced Colitis in Rats
3.6. Increase in Lactate Concentration in Lamina Propria Leukocytes of TNBS-Induced Colitis in Rats
3.7. Epithelial Cells and Leucocytes Increase the Levels of Superoxide Anion in the Colon of TNBS-Induced Colitis in Rats
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abraham, C.; Cho, J.H. Inflammatory bowel disease. N. Engl. J. Med. 2009, 361, 2066–2078. [Google Scholar] [CrossRef]
- Ordás, I.; Eckmann, L.; Talamini, M.; Baumgart, D.C.; Sandborn, W.J. Ulcerative colitis. Lancet 2012, 380, 1606–1619. [Google Scholar] [CrossRef] [Green Version]
- Arciniega-Martínez, I.M.; Reséndiz Albor, A.A.; Cárdenas Jaramillo, L.M.; Gutiérrez-Meza, J.M.; Falfán-Valencia, R.; Arroyo, B.M.; Yépez-Ortega, M.; Pacheco-Yépez, J.; Abarca-Rojano, E. CD4+/IL-4+ lymphocytes of the lamina propria and substance P promote colonic protection during acute stress. Mol. Med. Rep. 2022, 25, 63. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Pinto, R.; Mateus, V. Preclinical Study in Vivo for New Pharmacological Approaches in Inflammatory Bowel Disease: A Systematic Review of Chronic Model of TNBS-Induced Colitis. J. Clin. Med. 2019, 8, 1574. [Google Scholar] [CrossRef] [Green Version]
- Gadaleta, R.M.; Garcia-Irigoyen, O.; Moschetta, A. Exploration of Inflammatory Bowel Disease in Mice: Chemically Induced Murine Models of Inflammatory Bowel Disease (IBD). Curr. Protoc. Mouse Biol. 2017, 7, 13–28. [Google Scholar] [CrossRef]
- Morris, G.P.; Beck, P.L.; Herridge, M.S.; Depew, W.T.; Szewczuk, M.R.; Wallace, J.L. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 1989, 96, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Banan, A.; Choudhary, S.; Zhang, Y.; Fields, J.Z.; Keshavarzian, A. Ethanol-induced barrier dysfunction and its prevention by growth factors in human intestinal monolayers: Evidence for oxidative and cytoskeletal mechanisms. J. Pharmacol. Exp. Ther. 1999, 291, 1075–1085. [Google Scholar]
- Campbell, E.L.; Bruyninckx, W.J.; Kelly, C.J.; Glover, L.E.; McNamee, E.N.; Bowers, B.E.; Bayless, A.J.; Scully, M.; Saeedi, B.J.; Golden-Mason, L.; et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 2014, 40, 66–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirtz, S.; Neurath, M.F. Mouse models of inflammatory bowel disease. Adv. Drug Deliv. Rev. 2007, 59, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Alhobayb, T.; Ciorba, M.A. Clostridium difficile in inflammatory bowel disease. Curr. Opin. Gastroenterol. 2023, 39, 257–262. [Google Scholar] [CrossRef]
- Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Venema, K.; van den Abbeele, P. Experimental models of the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Adini, A.; Ko, V.H.; Puder, M.; Louie, S.M.; Kim, C.F.; Baron, J.; Matthews, B.D. PR1P, a VEGF-stabilizing peptide, reduces injury and inflammation in acute lung injury and ulcerative colitis animal models. Front. Immunol. 2023, 14, 1168676. [Google Scholar] [CrossRef]
- Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Litvak, Y.; Byndloss, M.X.; Bäumler, A.J. Colonocyte metabolism shapes the gut microbiota. Science 2018, 362, eaat9076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bronner, D.N.; Faber, F.; Olsan, E.E.; Byndloss, M.X.; Sayed, N.A.; Xu, G.; Yoo, W.; Kim, D.; Ryu, S.; Lebrilla, C.B.; et al. Genetic Ablation of Butyrate Utilization Attenuates Gastrointestinal Salmonella Disease. Cell Host Microbe 2018, 23, 266–273.e4. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.Y.; Davidson, L.A.; Callaway, E.S.; Wright, G.A.; Safe, S.; Chapkin, R.S. A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G1–G9. [Google Scholar] [CrossRef] [Green Version]
- Duszka, K.; Oresic, M.; Le May, C.; König, J.; Wahli, W. PPARγ Modulates Long Chain Fatty Acid Processing in the Intestinal Epithelium. Int. J. Mol. Sci. 2017, 18, 2559. [Google Scholar] [CrossRef] [Green Version]
- Tylichová, Z.; Straková, N.; Vondrácek, J.; Vaculová, A.H.; Kozubík, A.; Hofmanová, J. Activation of autophagy and PPARγ protect colon cancer cells against apoptosis induced by interactive effects of butyrate and DHA in a cell type-dependent manner: The role of cell differentiation. J. Nutr. Biochem. 2017, 39, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 2013, 496, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, L.; Fu, S.; Gao, T.; Sang, X.; Yang, H.; Liu, X.; Yang, H.; Liu, Y.; Zhang, N. Regulating T-cell metabolic reprogramming and blocking PD-1 co-promote personalized postoperative autologous nanovaccines. Biomaterials 2023, 297, 122104. [Google Scholar] [CrossRef] [PubMed]
- Britt, E.C.; Lika, J.; Giese, M.A.; Schoen, T.J.; Seim, G.L.; Huang, Z.; Lee, P.Y.; Huttenlocher, A.; Fan, J. Switching to the cyclic pentose phosphate pathway powers the oxidative burst in activated neutrophils. Nat. Metab. 2022, 4, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 8, e1000412. [Google Scholar] [CrossRef] [PubMed]
- Calva-Candelaria, N.; Meléndez-Camargo, M.E.; Montellano-Rosales, H.; Estrada-Pérez, A.R.; Rosales-Hernández, M.C.; Fragoso-Vázquez, M.J.; Martínez-Archundia, M.; Correa-Basurto, J.; Márquez-Flores, Y.K. Oenothera rosea L ’Hér. ex Ait attenuates acute colonic inflammation in TNBS-induced colitis model in rats: In vivo and in silico myeloperoxidase role. Biomed. Pharmacother. 2018, 108, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Kesari, K.V.; Ramaswamy, K.K.; Amenta, P.S.; Das, K.M. Oral administration of unmodified colonic but not small intestinal antigens protects rats from hapten-induced colitis. Clin. Exp. Immunol. 2001, 125, 41–47. [Google Scholar] [CrossRef]
- Márquez-Flores, Y.K.; Villegas, I.; Cárdeno, A.; Rosillo, M.Á.; Alarcón-de-la-Lastra, C. Apigenin supplementation protects the development of dextran sulfate sodium-induced murine experimental colitis by inhibiting canonical and non-canonical inflammasome signaling pathways. J. Nutr. Biochem. 2016, 30, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Bissawagner, H. Enzyme assay. Perspect. Sci. 2014, 1, 45–55. [Google Scholar]
- Pavan, E.; Damazo, A.S.; Arunachalam, K.; de Araújo Almeida, P.O.; Oliveira, D.M.; Venturini, C.L.; de Freitas Figueiredo, F.; da Cruz, T.C.D.; da Silva, J.V.; de Oliveira Martins, D.T. Copaifera malmei Harms leaves infusion attenuates ulcerative colitis through modulation of cytokines, oxidative stress and mucus in experimental rats. J. Ethnopharmacol. 2021, 267, 113499. [Google Scholar] [CrossRef]
- Gonçalves, C.C.; Hernandes, L.; Bersani-Amado, C.A.; Franco, S.L.; Silva, J.F.; Natali, M.R. Use of propolis hydroalcoholic extract to treat colitis experimentally induced in rats by 2,4,6-trinitrobenzenesulfonic Acid. Evid.-Based Complement. Alternat. Med. 2013, 2013, 853976. [Google Scholar] [CrossRef]
- McKenzie, S.J.; Baker, M.S.; Buffinton, G.D.; Doe, W.F. Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease. J. Clin. Investig. 1996, 98, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Haschemi, A.; Kosma, P.; Gille, L.; Evans, C.R.; Burant, C.F.; Starkl, P.; Knapp, B.; Haas, R.; Schmid, J.A.; Jandl, C.; et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab. 2012, 15, 813–826. [Google Scholar] [CrossRef] [Green Version]
- Blagih, J.; Jones, R.G. Polarizing macrophages through reprogramming of glucose metabolism. Cell Metab. 2012, 15, 793–795. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.; Nagy, C.; Knapp, B.; Laengle, J.; Ponweiser, E.; Groeger, M.; Starkl, P.; Bergmann, M.; Wagner, O.; Haschemi, A. Exploring Metabolic Configurations of Single Cells within Complex Tissue Microenvironments. Cell Metab. 2017, 26, 788–800.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, H.; Dolde, C.; Lewis, B.C.; Wu, C.S.; Dang, G.; Jungmann, R.A.; Dalla-Favera, R.; Dang, C.V. c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. USA 1997, 94, 6658–6663. [Google Scholar] [CrossRef] [PubMed]
- Estévez-García, I.O.; Cordoba-Gonzalez, V.; Lara-Padilla, E.; Fuentes-Toledo, A.; Falfán-Valencia, R.; Campos-Rodríguez, R.; Abarca-Rojano, E. Glucose and glutamine metabolism control by APC and SCF during the G1-to-S phase transition of the cell cycle. J. Physiol. Biochem. 2014, 70, 569–581. [Google Scholar] [CrossRef]
- Peng, M.; Yin, N.; Chhangawala, S.; Xu, K.; Leslie, C.S.; Li, M.O. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 2016, 354, 481–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iraporda, C.; Romanin, D.E.; Bengoa, A.A.; Errea, A.J.; Cayet, D.; Foligné, B.; Sirard, J.C.; Garrote, G.L.; Abraham, A.G.; Rumbo, M. Local Treatment with Lactate Prevents Intestinal Inflammation in the TNBS-Induced Colitis Model. Front. Immunol. 2016, 7, 651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Colgan, S.P.; Taylor, C.T. Hypoxia: An alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol. 2010, 7, 281–728. [Google Scholar] [CrossRef] [Green Version]
- Karhausen, J.; Furuta, G.T.; Tomaszewski, J.E.; Johnson, R.S.; Colgan, S.P.; Haase, V.H. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Investig. 2004, 14, 1098. [Google Scholar] [CrossRef] [Green Version]
- Fuhrmann, D.C.; Olesch, C.; Kurrle, N.; Schnütgen, F.; Zukunft, S.; Fleming, I.; Brüne, B. Chronic Hypoxia Enhances β- Oxidation-Dependent Electron Transport via Electron Transferring Flavoproteins. Cells 2019, 8, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Leukocytes from Lamina Propria | |||
---|---|---|---|
Initial Activity | Statistical Deference | ||
EtOH | TNBS | ||
G6PDH | 0.019 ± (0.001) | 0.035 ± (0.007) | p ≤ 0.01 |
GAPDH | 0.232 ± (0.016) | 0.657 ± (0.246) | p ≤ 0.04 |
LDH | 0.185 ± (0.005) | 0.448 ± (0.119) | p ≤ 0.01 |
IDH | 0.023 ± (0.006) | 0.018 ± (0.009) | p ≤ 0.447 |
GDH | 0.042 ± (0.010) | 0.017 ± (0.015) | p ≤ 0.082 |
SDH | 0.011± (0.0008) | 0.044 ± (0.0111) | p ≤ 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Arroyo, B.; Rosales-Hernández, M.C.; Pacheco-Yépez, J.; Rivera-Antonio, A.M.; Márquez-Flores, Y.K.; Cárdenas-Jaramillo, L.M.; Reséndiz-Albor, A.A.; Arciniega-Martínez, I.M.; Cruz-Hernández, T.R.; Abarca-Rojano, E. LDH-A Promotes Metabolic Rewiring in Leucocytes from the Intestine of Rats Treated with TNBS. Metabolites 2023, 13, 843. https://doi.org/10.3390/metabo13070843
Mendoza-Arroyo B, Rosales-Hernández MC, Pacheco-Yépez J, Rivera-Antonio AM, Márquez-Flores YK, Cárdenas-Jaramillo LM, Reséndiz-Albor AA, Arciniega-Martínez IM, Cruz-Hernández TR, Abarca-Rojano E. LDH-A Promotes Metabolic Rewiring in Leucocytes from the Intestine of Rats Treated with TNBS. Metabolites. 2023; 13(7):843. https://doi.org/10.3390/metabo13070843
Chicago/Turabian StyleMendoza-Arroyo, Belen, Martha Cecilia Rosales-Hernández, Judith Pacheco-Yépez, Astrid Mayleth Rivera-Antonio, Yazmín Karina Márquez-Flores, Luz María Cárdenas-Jaramillo, Aldo Arturo Reséndiz-Albor, Ivonne Maciel Arciniega-Martínez, Teresita Rocío Cruz-Hernández, and Edgar Abarca-Rojano. 2023. "LDH-A Promotes Metabolic Rewiring in Leucocytes from the Intestine of Rats Treated with TNBS" Metabolites 13, no. 7: 843. https://doi.org/10.3390/metabo13070843
APA StyleMendoza-Arroyo, B., Rosales-Hernández, M. C., Pacheco-Yépez, J., Rivera-Antonio, A. M., Márquez-Flores, Y. K., Cárdenas-Jaramillo, L. M., Reséndiz-Albor, A. A., Arciniega-Martínez, I. M., Cruz-Hernández, T. R., & Abarca-Rojano, E. (2023). LDH-A Promotes Metabolic Rewiring in Leucocytes from the Intestine of Rats Treated with TNBS. Metabolites, 13(7), 843. https://doi.org/10.3390/metabo13070843