Metabolites Potentially Derived from Gut Microbiota Associated with Podocyte, Proximal Tubule, and Renal and Cerebrovascular Endothelial Damage in Early Diabetic Kidney Disease in T2DM Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Participants for the Study, and Ethical Standards
2.2. The Preparation of Samples
2.3. Analytical Methods
2.3.1. UHPLC-QTOF-ESI+-MS Analysis
2.3.2. ELISA Technique
2.3.3. Cerebrovascular Ultrasound Assessments
2.4. The Integration of the Results and Statistical Analysis
3. Results
3.1. Clinical Features, Biological Results, and Neurosonological Indices
3.2. Correlation of Serum Metabolites with Markers of Endothelial Damage and Neurosonological Parameters
3.2.1. Univariable Linear Regression Analysis
3.2.2. Multivariable Linear Regression Analysis
3.3. The Impact of Urinary Metabolites on Renal Structures Reflected by Their Correlation through Multivariable Linear Regression Analysis, with Podocyte Damage Markers (Podocalyxin and Synaptopodin) and PT Dysfunction Markers (KIM-1, NAG)
4. Discussion
4.1. Serum Biomarkers of Endothelial Damage in Early DKD
4.1.1. sArg May Be a Marker of Renal and Large Cerebral Vessel Endothelial Dysfunction in Normoalbuminuric DKD
4.1.2. sBCA Is a Biomarker of Renal and Cerebrovascular Endothelial Damage in Early DKD
4.1.3. sIS and Its Implication in Endothelial Dysfunction
4.1.4. sSorb Serves as a Biomarker of BBB Damage and Decreased CVR in Early DKD
4.2. Biomarkers of Podocyte Dysfunction and Proximal Tubule Injury Assessed by Urine Analysis
4.2.1. uBCA Promotes Podocyte Injury in DKD
4.2.2. Uremic Toxins and Their Involvement in Podocytes and Proximal Tubule Damage
4.3. A Brief Overview Regarding Metabolite Clinical Impact
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faselis, C.; Katsimardou, A.; Imprialos, K.; Deligkaris, P.; Kallistratos, M.S.; Dimitriadis, K. Microvascular Complications of Type 2 Diabetes Mellitus. Curr. Vasc. Pharmacol. 2019, 18, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Sikalidis, A.K.; Maykish, A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing A Complex Relationship. Biomedicines 2020, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, G.K.; Bir, S.C.; Kevil, C.G.; Calvert, J.W. Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing. Int. J. Vasc. Med. 2012, 2012, 918267. [Google Scholar] [CrossRef] [PubMed]
- Petrica, L.; Vlad, A.; Gluhovschi, G.; Gadalean, F.; Dumitrascu, V.; Vlad, D.; Popescu, R.; Velciov, S.; Gluhovschi, C.; Bob, F.; et al. Glycated peptides are associated with the variability of endothelial dysfunction in the cerebral vessels and the kidney in type 2 diabetes mellitus patients: A cross-sectional study. J. Diabetes Complicat. 2015, 29, 230–237. [Google Scholar] [CrossRef]
- Petrica, L.; Petrica, M.; Munteanu, M.; Vlad, A.; Bob, F.; Gluhovschi, C.; Gluhovschi, G.; Jianu, C.; Schiller, A.; Velciov, S.; et al. Cerebral Microangiopathy in Patients with Non-Insulin-Dependent Diabetes Mellitus; Annals-Academy of Medicine Singapore: Singapore, 2007; Volume 36. [Google Scholar]
- Kil Kwon, S.; Kim, S.J.; Kim, H.-Y. Urine synaptopodin excretion is an important marker of glomerular disease progression. Korean J. Intern. Med. 2016, 31, 938–943. [Google Scholar] [CrossRef]
- Kamijo-Ikemori, A.; Sugaya, T.; Kimura, K. Novel Urinary Biomarkers in Early Diabetic Kidney Disease. Curr. Diabetes Rep. 2014, 14, 513. [Google Scholar] [CrossRef]
- Coca, S.G.; Nadkarni, G.N.; Huang, Y.; Moledina, D.G.; Rao, V.; Zhang, J.; Ferket, B.; Crowley, S.T.; Fried, L.F.; Parikh, C.R. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2786–2793. [Google Scholar] [CrossRef]
- Gilbert, R.E. Proximal Tubulopathy: Prime Mover and Key Therapeutic Target in Diabetic Kidney Disease. Diabetes 2017, 66, 791–800. [Google Scholar] [CrossRef]
- Sink, K.M.; Divers, J.; Whitlow, C.T.; Palmer, N.D.; Smith, S.C.; Xu, J.; Hugenschmidt, C.E.; Wagner, B.C.; Williamson, J.D.; Bowden, D.W.; et al. Cerebral Structural Changes in Diabetic Kidney Disease: African American–Diabetes Heart Study MIND. Diabetes Care 2015, 38, 206–212. [Google Scholar] [CrossRef]
- Saji, N.; Toba, K.; Sakurai, T. Cerebral Small Vessel Disease and Arterial Stiffness: Tsunami Effect in the Brain. Pulse 2015, 3, 182–189. [Google Scholar] [CrossRef]
- Balint, L.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Suteanu-Simulescu, A.; Glavan, M.; et al. Metabolite Profiling of the Gut–Renal–Cerebral Axis Reveals a Particular Pattern in Early Diabetic Kidney Disease in T2DM Patients. Int. J. Mol. Sci. 2023, 24, 6212. [Google Scholar] [CrossRef] [PubMed]
- Balint, L.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Suteanu-Simulescu, A.; Glavan, M.; et al. Quantitative, Targeted Analysis of Gut Microbiota Derived Metabolites Provides Novel Biomarkers of Early Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Biomolecules 2023, 13, 1086. [Google Scholar] [CrossRef]
- de Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Rosas, S.E.; Rossing, P.; Bakris, G. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef] [PubMed]
- Lixia Zeng, A.V.M.; Subramaniam Pennathur, J.B. Metabolomic Profiling of Arginine Metabolome Links Altered Methylation to Chronic Kidney Disease Accelerated Atherosclerosis. J. Proteom. Bioinform. 2015, s14. [Google Scholar] [CrossRef]
- Nitz, K.; Lacy, M.; Atzler, D. Amino Acids and Their Metabolism in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2019, 39, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Pretnar-Oblak, J. Cerebral Endothelial Function Determined by Cerebrovascular Reactivity to L-Arginine. BioMed Res. Int. 2014, 2014, 601515. [Google Scholar] [CrossRef]
- Pietrocola, F.; Galluzzi, L.; Bravo-San Pedro, J.M.; Madeo, F.; Kroemer, G. Acetyl Coenzyme A: A Central Metabolite and Second Messenger. Cell Metab. 2015, 21, 805–821. [Google Scholar] [CrossRef]
- Zhao, X.; Fritsche, J.; Wang, J.; Chen, J.; Rittig, K.; Schmitt-Kopplin, P.; Fritsche, A.; Häring, H.-U.; Schleicher, E.D.; Xu, G.; et al. Metabonomic fingerprints of fasting plasma and spot urine reveal human pre-diabetic metabolic traits. Metabolomics 2010, 6, 362–374. [Google Scholar] [CrossRef]
- Pena, M.J.; Heerspink, H.J.L.; Hellemons, M.E.; Friedrich, T.; Dallmann, G.; Lajer, M.; Bakker, S.J.L.; Gansevoort, R.T.; Rossing, P.; de Zeeuw, D.; et al. Urine and plasma metabolites predict the development of diabetic nephropathy in individuals with Type 2 diabetes mellitus. Diabet. Med. 2014, 31, 1138–1147. [Google Scholar] [CrossRef]
- Pena, M.J.; de Zeeuw, D.; Mischak, H.; Jankowski, J.; Oberbauer, R.; Woloszczuk, W.; Benner, J.; Dallmann, G.; Mayer, B.; Mayer, G.; et al. Prognostic clinical and molecular biomarkers of renal disease in type 2 diabetes. Nephrol. Dial. Transplant. 2015, 30, iv86–iv95. [Google Scholar] [CrossRef] [PubMed]
- Liepinsh, E.; Makrecka-Kuka, M.; Makarova, E.; Volska, K.; Svalbe, B.; Sevostjanovs, E.; Grinberga, S.; Kuka, J.; Dambrova, M. Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance. Pharmacol. Res. 2016, 113, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Lai, Y.-H.; Kuo, C.-H.; Lin, Y.-L.; Tsai, J.-P.; Hsu, B.-G. Association between Serum Indoxyl Sulfate Levels and Endothelial Function in Non-Dialysis Chronic Kidney Disease. Toxins 2019, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.-C.; Kuo, K.-L.; Huang, H.-L.; Lin, C.-C.; Tsai, T.-H.; Wang, C.-H.; Chen, J.-W.; Lin, S.-J.; Huang, P.-H.; Tarng, D.-C. Indoxyl sulfate suppresses endothelial progenitor cell–mediated neovascularization. Kidney Int. 2016, 89, 574–585. [Google Scholar] [CrossRef]
- Lano, G.; Burtey, S.; Sallée, M. Indoxyl Sulfate, a Uremic Endotheliotoxin. Toxins 2020, 12, 229. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Yisireyili, M.; Higashiyama, Y.; Nishijima, F.; Niwa, T. Indoxyl sulfate upregulates renal expression of ICAM-1 via production of ROS and activation of NF-κB and p53 in proximal tubular cells. Life Sci. 2013, 92, 143–148. [Google Scholar] [CrossRef]
- Leong, S.C.; Sirich, T.L. Indoxyl Sulfate—Review of Toxicity and Therapeutic Strategies. Toxins 2016, 8, 358. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Yoshimura, M.; Saigo, C.; Komori, M.; Nomura, Y.; Yamamoto, Y.; Sagata, M.; Wakida, A.; Chuman, E.; Nishi, K.; et al. Hepatic Sulfotransferase as a Nephropreventing Target by Suppression of the Uremic Toxin Indoxyl Sulfate Accumulation in Ischemic Acute Kidney Injury. Toxicol. Sci. 2014, 141, 206–217. [Google Scholar] [CrossRef]
- Valdés, A.; Lucio-Cazaña, F.J.; Castro-Puyana, M.; García-Pastor, C.; Fiehn, O.; Marina, M.L. Comprehensive metabolomic study of the response of HK-2 cells to hyperglycemic hypoxic diabetic-like milieu. Sci. Rep. 2021, 11, 5058. [Google Scholar] [CrossRef]
- Lin, H.-T.; Cheng, M.-L.; Lo, C.-J.; Lin, G.; Liu, F.-C. Metabolomic Signature of Diabetic Kidney Disease in Cerebrospinal Fluid and Plasma of Patients with Type 2 Diabetes Using Liquid Chromatography-Mass Spectrometry. Diagnostics 2022, 12, 2626. [Google Scholar] [CrossRef]
- Oyama, T.; Miyasita, Y.; Watanabe, H.; Shirai, K. The role of polyol pathway in high glucose-induced endothelial cell damages. Diabetes Res. Clin. Pract. 2006, 73, 227–234. [Google Scholar] [CrossRef]
- Jang, H.-S.; Noh, M.R.; Kim, J.; Padanilam, B.J. Defective Mitochondrial Fatty Acid Oxidation and Lipotoxicity in Kidney Diseases. Front. Med. 2020, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Ichii, O.; Otsuka-Kanazawa, S.; Nakamura, T.; Ueno, M.; Kon, Y.; Chen, W.; Rosenberg, A.Z.; Kopp, J.B. Podocyte Injury Caused by Indoxyl Sulfate, a Uremic Toxin and Aryl-Hydrocarbon Receptor Ligand. PLoS ONE 2014, 9, e108448. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Gnanasambandan, R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sci. 2023, 316, 121414. [Google Scholar] [CrossRef] [PubMed]
- Masereeuw, R.; Mutsaers, H.A.M.; Toyohara, T.; Abe, T.; Jhawar, S.; Sweet, D.H.; Lowenstein, J. The Kidney and Uremic Toxin Removal: Glomerulus or Tubule? Semin. Nephrol. 2014, 34, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Miyamoto, Y.; Enoki, Y.; Ishima, Y.; Kadowaki, D.; Kotani, S.; Nakajima, M.; Tanaka, M.; Matsushita, K.; Mori, Y.; et al. p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress. Pharmacol. Res. Perspect. 2015, 3, e00092. [Google Scholar] [CrossRef] [PubMed]
Healthy Subjects (C = 20) | Normoalbuminuria (P1 = 30) | Microalbuminuria (P2 = 30) | Macroalbuminuria (P3 = 30) | |
---|---|---|---|---|
Clinical Features | ||||
Age (years) | 58.85 (7.25) | 68.41 (4.98) | 68.65 (4.91) | 68.84 (4.98) |
Male (nr,%) | 12 (60%) | 14 (46.66%) | 13 (43.33%) | 15 (50%) |
Duration of DM (years) | 0 ●ↂ | 9.6 (3.99) | 9.7 (3.99) | 12.78 (3.35) |
BMI | 24.75 (4.39) ●ↂ | 30.07 (4.54) | 31.51 (4.01) | 30.98 (5.28) |
Usual Biological Parameters | ||||
Triglycerides (mg/dL) | 111.05 (20.73) †ↂ | 139.65 (51.1) | 172.63 (93.63) ■ | 227.17 (107.55) |
Cholesterol (mg/dL) | 132.5 (24.62) †ↂ | 163.62 (54.39) | 166.8 (57.7) ■ | 199.5 (48.1) |
HbA1c (%) | 4.98 (0.23) ●ↂ | 5 (0.23) ♦ | 6.42 (1.29) ♣ | 7.15 (1.60) |
eGFR (ml/min/1.73 m2) | 97.93 (11.71) ●ↂ | 90.42 (18.10) ▲ | 67.80 (5.44) ♣ | 49.53 (9.4) |
uACR (mg/g) | 5 (0.23) ●ↂ | 7.38 (3.22) ▲ | 45.52 (47.08) ♣ | 319.86 (585.8) |
Markers of Endothelial Damage | ||||
MCP-1(pg/mL) | 66.19 (11.31) ●ↂ | 158.87 (23.09) ▲ | 219.64 (53.12) ♣ | 276.69 (54.70) |
ICAM-1(ng/mL) | 181.57 (13.21) ●ↂ | 240 (24.53) ▲ | 300.63 (40.19) ♣ | 389.51 (28.55) |
Markers of Podocyte Damage | ||||
Podocalyxin/uCr (mg/g) | 38.59 (9.02) ●ↂ | 64.28 (7.8) ▲ | 136.31 (34.73) ♣ | 484.84 (117.17) |
Synaptopodin/uCr (mg/g) | 9.63 (3.7) ●ↂ | 16.34 (5) ▲ | 26.67 (3.08) ♣ | 53.18 (36.6) |
Markers of Proximal Tubule Dysfunction | ||||
NAG/uCr (mg/g) | 2.09 (0.73) ●ↂ | 4.28 (4.34) ▲ | 13.11 (5.08) ■ | 16.06 (4.21) |
KIM-1/uCr (mg/g) | 37.76 (10.74) ●ↂ | 77.7 (15.53) ▲ | 139.03 (16.05) ♣ | 642.1 (220.1) |
Metabolites Potentially Derived From Gut Microbiota | ||||
sArg (μM) | 50.03 (10.02) †ↂ | 44 (10.18) ♦ | 38.4 (6.5) | 38.91 (7.67) |
sHA (μM) | 24.33 (2.35) †⁑ | 22.71 (1.24) | 22.39 (1.72) | 20.79 (5.1) |
sIS (μM) | 5.06 (0.45) ●ↂ | 5.14 (0.47) ♦ | 6.51 (5.07) ♣ | 6.63 (0.6) |
sLAC (μM) | 5.52 (2.13) | 5.72 (2.07) | 5.47 (1.74) | 5.73 (1.6) |
sBCA (μM) | 2.3 (0.1) ↂ | 2.25 (0.13) ▲ | 2.61 (0.37) | 2.51 (0.55) |
sSorb (μM) | 2.54 (0.46) †ↂ | 2.25 (0.14) ▲ | 2.67 (0.3) | 2.59 (0.33) |
uArg/uCr (μM/μM) | 5.26 (1.72) | 6.08 (2.86) ♦ | 4.84 (3.22) | 5.63 (2.51) |
uLAC/uCr (μM/μM) | 0.31 (0.13) | 0.40 (0.26) | 0.42 (0.31) | 0.54 (0.54) |
uBCA/uCr (μM/μM) | 0.24 (0.11) ●ↂ | 0.45 (0.23) | 0.45 (0.32) | 0.53 (0.26) |
uHA/uCr (μM/μM) | 52.55 (29.36) | 54.66 (2.85) | 57.75 (72.7) | 55.62 (29.86) |
uIS/uCr (μM/μM) | 0.82 (0.37) ↂ | 2.07 (1.09) | 1.99 (1.5) ■ | 2.44 (1.21) |
uPCS/uCr (μM/μM) | 3.39 (1.62) †⁑ | 5.69 (5.14) ♦ | 5.65 (3.54) | 7.64 (4.5) |
Neurosonological indices | ||||
IMT R-CCA (mm) | 0.66 (0.43) †ↂ | 0.83 (0.11) ▲ | 1.01 (0.13) ♣ | 1.22 (0.16) |
PI R-ICA | 0.78 (0.12) ●ↂ | 0.89 (0.13) ▲ | 1.09 (0.16) ♣ | 1.24 (0.14) |
PI R-MCA | 0.62 (0.7) †ↂ | 0.78 (0.14) ▲ | 0.97 (0.16) ♣ | 1.11 (0.14) |
RI R-ICA | 0.58 (0.97) †ↂ | 0.72 (0.07) ▲ | 0.94 (0.13) ♣ | 1.18 (0.19) |
RI R-MCA | 0.54 (0.36) †ↂ | 0.65 (0.07) ▲ | 0.97 (0.11) ♣ | 1.2 (0.1) |
BHI | 1.12 (0.12) †ↂ | 0.84 (0.11) ▲ | 0.55 (0.1) ♣ | 0.43 (0.06) |
Dependent Variable | Independent Variables | Coef β | p | 95% CI | Prob > F | R2 |
---|---|---|---|---|---|---|
sArg | IMT | 13.83 | 0.022 | 2.03 to 25.63 | <0.0001 | 0.230 |
ICAM-1 | −0.87 | <0.0001 | −0.12 to −0.05 | |||
sIS | RI R-ACI | −4.99 | 0.008 | −8.64 to −1.34 | <0.0001 | 0.179 |
ICAM-1 | 0.03 | <0.0001 | 0.01 to 0.03 | |||
sBCA | IMT | −0.72 | 0.001 | −1.13 to −0.32 | <0.0001 | 0.355 |
MCP-1 | 0.004 | <0.0001 | 0.003 to 0.005 | |||
sSorb | BHI | 0.67 | 0.001 | 0.28 to 1.06 | <0.0001 | 0.342 |
ICAM-1 | 0.005 | <0.0001 | 0.004 to 0.007 | |||
eGFR | 0.01 | 0.002 | 0.004 to 0.017 |
Dependent Variable | Independent Variables | Coef β | p | 95% CI | Prob > F | R2 |
---|---|---|---|---|---|---|
uLAC | Podocalyxin | −0.0005 | 0.011 | −0.001 to −0.0001 | <0.0001 | 0.632 |
KIM-1 | −0.0006 | <0.0001 | −0.0009 to −0.0003 | |||
uACR | −0.0007 | <0.0001 | 0.0006 to 0.0009 | |||
sIS | Podocalyxin | −0.002 | 0.008 | −0.003 to −0.0005 | <0.0001 | 0.327 |
uACR | 0.001 | <0.000 | 0.001 to 0.002 | |||
uBCA | Podocalyxin | −0.0005 | 0.002 | −0.0008 to −0.0002 | <0.0001 | 0.339 |
uACR | 0.0003 | <0.0001 | 0.0002 to 0.0005 | |||
uPCS | KIM-1 | −0.009 | <0.0001 | −0.014 to −0.006 | <0.0001 | 0.507 |
uACR | 0.008 | <0.0001 | 0.007 to 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balint, L.; Socaciu, C.; Socaciu, A.I.; Vlad, A.; Gadalean, F.; Bob, F.; Milas, O.; Cretu, O.M.; Suteanu-Simulescu, A.; Glavan, M.; et al. Metabolites Potentially Derived from Gut Microbiota Associated with Podocyte, Proximal Tubule, and Renal and Cerebrovascular Endothelial Damage in Early Diabetic Kidney Disease in T2DM Patients. Metabolites 2023, 13, 893. https://doi.org/10.3390/metabo13080893
Balint L, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Milas O, Cretu OM, Suteanu-Simulescu A, Glavan M, et al. Metabolites Potentially Derived from Gut Microbiota Associated with Podocyte, Proximal Tubule, and Renal and Cerebrovascular Endothelial Damage in Early Diabetic Kidney Disease in T2DM Patients. Metabolites. 2023; 13(8):893. https://doi.org/10.3390/metabo13080893
Chicago/Turabian StyleBalint, Lavinia, Carmen Socaciu, Andreea Iulia Socaciu, Adrian Vlad, Florica Gadalean, Flaviu Bob, Oana Milas, Octavian Marius Cretu, Anca Suteanu-Simulescu, Mihaela Glavan, and et al. 2023. "Metabolites Potentially Derived from Gut Microbiota Associated with Podocyte, Proximal Tubule, and Renal and Cerebrovascular Endothelial Damage in Early Diabetic Kidney Disease in T2DM Patients" Metabolites 13, no. 8: 893. https://doi.org/10.3390/metabo13080893
APA StyleBalint, L., Socaciu, C., Socaciu, A. I., Vlad, A., Gadalean, F., Bob, F., Milas, O., Cretu, O. M., Suteanu-Simulescu, A., Glavan, M., Ienciu, S., Mogos, M., Jianu, D. C., Ursoniu, S., Dumitrascu, V., Vlad, D., Popescu, R., & Petrica, L. (2023). Metabolites Potentially Derived from Gut Microbiota Associated with Podocyte, Proximal Tubule, and Renal and Cerebrovascular Endothelial Damage in Early Diabetic Kidney Disease in T2DM Patients. Metabolites, 13(8), 893. https://doi.org/10.3390/metabo13080893