Lignocellulosic Waste Compounds for Pancreatic Lipase Inhibition: Preliminary Extraction by Freon, Obtaining of Proanthocyanidins and Testing on Lipase Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material
2.2. Reagents
2.3. Isolation of the Extracts from Biomass
2.3.1. Lipophilic Extract
2.3.2. Semipolar Extracts
2.3.3. Hydrophilic Extracts
2.4. Determination of Total Phenol Content in the Extracts
2.5. Determination of PACs Content in the Extracts
2.6. Determination of Total Flavonoid Content in Extracts
2.7. Determination of Total Tannin Content in Extract
2.8. Determination of PAC Composition by LC-UV-ESI-QTOF MS Analysis
2.9. Determination of Lipophilic Extract Composition by GC-MS Analysis
2.10. Determination of Radical Scavenging Activity
2.10.1. DPPH• (2,2-Diphenyl-1-picrylhydrazyl Radical) Assay
2.10.2. ABTS+• (2,2′-Azinobis (3-Ethylbenzothiazoline-6-sulfonic Acid) Assay
2.11. Antimicrobial Activity of Lipophilic Extracts
2.12. Determination of the Influence of Extracts and Purified PACs on Lipase Activity
2.13. Statistical Analysis
3. Results and Discussion
3.1. Lipophilic and Hydrophilic Extracts from Fruit-Tree Biomass
3.2. Sea Buckthorn Biomass Extraction by Freon R134a
3.3. LC-UV-ESI-QTOF-MS Analysis of Proanthocyanidins Fraction from Sea Buckthorn Hydrophilic Extract
3.4. Radical Scavenging Activity of Extracts and Purified PACs
3.5. Antimicrobial Activity of Lipophilic Extracts from Sea Buckthorn Biomass
3.6. Inhibitory Effects of PACs and Other Polyphenol-Containing Samples on Pancreatic Lipase Activity In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Yang, S.; Chen, X.; Zhang, J.; Zhang, Y. Dynamic Changes in Flavonoid, Phenolic, and Polysaccharide Contents in Leaves and Fruits of Sea Buckthorn during the Growing Season in Southeastern Tibet Plateau. Sci. Hortic. 2023, 307, 111497. [Google Scholar] [CrossRef]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass Waste Utilisation in Low-Carbon Products: Harnessing a Major Potential Resource. Npj Clim. Atmos. Sci. 2019, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Hui, X.; Wu, G.; Han, D.; Stipkovits, L.; Wu, X.; Tang, S.; Brennan, M.A.; Brennan, C.S. The Effects of Bioactive Compounds from Blueberry and Blackcurrant Powders on the Inhibitory Activities of Oat Bran Pastes against α-Amylase and α-Glucosidase Linked to Type 2 Diabetes. Food Res. Int. 2020, 138, 109756. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.; Damsud, T.; Wilson, M.; Grace, M.H.; Strauch, R.; Li, X.; Lila, M.A.; Komarnytsky, S. Black Currant Anthocyanins Attenuate Weight Gain and Improve Glucose Metabolism in Diet-Induced Obese Mice with Intact, but Not Disrupted, Gut Microbiome. J. Agric. Food Chem. 2015, 63, 6172–6180. [Google Scholar] [CrossRef]
- Piotrowski, W.; Oszmiański, J.; Wojdyło, A.; Łabanowska, B.H. Changing the Content of Phenolic Compounds as the Response of Blackcurrant (Ribes nigrum L.) Leaves after Blackcurrant Leaf Midge (Dasineura tetensi Rübs.) Infestation. Plant Physiol. Biochem. 2016, 106, 149–158. [Google Scholar] [CrossRef]
- Banerji, S.; Banerjee, S. A Formulation of Grape Seed, Indian Gooseberry, Turmeric and Fenugreek Helps Controlling Type 2 Diabetes Mellitus in Advanced-Stage Patients. Eur. J. Integr. Med. 2016, 8, 645–653. [Google Scholar] [CrossRef]
- Gooseberry Benefits. Available online: https://www.medicalnewstoday.com/articles/gooseberry-benefits#how-to-use (accessed on 29 July 2023).
- Pandey, K.B.; Rizvi, S.I. Role of Red Grape Polyphenols as Antidiabetic Agents. Integr. Med. Res. 2014, 3, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirmohammadlu, M.; Hosseini, S.H.; Kamalinejad, M.; Esmaeili Gavgani, M.; Noubarani, M.; Eskandari, M.R. Hypolipidemic, Hepatoprotective and Renoprotective Effects of Cydonia Oblonga Mill. Fruit in Streptozotocin-Induced Diabetic Rats. Iran J. Pharm. Res. 2015, 14, 1207–1214. [Google Scholar] [PubMed]
- Janceva, S.; Andersone, A.; Lauberte, L.; Telysheva, G.; Krasilnikova, J.; Nokalne, I.; Janceva, J. Influence of Extracts from Bark of Deciduous Trees on the Activity of the Amylolytic Enzyme—Alpha Amylase. Key Eng. Mater. 2021, 903, 34–39. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and Hydrolysable Tannins: Occurrence, Dietary Intake and Pharmacological Effects: Pharmacological Aspects of Tannins. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef] [Green Version]
- Janceva, S.; Andersone, A.; Lauberte, L.; Bikovens, O.; Nikolajeva, V.; Jashina, L.; Zaharova, N.; Telysheva, G.; Senkovs, M.; Rieksts, G.; et al. Sea Buckthorn (Hippophae rhamnoides) Waste Biomass after Harvesting as a Source of Valuable Biologically Active Compounds with Nutraceutical and Antibacterial Potential. Plants 2022, 11, 642. [Google Scholar] [CrossRef]
- World Obesity. Prevalence of Obesity. Available online: https://www.worldobesity.org/about/about-obesity/prevalence-of-obesity (accessed on 28 June 2023).
- World Health Organization. Obesity and Overweight. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 28 June 2023).
- Fruh, S.M. Obesity: Risk Factors, Complications, and Strategies for Sustainable Long-term Weight Management. J. Am. Assoc. Nurse Pract. 2017, 29, S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Scully, T.; Ettela, A.; LeRoith, D.; Gallagher, E.J. Obesity, Type 2 Diabetes, and Cancer Risk. Front. Oncol. 2021, 10, 615375. [Google Scholar] [CrossRef] [PubMed]
- Olszanecka-Glinianowicz, M.; Mazur, A.; Chudek, J.; Kos-Kudła, B.; Markuszewski, L.; Dudek, D.; Major, P.; Małczak, P.; Tarnowski, W.; Jaworski, P.; et al. Obesity in Adults: Position Statement of Polish Association for the Study on Obesity, Polish Association of Endocrinology, Polish Association of Cardiodiabetology, Polish Psychiatric Association, Section of Metabolic and Bariatric Surgery of the Association of Polish Surgeons, and the College of Family Physicians in Poland. Nutrients 2023, 15, 1641. [Google Scholar] [CrossRef]
- Ozcan Dag, Z.; Dilbaz, B. Impact of Obesity on Infertility in Women. J. Turk. Ger. Gynecol. Assoc. 2015, 16, 111–117. [Google Scholar] [CrossRef]
- Pandey, S.; Bhattacharya, S. Impact of Obesity on Gynecology. Womens Health 2010, 6, 107–117. [Google Scholar] [CrossRef] [PubMed]
- King, L.K.; March, L.; Anandacoomarasamy, A. Obesity & Osteoarthritis. Indian J. Med. Res. 2013, 138, 185–193. [Google Scholar] [PubMed]
- Jehan, S.; Zizi, F.; Pandi-Perumal, S.R.; Wall, S.; Auguste, E.; Myers, A.K.; Jean-Louis, G.; McFarlane, S.I. Obstructive Sleep Apnea and Obesity: Implications for Public Health. Sleep Med. Disord. 2017, 1, 00019. [Google Scholar]
- De La Garza, A.; Milagro, F.; Boque, N.; Campión, J.; Martínez, J. Natural Inhibitors of Pancreatic Lipase as New Players in Obesity Treatment. Planta Med. 2011, 77, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Birari, R.B.; Bhutani, K.K. Pancreatic Lipase Inhibitors from Natural Sources: Unexplored Potential. Drug Discov. Today 2007, 12, 879–889. [Google Scholar] [CrossRef]
- Pirahanchi, Y.; Sharma, S. Biochemistry, Lipase. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Liu, T.-T.; Liu, X.-T.; Chen, Q.-X.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef] [PubMed]
- Urbatzka, R.; Freitas, S.; Palmeira, A.; Almeida, T.; Moreira, J.; Azevedo, C.; Afonso, C.; Correia-da-Silva, M.; Sousa, E.; Pinto, M.; et al. Lipid Reducing Activity and Toxicity Profiles of a Library of Polyphenol Derivatives. Eur. J. Med. Chem. 2018, 151, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Regueiras, A.; Huguet, Á.; Conde, T.; Couto, D.; Domingues, P.; Domingues, M.R.; Costa, A.M.; Silva, J.L.D.; Vasconcelos, V.; Urbatzka, R. Potential Anti-Obesity, Anti-Steatosis, and Anti-Inflammatory Properties of Extracts from the Microalgae Chlorella Vulgaris and Chlorococcum Amblystomatis under Different Growth Conditions. Mar. Drugs 2021, 20, 9. [Google Scholar] [CrossRef]
- Castro, M.; Preto, M.; Vasconcelos, V.; Urbatzka, R. Obesity: The Metabolic Disease, Advances on Drug Discovery and Natural Product Research. Curr. Top. Med. Chem. 2016, 16, 2577–2604. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.-H.; Lee, W.K.; Yi, B.-R.; Park, M.-A.; Lee, H.-R.; Park, S.-K.; Hwang, K.-A.; Park, H.K.; Choi, K.-C. Modulation of Lipid Metabolism by Mixtures of Protamine and Chitooligosaccharide through Pancreatic Lipase Inhibitory Activity in a Rat Model. Lab Anim. Res. 2012, 28, 31. [Google Scholar] [CrossRef] [Green Version]
- Bialecka-Florjanczyk, E.; Fabiszewska, A.U.; Krzyczkowska, J.; Kurylowicz, A. Synthetic and Natural Lipase Inhibitors. Mini Rev. Med. Chem. 2018, 18, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative Stress in Obesity: A Critical Component in Human Diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Andersone, A.; Janceva, S.; Lauberte, L.; Ramata-Stunda, A.; Nikolajeva, V.; Zaharova, N.; Rieksts, G.; Telysheva, G. Anti-Inflammatory, Anti-Bacterial, and Anti-Fungal Activity of Oligomeric Proanthocyanidins and Extracts Obtained from Lignocellulosic Agricultural Waste. Molecules 2023, 28, 863. [Google Scholar] [CrossRef]
- Rapinel, V.; Santerre, C.; Hanaei, F.; Belay, J.; Vallet, N.; Rakotomanomana, N.; Vallageas, A.; Chemat, F. Potentialities of Using Liquefied Gases as Alternative Solvents to Substitute Hexane for the Extraction of Aromas from Fresh and Dry Natural Products. Comptes Rendus Chim. 2018, 21, 590–605. [Google Scholar] [CrossRef]
- Cravotto, C.; Fabiano-Tixier, A.-S.; Claux, O.; Abert-Vian, M.; Tabasso, S.; Cravotto, G.; Chemat, F. Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets. Foods 2022, 11, 3412. [Google Scholar] [CrossRef]
- Bier, M.C.J.; Medeiros, A.B.P.; De Oliveira, J.S.; Côcco, L.C.; Da Luz Costa, J.; De Carvalho, J.C.; Soccol, C.R. Liquefied Gas Extraction: A New Method for the Recovery of Terpenoids from Agroindustrial and Forest Wastes. J. Supercrit. Fluids 2016, 110, 97–102. [Google Scholar] [CrossRef]
- Media Bros. R134A vs CO2 for Cannabis Extraction. 2021. Available online: https://mediabros.store/blogs/news/r134a-vs-co2-extraction (accessed on 28 June 2023).
- Abbott, A.P.; Eardley, C.A.; Scheirer, J.E. CO2/HFC 134a Mixtures: Alternatives for Supercritical Fluid Extraction. Green Chem. 2000, 2, 63–66. [Google Scholar] [CrossRef]
- Advanced Phytonics Extraction Systems. Available online: https://www.rccostello.com/extraction.html (accessed on 1 July 2023).
- EdenLabs. Available online: https://www.edenlabs.com/about/faq (accessed on 28 July 2023).
- Carbon Capture and Storage. Available online: https://www.bgs.ac.uk/discovering-geology/climate-change/carbon-capture-and-storage (accessed on 28 July 2023).
- Ivanov, Y.; Pyatnichko, O.; Zhuk, H.; Onopa, L.; Soltanibereshne, M. Extraction of Carbon Dioxide from Gas Mixtures with Amines Absorbing Process. Energy Procedia 2017, 128, 240–247. [Google Scholar] [CrossRef]
- Dizhbite, T. Characterization of the Radical Scavenging Activity of Lignins??Natural Antioxidants. Bioresour. Technol. 2004, 95, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-J.; Kadouh, H.; Zhou, K. Phenolic Compounds and Antioxidant Properties of Gooseberry as Affected by in Vitro Digestion. LWT—Food Sci. Technol. 2013, 51, 417–422. [Google Scholar] [CrossRef]
- Siegień, J.; Buchholz, T.; Popowski, D.; Granica, S.; Osińska, E.; Melzig, M.F.; Czerwińska, M.E. Pancreatic Lipase and α-Amylase Inhibitory Activity of Extracts from Selected Plant Materials after Gastrointestinal Digestion in Vitro. Food Chem. 2021, 355, 129414. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Pugliese, G.; Liccardi, A.; Graziadio, C.; Barrea, L.; Muscogiuri, G.; Colao, A. Obesity and Infectious Diseases: Pathophysiology and Epidemiology of a Double Pandemic Condition. Int. J. Obes. 2022, 46, 449–465. [Google Scholar] [CrossRef]
- Vazquez-Flores, A.A.; Martinez-Gonzalez, A.I.; Alvarez-Parrilla, E.; Díaz-Sánchez, Á.G.; La Rosa, L.A.; González-Aguilar, G.A.; Aguilar, C.N. Proanthocyanidins with a Low Degree of Polymerization Are Good Inhibitors of Digestive Enzymes Because of Their Ability to Form Specific Interactions: A Hypothesis. J. Food Sci. 2018, 83, 2895–2902. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, H.; Akazome, Y.; Shoji, T.; Yamaguchi, A.; Yasue, M.; Kanda, T.; Ohtake, Y. Oligomeric Procyanidins in Apple Polyphenol Are Main Active Components for Inhibition of Pancreatic Lipase and Triglyceride Absorption. J. Agric. Food Chem. 2007, 55, 4604–4609. [Google Scholar] [CrossRef]
- Gu, Y.; Hurst, W.J.; Stuart, D.A.; Lambert, J.D. Inhibition of Key Digestive Enzymes by Cocoa Extracts and Procyanidins. J. Agric. Food Chem. 2011, 59, 5305–5311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Solvents | Sea Buckthorn | Blackcurrant | Gooseberries | Quince | Grapes |
---|---|---|---|---|---|
Hexane | 1.44 ± 0.03 | 0.92 ± 0.01 | 1.18 ± 0.01 | 1.02 ± 0.03 | 1.16 ± 0.02 |
50% EtOH (v/v) | 21.71 ± 0.03 | 13.52 ± 0.03 | 7.50 ± 0.03 | 14.29 ± 0.03 | 13.88 ± 0.02 |
Water | 15.73 ± 0.05 | 10.77 ± 0.04 | 7.08 ± 0.05 | 13.79 ± 0.03 | 11.71 ± 0.03 |
Biomass | TT Content in Extract, % per DE | TP Content in Extract, g GAE·100 g−1 DE | PACs Content in Extract, % per DE | TF Content in Extract, g RU·100 g−1 DE |
---|---|---|---|---|
Water extracts | ||||
Sea buckthorn | 32.2 ± 0.3 | 38.4 ± 0.4 | 17.5 ± 0.1 | 2.7 ± 0.1 |
Blackcurrant | 14.8 ± 0.2 | 32.1 ± 0.3 | 10.6 ± 0.3 | 4.6 ± 0.2 |
Gooseberries | 10.7 ± 0.5 | 22.7 ± 0.3 | 9.0 ± 0.2 | 2.2 ± 0.3 |
Quince | 18.3 ± 0.3 | 31.2 ± 0.1 | 14.0 ± 0.4 | 9.9 ± 0.1 |
Grapes | 19.2 ± 0.2 | 18.6 ± 0.5 | 10.6 ± 0.5 | 2.5 ± 0.3 |
50% EtOH extracts | ||||
Sea buckthorn | 44.1 ± 0.5 | 48.6 ± 0.2 | 42.4 ± 0.3 | 4.9 ± 0.1 |
Blackcurrant | 38.2 ± 0.2 | 33.6 ± 0.1 | 14.2 ± 0.2 | 5.1 ± 0.1 |
Gooseberries | 12.6 ± 0.4 | 38.9 ± 0.2 | 10.2 ± 0.3 | 4.2 ± 0.1 |
Quince | 22.5 ± 0.3 | 42.2 ± 0.2 | 18.7 ± 0.2 | 12.6 ± 0.2 |
Grapes | 16.9 ± 0.4 | 30.3 ± 0.1 | 11.4 ± 0.2 | 3.1 ± 0.1 |
Identified Compounds Group | Freon Extract, % rel | Hexane Extract, % rel |
---|---|---|
Total acid/ester | 30.3 | 55.7 |
Total aliphatic and cyclic monomers | 43.1 | 29.9 |
Sea Buckthorn Biomass | Yield of 50% EtOH Extract, % per DB | TP Content in Extract, g GAE·100 g−1 DE | PACs Content in Extract, % per DE |
---|---|---|---|
Residue after hexane extraction | 21.71 ± 0.03 | 48.6 ± 0.2 | 42.4 ± 0.3 |
Residue 1 (without co-solvent) | 20.36 ± 0.02 | 47.2 ± 0.3 | 42.2 ± 0.3 |
Residue 2 (5% of co-solvent) | 20.44 ± 0.02 | 46.8 ± 0.2 | 41.9 ± 0.3 |
Residue 3 (10% of co-solvent) | 19.98 ± 0.03 | 46.2 ±0.3 | 42.5 ± 0.3 |
Solvent | Biomass | TP Content in Extract, g GAE·100 g−1 DE | IC50, mg·L−1 by DPPH Test, CI ≤ 0.3 mg·L−1 | IC50, mg·L−1 by ABTS Test, CI ≤ 0.3 mg·L−1 |
---|---|---|---|---|
Hexane | Sea buckthorn | n.d. | >30 | - |
Freon | Sea buckthorn | n.d. | >30 | - |
Water | Sea buckthorn | 38.4 ± 0.4 | 9.8 | 5.6 |
Blackcurrant | 32.1 ± 0.3 | 14.1 | 7.5 | |
Gooseberries | 22.7 ± 0.3 | 16.6 | 8.2 | |
Quince | 31.2 ± 0.1 | 14.4 | 7.9 | |
Grapes | 18.6 ± 0.5 | 22.1 | 10.6 | |
50% EtOH | Sea buckthorn | 48.6 ± 0.2 | 6.1 | 3.2 |
Blackcurrant | 33.6 ± 0.1 | 12.6 | 6.9 | |
Gooseberries | 38.9 ± 0.2 | 9.4 | 5.2 | |
Quince | 42.2 ± 0.2 | 6.6 | 3.5 | |
Grapes | 30.3 ± 0.1 | 15.2 | 8.6 | |
PACs fraction from sea buckthorn extract | 2.3 | 1.4 | ||
Trolox | 4.7 | 4.0 |
Sample | E. coli | P. aeruginosa | S. aureus | B. cereus | ||||
---|---|---|---|---|---|---|---|---|
mg·mL−1; CI ≤ 0.3 mg·mL−1 | ||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Hexane extract | 6.25 | 6.25 | >50 | >50 | 1.56 | 3.13 | 6.25 | >50 |
Freon extract | 0.78 | 50 | 0.78 | 50 | 0.39 | 12.2 | 3.13 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersone, A.; Janceva, S.; Lauberte, L.; Krasilnikova, J.; Zaharova, N.; Nikolajeva, V.; Rieksts, G.; Telysheva, G. Lignocellulosic Waste Compounds for Pancreatic Lipase Inhibition: Preliminary Extraction by Freon, Obtaining of Proanthocyanidins and Testing on Lipase Activity. Metabolites 2023, 13, 922. https://doi.org/10.3390/metabo13080922
Andersone A, Janceva S, Lauberte L, Krasilnikova J, Zaharova N, Nikolajeva V, Rieksts G, Telysheva G. Lignocellulosic Waste Compounds for Pancreatic Lipase Inhibition: Preliminary Extraction by Freon, Obtaining of Proanthocyanidins and Testing on Lipase Activity. Metabolites. 2023; 13(8):922. https://doi.org/10.3390/metabo13080922
Chicago/Turabian StyleAndersone, Anna, Sarmite Janceva, Liga Lauberte, Jelena Krasilnikova, Natalija Zaharova, Vizma Nikolajeva, Gints Rieksts, and Galina Telysheva. 2023. "Lignocellulosic Waste Compounds for Pancreatic Lipase Inhibition: Preliminary Extraction by Freon, Obtaining of Proanthocyanidins and Testing on Lipase Activity" Metabolites 13, no. 8: 922. https://doi.org/10.3390/metabo13080922
APA StyleAndersone, A., Janceva, S., Lauberte, L., Krasilnikova, J., Zaharova, N., Nikolajeva, V., Rieksts, G., & Telysheva, G. (2023). Lignocellulosic Waste Compounds for Pancreatic Lipase Inhibition: Preliminary Extraction by Freon, Obtaining of Proanthocyanidins and Testing on Lipase Activity. Metabolites, 13(8), 922. https://doi.org/10.3390/metabo13080922