Trimethylamine N-Oxide Concentration and Blood Pressure in Young Healthy Men and Women: A Replicated Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.2.1. Eumenorrheic Women
2.2.2. Oral Contraceptive Pill Users
2.2.3. Experimental Procedures
2.3. Measurements
2.3.1. Peripheral Blood Pressure
2.3.2. Central Blood Pressure
2.3.3. Blood Collection
2.4. Sample Extraction and Quantification
2.4.1. Materials
2.4.2. Plasma TMAO
2.4.3. Serum 17-β-Estradiol and Progesterone
2.5. Statistical Analysis
3. Results
3.1. TMAO
3.2. Peripheral Blood Pressure
3.2.1. Brachial Systolic Blood Pressure
3.2.2. Brachial Diastolic Blood Pressure
3.3. Central Blood Pressure
3.3.1. Aortic Systolic Blood Pressure
3.3.2. Aortic Diastolic Blood Pressure
3.4. 17-β-Estradiol and Progesterone
3.5. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Kararigas, G. Role of Biological Sex in the Cardiovascular-Gut Microbiome Axis. Front. Cardiovasc. Med. 2022, 8, 759735. [Google Scholar] [CrossRef]
- Ahmed, S.; Spence, J.D. Sex Differences in the Intestinal Microbiome: Interactions with Risk Factors for Atherosclerosis and Cardiovascular Disease. Biol. Sex Differ. 2021, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Razavi, A.C.; Potts, K.S.; Kelly, T.N.; Bazzano, L.A. Sex, Gut Microbiome, and Cardiovascular Disease Risk. Biol. Sex Differ. 2019, 10, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.S.; Fernandez, M.L. Trimethylamine N-Oxide (TMAO), Diet and Cardiovascular Disease. Curr. Atheroscler. Rep. 2021, 23, 12. [Google Scholar] [CrossRef]
- Buffa, J.A.; Romano, K.A.; Copeland, M.F.; Cody, D.B.; Zhu, W.; Galvez, R.; Fu, X.; Ward, K.; Ferrell, M.; Dai, H.J.; et al. The Microbial Gbu Gene Cluster Links Cardiovascular Disease Risk Associated with Red Meat Consumption to Microbiota L-Carnitine Catabolism. Nat. Microbiol. 2021, 7, 73–86. [Google Scholar] [CrossRef]
- Wang, Z.; Bergeron, N.; Levison, B.S.; Li, X.S.; Chiu, S.; Jia, X.; Koeth, R.A.; Li, L.; Wu, Y.; Tang, W.H.W.; et al. Impact of Chronic Dietary Red Meat, White Meat, or Non-Meat Protein on Trimethylamine N-Oxide Metabolism and Renal Excretion in Healthy Men and Women. Eur. Heart J. 2019, 40, 583–594. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, W.H.W.; O’Connell, T.; Garcia, E.; Jeyarajah, E.J.; Li, X.S.; Jia, X.; Weeks, T.L.; Hazen, S.L. Circulating Trimethylamine N-Oxide Levels Following Fish or Seafood Consumption. Eur. J. Nutr. 2022, 61, 2357–2364. [Google Scholar] [CrossRef]
- Miller, C.A.; Corbin, K.D.; da Costa, K.-A.; Zhang, S.; Zhao, X.; Galanko, J.A.; Blevins, T.; Bennett, B.J.; O’Connor, A.; Zeisel, S.H. Effect of Egg Ingestion on Trimethylamine-N-Oxide Production in Humans: A Randomized, Controlled, Dose-Response Study. Am. J. Clin. Nutr. 2014, 100, 778–786. [Google Scholar] [CrossRef] [Green Version]
- Janeiro, M.; Ramírez, M.; Milagro, F.; Martínez, J.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018, 10, 1398. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Di Somma, C.; Maisto, M.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine N-Oxide, Mediterranean Diet, and Nutrition in Healthy, Normal-Weight Adults: Also a Matter of Sex? Nutrition 2019, 62, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Gessner, A.; di Giuseppe, R.; Koch, M.; Fromm, M.F.; Lieb, W.; Maas, R. Trimethylamine-N-Oxide (TMAO) Determined by LC-MS/MS: Distribution and Correlates in the Population-Based PopGen Cohort. Clin. Chem. Lab. Med. 2020, 58, 733–740. [Google Scholar] [CrossRef]
- Obeid, R.; Awwad, H.M.; Keller, M.; Geisel, J. Trimethylamine-N-Oxide and Its Biological Variations in Vegetarians. Eur. J. Nutr. 2017, 56, 2599–2609. [Google Scholar] [CrossRef]
- Rohrmann, S.; Linseisen, J.; Allenspach, M.; von Eckardstein, A.; Müller, D. Plasma Concentrations of Trimethylamine-N-Oxide Are Directly Associated with Dairy Food Consumption and Low-Grade Inflammation in a German Adult Population. J. Nutr. 2016, 146, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Obeid, R.; Awwad, H.M.; Rabagny, Y.; Graeber, S.; Herrmann, W.; Geisel, J. Plasma Trimethylamine N-Oxide Concentration Is Associated with Choline, Phospholipids, and Methyl Metabolism. Am. J. Clin. Nutr. 2016, 103, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Luo, Q.; Ding, X.; Chen, L.; Zhang, Z. Trimethylamine N-Oxide and Its Precursors in Relation to Blood Pressure: A Mendelian Randomization Study. Front. Cardiovasc. Med. 2022, 9, 922441. [Google Scholar] [CrossRef]
- Joyner, M.J.; Wallin, B.G.; Charkoudian, N. Sex Differences and Blood Pressure Regulation in Humans. Exp. Physiol. 2016, 101, 349–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott-Sale, K.J.; McNulty, K.L.; Ansdell, P.; Goodall, S.; Hicks, K.M.; Thomas, K.; Swinton, P.A.; Dolan, E. The Effects of Oral Contraceptives on Exercise Performance in Women: A Systematic Review and Meta-Analysis. Sport. Med. 2020, 50, 1785–1812. [Google Scholar] [CrossRef] [PubMed]
- Boldo, A.; White, W.B. Blood Pressure Effects of the Oral Contraceptive and Postmenopausal Hormone Therapies. Endocrinol. Metab. Clin. N. Am. 2011, 40, 419–432. [Google Scholar] [CrossRef]
- Harvey, R.E.; Hart, E.C.; Charkoudian, N.; Curry, T.B.; Carter, J.R.; Fu, Q.; Minson, C.T.; Joyner, M.J.; Barnes, J.N. Oral Contraceptive Use, Muscle Sympathetic Nerve Activity, and Systemic Hemodynamics in Young Women. Hypertension 2015, 66, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Heaney, L.M. Applying Mass Spectrometry-Based Assays to Explore Gut Microbial Metabolism and Associations with Disease. Clin. Chem. Lab. Med. 2020, 58, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Batterham, A.M. True and False Interindividual Differences in the Physiological Response to an Intervention. Exp. Physiol. 2015, 100, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Hecksteden, A.; Kraushaar, J.; Scharhag-Rosenberger, F.; Theisen, D.; Senn, S.; Meyer, T. Individual Response to Exercise Training—A Statistical Perspective. J. Appl. Physiol. 2015, 118, 1450–1459. [Google Scholar] [CrossRef] [Green Version]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Elliott-Sale, K.J.; Minahan, C.L.; de Jonge, X.A.K.J.; Ackerman, K.E.; Sipilä, S.; Constantini, N.W.; Lebrun, C.M.; Hackney, A.C. Methodological Considerations for Studies in Sport and Exercise Science with Women as Participants: A Working Guide for Standards of Practice for Research on Women. Sport. Med. 2021, 51, 843–861. [Google Scholar] [CrossRef] [PubMed]
- Janse de Jonge, X.; Thompson, B.; Han, A. Methodological Recommendations for Menstrual Cycle Research in Sports and Exercise. Med. Sci. Sports Exerc. 2019, 51, 2610–2617. [Google Scholar] [CrossRef] [PubMed]
- Heaney, L.M.; Jones, D.J.L.; Mbasu, R.J.; Ng, L.L.; Suzuki, T. High mass accuracy assay for trimethylamine N-oxide using stable-isotope dilution with liquid chromatography coupled to orthogonal acceleration time of flight mass spectrometry with multiple reaction monitoring. Anal Bioanal Chem. 2016, 408, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Bergström, H.; Ekström, L.; Warnqvist, A.; Bergman, P.; Björkhem-Bergman, L. Variations in Biomarkers of Dyslipidemia and Dysbiosis during the Menstrual Cycle: A Pilot Study in Healthy Volunteers. BMC Womens Health 2021, 21, 166. [Google Scholar] [CrossRef]
- Dunne, F.P.; Barry, D.G.; Ferriss, J.B.; Grealy, G.; Murphy, D. Changes in Blood Pressure during the Normal Menstrual Cycle. Clin. Sci. 1991, 81, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Spaczyński, R.Z.; Mitkowska, A.; Florczak, M.; Banaszewska, B.; Krauze, T.; Wykrętowicz, A.; Guzik, P.; Pawelczyk, L. Decreased Large-Artery Stiffness in Midluteal Phase of the Menstrual Cycle in Healthy Women of Reproductive Age. Ginekol. Pol. 2014, 85, 771–777. [Google Scholar]
- Kwissa, M.; Krauze, T.; Mitkowska-Redman, A.; Banaszewska, B.; Spaczynski, R.Z.; Wykretowicz, A.; Guzik, P. Cardiovascular Function in Different Phases of the Menstrual Cycle in Healthy Women of Reproductive Age. J. Clin. Med. 2022, 11, 5861. [Google Scholar] [CrossRef]
- Davis, G.C.; Gibson, K.J.; Casley, D.; Brown, M.A. Angiotensin II/Angiotensin (1–7) Ratio and 24-h Blood Pressure throughout the Menstrual Cycle and in Women Using Oral Contraceptives. J. Hypertens. 2017, 35, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Heintz, B.; Schmauder, C.; Witte, K.; Breuer, I.; Baltzer, K.; Sieberth, H.-G.; Lemmer, B. Blood Pressure Rhythm and Endocrine Functions in Normotensive Women on Oral Contraceptives. J. Hypertens. 1996, 14, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Adkisson, E.J.; Casey, D.P.; Beck, D.T.; Gurovich, A.N.; Martin, J.S.; Braith, R.W. Central, Peripheral and Resistance Arterial Reactivity: Fluctuates during the Phases of the Menstrual Cycle. Exp. Biol. Med. 2010, 235, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hee, L.; Kettner, L.O.; Vejtorp, M. Continuous Use of Oral Contraceptives: An Overview of Effects and Side-Effects. Acta Obstet. Gynecol. Scand. 2013, 92, 125–136. [Google Scholar] [CrossRef]
- Birch, K.; Cable, N.; George, K. Combined Oral Contraceptives Do Not Influence Post-Exercise Hypotension in Women. Exp. Physiol. 2002, 87, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Eagan, L.E.; Chesney, C.A.; Mascone, S.E.; Ranadive, S.M. Arterial Stiffness and Blood Pressure Are Similar in Naturally Menstruating and Oral Contraceptive Pill-using Women during the Higher Hormone Phases. Exp. Physiol. 2022, 107, 374–382. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Ivey, K.L.; Wang, D.D.; Wilkinson, J.E.; Franke, A.; Lee, K.H.; Chan, A.; Huttenhower, C.; Hu, F.B.; et al. Interplay between Diet and Gut Microbiome, and Circulating Concentrations of Trimethylamine N-Oxide: Findings from a Longitudinal Cohort of US Men. Gut 2022, 71, 724–733. [Google Scholar] [CrossRef]
- Koupenova, M.; Mick, E.; Mikhalev, E.; Benjamin, E.J.; Tanriverdi, K.; Freedman, J.E. Sex Differences in Platelet Toll-Like Receptors and Their Association with Cardiovascular Risk Factors. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1030–1037. [Google Scholar] [CrossRef] [Green Version]
- Bennett, B.J.; de Aguiar Vallim, T.Q.; Wang, Z.; Shih, D.M.; Meng, Y.; Gregory, J.; Allayee, H.; Lee, R.; Graham, M.; Crooke, R.; et al. Trimethylamine-N-Oxide, a Metabolite Associated with Atherosclerosis, Exhibits Complex Genetic and Dietary Regulation. Cell Metab. 2013, 17, 49–60. [Google Scholar] [CrossRef] [Green Version]
- August, P.; Oparil, S. Hypertension in Women. J. Clin. Endocrinol. Metab. 1999, 84, 1862–1866. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Zheng, L.; Zhuang, R.; Yu, P.; Xu, Z.; Liu, G.; Xi, X.; Zhou, X.; Fan, H. The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose–Response Meta-Analysis. Adv. Nutr. 2020, 11, 66–76. [Google Scholar] [CrossRef]
- Israr, M.Z.; Bernieh, D.; Salzano, A.; Cassambai, S.; Yazaki, Y.; Heaney, L.M.; Jones, D.J.L.; Ng, L.L.; Suzuki, T. Association of Gut-Related Metabolites with Outcome in Acute Heart Failure. Am. Heart J. 2021, 234, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Heianza, Y.; Ma, W.; Manson, J.E.; Rexrode, K.M.; Qi, L. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J. Am. Heart Assoc. 2017, 6, e004947. [Google Scholar] [CrossRef] [PubMed]
Menstrual Cycle Phase | p | ||||||
---|---|---|---|---|---|---|---|
EFP1 | EFP2 | MLP1 | MLP2 | Phase | Repeat | Interaction | |
TMAO (μmol/L) | 3.0 ± 2.1 | 2.8 ± 1.8 | 3.5 ± 2.3 | 2.9 ± 1.5 | 0.389 | 0.368 | 0.725 |
Peripheral SBP (mmHg) | 106 ± 9 | 105 ± 9 | 105 ± 7 | 106 ± 7 | 0.892 | 1.000 | 0.454 |
Peripheral DBP (mmHg) | 67 ± 8 | 67 ± 8 | 67 ± 7 | 67 ± 7 | 0.806 | 0.605 | 0.885 |
Central SBP (mmHg) | 94 ± 10 | 92 ± 10 | 93 ± 9 | 94 ± 8 | 0.831 | 0.640 | 0.041 |
Central DBP (mmHg) | 68 ± 9 | 67 ± 8 | 67 ± 8 | 68 ± 7 | 0.976 | 0.917 | 0.559 |
17-β-estradiol (pg/mL) | 16 ± 9 | 12 ± 10 | 48 ± 20 | 44 ± 35 | <0.001 | 0.200 | 0.963 |
Progesterone (ng/mL) | 1.7 ± 1.2 | 2.2 ± 2.9 | 27.3 ± 11.3 | 23.1 ± 12.8 | <0.001 | 0.325 | 0.275 |
Contraceptive Pill Phase | p | ||||||
---|---|---|---|---|---|---|---|
INACTIVE1 | INACTIVE2 | ACTIVE1 | ACTIVE2 | Phase | Repeat | Interaction | |
TMAO (μmol/L) | 2.3 ± 1.2 | 4.2 ± 5.6 | 1.9 ± 0.8 | 2.8 ± 2.2 | 0.330 | 0.127 | 0.594 |
Peripheral SBP (mmHg) | 109 ± 5 | 107 ± 5 | 108 ± 4 | 109 ± 7 | 0.406 | 0.187 | 0.109 |
Peripheral DBP (mmHg) | 69 ± 4 | 68 ± 3 | 68 ± 4 | 67 ± 4 | 0.157 | 0.209 | 0.818 |
Central SBP (mmHg) | 95 ± 4 | 93 ± 4 | 93 ± 4 | 93 ± 5 | 0.543 | 0.268 | 0.293 |
Central DBP (mmHg) | 71 ± 4 | 69 ± 4 | 69 ± 4 | 68 ± 4 | 0.161 | 0.115 | 0.477 |
17-β-estradiol (pg/mL) | 6.1 ± 7.2 | 3.6 ± 7.8 | 3.2 ± 4.7 | 4.2 ± 5.7 | 0.158 | 0.589 | 0.082 |
Progesterone (ng/mL) | 0.7 ± 0.4 | 0.7 ± 0.4 | 0.7 ± 0.3 | 0.6 ± 0.4 | 0.601 | 0.115 | 0.551 |
Eumenorrheic Women | Contraceptive Users | Males | p | |
---|---|---|---|---|
TMAO (μmol/L) | 3.0 ± 1.3 | 2.8 ± 1.4 | 3.0 ± 1.8 | 0.514 |
Peripheral SBP (mmHg) | 106 ± 7 | 108 ± 5 | 119 ± 7 | <0.001 |
Peripheral DBP (mmHg) | 67 ± 6 | 68 ± 3 | 67 ± 4 | 0.765 |
Central SBP (mmHg) | 93 ± 9 | 93 ± 4 | 99 ± 6 | 0.254 |
Central DBP (mmHg) | 68 ± 7 | 69 ± 3 | 67 ± 4 | 0.292 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rowland, S.N.; Heaney, L.M.; Da Boit, M.; Bailey, S.J. Trimethylamine N-Oxide Concentration and Blood Pressure in Young Healthy Men and Women: A Replicated Crossover Study. Metabolites 2023, 13, 876. https://doi.org/10.3390/metabo13070876
Rowland SN, Heaney LM, Da Boit M, Bailey SJ. Trimethylamine N-Oxide Concentration and Blood Pressure in Young Healthy Men and Women: A Replicated Crossover Study. Metabolites. 2023; 13(7):876. https://doi.org/10.3390/metabo13070876
Chicago/Turabian StyleRowland, Samantha N., Liam M. Heaney, Mariasole Da Boit, and Stephen J. Bailey. 2023. "Trimethylamine N-Oxide Concentration and Blood Pressure in Young Healthy Men and Women: A Replicated Crossover Study" Metabolites 13, no. 7: 876. https://doi.org/10.3390/metabo13070876
APA StyleRowland, S. N., Heaney, L. M., Da Boit, M., & Bailey, S. J. (2023). Trimethylamine N-Oxide Concentration and Blood Pressure in Young Healthy Men and Women: A Replicated Crossover Study. Metabolites, 13(7), 876. https://doi.org/10.3390/metabo13070876