The Intersection of Metabolomics and Data Science
Funding
Conflicts of Interest
References
- MDPI. Special Issue “Data Science for Metabolomics”. Metabolites. Available online: https://www.mdpi.com/journal/metabolites/special_issues/Data_Science_Metabolomics (accessed on 16 July 2023).
- Traquete, F.; Luz, J.; Cordeiro, C.; Sousa Silva, M.; Ferreira, A.E.N. Binary Simplification as an Effective Tool in Metabolomics Data Analysis. Metabolites 2021, 11, 788. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kato, I.; Zhang, X. Comparative Analysis of Binary Similarity Measures for Compound Identification in Mass Spectrometry-Based Metabolomics. Metabolites 2022, 12, 694. [Google Scholar] [CrossRef] [PubMed]
- Henglin, M.; Claggett, B.L.; Antonelli, J.; Alotaibi, M.; Magalang, G.A.; Watrous, J.D.; Lagerborg, K.A.; Ovsak, G.; Musso, G.; Demler, O.V.; et al. Quantitative Comparison of Statistical Methods for Analyzing Human Metabolomics Data. Metabolites 2022, 12, 519. [Google Scholar] [CrossRef] [PubMed]
- Nicolotti, L.; Hack, J.; Herderich, M.; Lloyd, N. MStractor: R Workflow Package for Enhancing Metabolomics Data Pre-Processing and Visualization. Metabolites 2021, 11, 492. [Google Scholar] [CrossRef] [PubMed]
- Powell, C.D.; Moseley, H.N.B. The mwtab Python Library for RESTful Access and Enhanced Quality Control, Deposition, and Curation of the Metabolomics Workbench Data Repository. Metabolites 2021, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Davic, A.; Cascio, M. Development of a Microfluidic Platform for Trace Lipid Analysis. Metabolites 2021, 11, 130. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Oh, Y.; Jeong, J. Comprehensive Comparative Analysis of Local False Discovery Rate Control Methods. Metabolites 2021, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Sommariva, S.; Caviglia, G.; Sambuceti, G.; Piana, M. Mathematical Models for FDG Kinetics in Cancer: A Review. Metabolites 2021, 11, 519. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Soldati-Favre, D. Amino Acid Metabolism in Apicomplexan Parasites. Metabolites 2021, 11, 61. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S. The Intersection of Metabolomics and Data Science. Metabolites 2023, 13, 915. https://doi.org/10.3390/metabo13080915
Kim S. The Intersection of Metabolomics and Data Science. Metabolites. 2023; 13(8):915. https://doi.org/10.3390/metabo13080915
Chicago/Turabian StyleKim, Seongho. 2023. "The Intersection of Metabolomics and Data Science" Metabolites 13, no. 8: 915. https://doi.org/10.3390/metabo13080915
APA StyleKim, S. (2023). The Intersection of Metabolomics and Data Science. Metabolites, 13(8), 915. https://doi.org/10.3390/metabo13080915