Exhaled Nitric Oxide and Pulmonary Oxygen Toxicity Susceptibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design and Hyperbaric Oxygen Exposure Profile
2.3. Pulmonary Function and Expired Nitric Oxide Measurements
2.4. Data Analysis
3. Results
4. Discussion
Study Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Diffusion Capacity for Carbon Monoxide Measurements Corrected for Hb and VA and Additional Spirometry Measurements Taken Pre- and Post-Dive
Subject | Baseline DLCO adj | Post-Dive 1 6 h O2 | Post-Dive 2 8 h O2 | Rec 1 | Rec 2 | Rec 3 | |
---|---|---|---|---|---|---|---|
Mean (mL/mmHg/min) | CV × 2 (%) | ||||||
5 | 38.6 | 9.4% | +6.5% | +1.3% * | +1.3% | +1.3% | −2.6% |
7 | 25.5 | 6.9% | −1.6% | −5.9% * | −2.0% | −2.0% | −1.2% |
1 | 39.9 | 9.9% | −3.5% | −6.0% * | −18.8% | −5.8% | −3.3% |
8 | 31.9 | 11.8% | −1.5% | −6.2% * | −8.4% | −6.2% | +1.3% |
2 | 39.3 | 13.4% | −8.0% * | NA | −6.0% | −13.9% | −22.1% |
4 | 45.0 | 15.2% | −16.9% * | NA | −20.9% | −6.7% | −10.9% |
3 | 38.9 | 8.3% | −16.9% * | NA | +3.2% | −8.9% | −4.5% |
9 | 38.5 | 9.0% | −13.0% * | NA | −11.4% * | −30.4% | −21.1% |
Mean | 37.2 | 10.5% | −6.9% | −4.2% | −7.9% | −9.1% | −8.1% |
Subject | Baseline DLCO/VA | Post-Dive 1 6 h O2 | Post-Dive 2 8 h O2 | Rec 1 | Rec 2 | Rec 3 | |
---|---|---|---|---|---|---|---|
Mean (mL/mmHg/min) | CV × 2 (%) | ||||||
5 | 4.82 | 7.2% | +6.8% | +3.5% * | −1.5% | +3.7% | −1.0% |
7 | 4.37 | 8.9% | −2.3% | −11.0% * | −5.2% | −9.6% | −3.7% |
1 | 4.97 | 8.5% | −3.8% | −7.2% * | −14.5% | −7.4% | −10.3% |
8 | 5.10 | 7.1% | −8.0% | −6.9% * | −12.5% | −17.6% | −4.3% |
2 | 5.29 | 11.3% | −2.3% * | NA | −9.6% | −14.7% | −13.2% |
4 | 5.85 | 10.3% | −9.6% * | NA | −16.8% | −9.9% | −12.5% |
3 | 6.10 | 5.8% | −1.1% * | NA | −4.1% | −12.8% | −2.1% |
9 | 5.05 | 9.5% | +3.6% * | NA | +15.8% * | −15.6% | −11.5% |
Mean | 5.19 | 8.6% | −2.1% | −5.4% | −6.1% | −10.5% | −7.3% |
Subject | Baseline VA | Post-Dive 1 6 h O2 | Post-Dive 2 8 h O2 | Rec 1 | Rec 2 | Rec 3 | |
---|---|---|---|---|---|---|---|
Mean (L BTPS) | CV × 2 (%) | ||||||
5 | 7.86 | 4.1% | −0.3% | −0.9% * | +1.05 | −2.3% | −3.8% |
7 | 5.97 | 4.2% | 0.0% | +5.7% * | +3.4% | +4.0% | +1.7% |
1 | 8.28 | 8.6% | +0.4% | −0.2% * | −3.2% | +0.1% | +4.0% |
8 | 6.50 | 5.1% | +5.4% | +2.8% * | +2.8% | +9.7% | +4.2% |
2 | 7.68 | 7.9% | −8.2% * | NA | +2.7% | −0.3% | +0.3% |
4 | 7.77 | 8.4% | −9.1% * | NA | −3.7% | +6.7% | +2.2% |
3 | 6.49 | 5.8% | −15.9% * | NA | +8.0% | +4.9% | −1.1% |
9 | 7.59 | 5.2% | −16.3% * | NA | −22.1% * | −14.4% | −10.8% |
Mean | 7.27 | 6.2% | −5.5% | +1.9% | −1.4% | +1.1% | −0.4% |
Subject | Baseline FEV1 | Post-Dive 1 6 h O2 | Post-Dive 2 8 h O2 | Rec 1 | Rec 2 | Rec 3 | |
---|---|---|---|---|---|---|---|
Mean (L BTPS) | CV × 2 (%) | ||||||
5 | 3.97 | 5.3% | −0.8% | +6.3% * | −0.5% | +1.3% | −3.3% |
7 | 3.08 | 6.1% | +0.6% | −2.3% * | −1.3% | −5.5% | −5.8% |
1 | 3.96 | 3.9% | +2.8% | −2.5% * | −1.3% | +0.3% | −2.3% |
8 | 3.81 | 6.4% | +2.1% | +5.5% * | +3.1% | −3.1% | −4.2% |
2 | 4.28 | 7.2% | +3.3% * | NA | +0.9% | −1.6% | −1.9% |
4 | 4.16 | 7.5% | −2.4% * | NA | −5.5% | −3.4% | −5.5% |
3 | 3.30 | 7.9% | −8.5% * | NA | −4.5% | +0.3% | +0.3% |
9 | 3.96 | 6.7% | −6.1% * | NA | −20.2% * | −9.1% | −6.3% |
Mean | 3.82 | 6.4% | −1.1% | +1.8% | −3.7% | −2.6% | −3.6% |
References
- Clark, J.M.; Thom, S.R. Oxygen under pressure. In Bennett and Elliott’s Physiology and Medicine of Diving, 5th ed.; Brubakk, A.O., Neuman, T.S., Eds.; Saunders Publishing: Philadelphia, PA, USA; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 978-0702025716. [Google Scholar]
- Clark, J.M. Pulmonary Oxygen Tolerance in Man and Derivation of Pulmonary Oxygen Tolerance Curves. Ph.D. Thesis, Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA, USA, 1970. [Google Scholar]
- Clark, J.M.; Lambertsen, C.J. Rate of development of pulmonary O2 toxicity in man during O2 breathing at 2.0 Ata. J. Appl. Physiol. 1971, 30, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Lambertsen, C.J.; Gelfand, R.; Flores, N.D.; Pisarello, J.B.; Rossman, M.D.; Elias, J.A. Effects of prolonged oxygen exposure at 1.5, 2.0, or 2.5 ATA on pulmonary function in men (Predictive Studies V). J. Appl. Physiol. 1999, 86, 243–259. [Google Scholar] [CrossRef]
- Shykoff, B.E. Pulmonary effects of submerged oxygen breathing: 4-, 6-, and 8-h dives at 140 kPa. Undersea Hyperb. Med. 2005, 32, 351–361. [Google Scholar]
- Lang, J.D.; McArdle, P.J.; O'Reilly, P.J.; Matalon, S. Oxidant-Antioxidant Balance in Acute Lung Injury. Chest 2002, 122, 314S–320S. [Google Scholar] [CrossRef] [Green Version]
- Högman, M.; Lehtimäki, L. Chapter 4—Exhaled nitric oxide physiology and modeling. In Breathborne Biomarkers and the Human Volatilome, 2nd ed.; Beauchamp, J., Davis, C., Pleil, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 63–77. ISBN 9780128199671. [Google Scholar]
- Kharitonov, S.A.; Barnes, P.J. Exhaled Markers of Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2001, 163, 1693–1722. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Evans, T.W. Nitric oxide, the biological mediator of the decade: Fact or fiction? Eur. Respir. J. 1997, 10, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Garat, C.; Jayr, C.; Eddahibi, S.; Laffon, M.; Meignan, M.; Adnot, S. Effects of inhaled nitric oxide or inhibition of endogenous nitric oxide formation on hyperoxic lung injury. Am. J. Respir. Crit. Care Med. 1997, 155, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Atochin, D.N.; Gutsaeva, D.R.; Godfrey, R.R.; Huang, P.L.; Piantadosi, C.A.; Allen, B.W.; Bao, X.-C.; Mao, A.-R.; Fang, Y.-Q.; Fan, Y.-H.; et al. Contributions of nitric oxide synthase isoforms to pulmonary oxygen toxicity, local vs. mediated effects. Am. J. Physiol. Cell Mol. Physiol. 2008, 294, L984–L990. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.W.; Demchenko, I.T.; Piantadosi, C.A. Two faces of nitric oxide: Implications for cellular mechanisms of oxygen toxicity. J. Appl. Physiol. 2009, 106, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Dias-Freitas, F.; Metelo-Coimbra, C.; Roncon-Albuquerque, R. Molecular mechanisms underlying hyperoxia acute lung injury. Respir. Med. 2016, 119, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Harabin, A.L.; Homer, L.D.; Weathersby, P.K.; Flynn, E.T. An analysis of decrements in vital capacity as an index of pulmonary oxygen toxicity. J. Appl. Physiol. 1987, 63, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Crapo, R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. General considerations for lung function testing. Eur. Respir. J. 2005, 26, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Wanger, J.; Clausen, J.L.; Coates, A.; Pedersen, O.F.; Brusasco, V.; Burgos, F.; Casaburi, R.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005, 26, 511–522. [Google Scholar] [CrossRef]
- MacIntyre, N.; Crapo, R.O.; Viegi, G.; Johnson, D.C.; van der Grinten, C.P.M.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005, 26, 720–735. [Google Scholar] [CrossRef] [Green Version]
- Condorelli, P.; Shin, H.-W.; Aledia, A.S.; Silkoff, P.E.; George, S.C. A simple technique to characterize proximal and peripheral nitric oxide exchange using constant flow exhalations and an axial diffusion model. J. Appl. Physiol. 2007, 102, 417–425. [Google Scholar] [CrossRef] [Green Version]
- ATS/ERS—American Thoracic Society, European Respiratory Society. ATS/ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005. Am. J. Respir. Crit. Care Med. 2005, 171, 912–930. [Google Scholar] [CrossRef] [Green Version]
- Van Ooij, P.-J.A.M. Pulmonary Oxygen Toxicity in Professional Diving: Scire Est Mensurare? Ph.D. Thesis, University of Am-sterdam, Amsterdam, The Netherlands, 2013. [Google Scholar]
- van Ooij, P.; Hollmann, M.; van Hulst, R.; Sterk, P. Assessment of pulmonary oxygen toxicity: Relevance to professional diving; a review. Respir. Physiol. Neurobiol. 2013, 189, 117–128. [Google Scholar] [CrossRef]
- Wingelaar, T.T.; Brinkman, P.; Van Ooij, P.J.A.M.; Hoencamp, R.; Der Zee, A.H.M.-V.; Hollmann, M.W.; Van Hulst, R.A. Markers of Pulmonary Oxygen Toxicity in Hyperbaric Oxygen Therapy Using Exhaled Breath Analysis. Front. Physiol. 2019, 10, 475. [Google Scholar] [CrossRef] [PubMed]
- Cronin, W.A.; Forbes, A.S.; Wagner, K.; Kaplan, P.; Cataneo, R.; Phillips, M.; Mahon, R.; Hall, A. Exhaled Volatile Organic Compounds Precedes Pulmonary Injury in a Swine Pulmonary Oxygen Toxicity Model. Front. Physiol. 2019, 10, 1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Jong, F.J.M.; Wingelaar, T.T.; Brinkman, P.; van Ooij, P.-J.A.M.; der Zee, A.-H.M.-V.; Hollmann, M.W.; van Hulst, R.A. Pulmonary Oxygen Toxicity Through Exhaled Breath Markers After Hyperbaric Oxygen Treatment Table 6. Front. Physiol. 2022, 13, 899568. [Google Scholar] [CrossRef] [PubMed]
- de Jong, F.J.M.; Wingelaar, T.T.; Brinkman, P.; van Ooij, P.-J.A.M.; der Zee, A.H.M.-V.; Hollmann, M.W.; van Hulst, R.A. Analysis of Volatile Organic Compounds in Exhaled Breath Following a COMEX-30 Treatment Table. Metabolites 2023, 13, 316. [Google Scholar] [CrossRef]
- Fothergill, D.M.; Borras, E.; McCartney, M.M.; Schelegle, E.S.; Davis, C.E. Exhaled breath condensate profiles of U.S. Navy divers following prolonged hyperbaric oxygen (HBO) and nitrogen-oxygen (Nitrox) chamber exposures. J. Breath Res. 2023, 17, 037105. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, L.; Leone, A.; Persson, M.; Wiklund, N.; Moncada, S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem. Biophys. Res. Commun. 1991, 181, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Schmetterer, L.; Strenn, K.; Kastner, J.; Eichler, H.G.; Wolzt, M. Exhaled NO during graded changes in inhaled oxygen in man. Thorax 1997, 52, 736–738. [Google Scholar] [CrossRef] [Green Version]
- Fothergill, D.M.; Gasier, H.; Keller, M. Effect of hyperbaric oxygen (HBO) duration on expired nitric oxide (NOexp) and carbon monoxide (COexp). In Program for the 17th International Congress of Hyperbaric Medicine Triennial Meeting, Cape Town, South Africa, 16–19 March 2011; Cronje, F., Ed.; DesignWrite: Valhalla, South Africa, 2011; p. 20. [Google Scholar]
- Fothergill, D.M.; Gasier, H.; Keller, M. Exhaled nitric oxide (NOexp) and carbon monoxide (COexp) as noninvasive markers of hyperbaric oxidative stress in humans. Undersea and Hyperbaric Medical Society Annual Scientific Meeting, Fort Worth, TX, USA, 15–18 June 2011. Undersea Hyperb. Med. 2011, 38, 430. [Google Scholar]
- Fothergill, D.M.; and Gasier, H.G. Time course of changes in expired nitric oxide and carbon monoxide during acute normobaric hyperoxic exposures. In Abstracts and Proceeding from European Underwater Baromedical Society Annual Scientific Meeting, Belgrade, Serbia, 12–15 September 2012; Specijalna Bolnica za Hiperbaricnu Medicine: Belgrade, Serbia, 2012; p. 52. ISBN 978-86-915961-0-1. [Google Scholar]
- Fothergill, D.M.; Weathersby, P.K. Relationship between exhaled nitric oxide and hyperoxic stress. FASEB J. 2015, 29, 678.1. Available online: https://faseb.onlinelibrary.wiley.com/doi/abs/10.1096/fasebj.29.1_supplement.678.1 (accessed on 7 August 2023).
- Puthucheary, Z.A.; Liu, J.; Bennett, M.; Trytko, B.; Chow, S.; Thomas, P.S. Exhaled Nitric Oxide is Decreased by Exposure to the Hyperbaric Oxygen Therapy Environment. Mediat. Inflamm. 2006, 2006, 72620. [Google Scholar] [CrossRef] [Green Version]
- Taraldsøy, T.; Bolann, B.J.; Thorsen, E. Reduced nitric oxide concentration in exhaled gas after exposure to hyperbaric hyperoxia. Undersea Hyperb. Med. 2007, 34, 321–327. [Google Scholar]
- Kjelkenes, I.; Thorsen, E. Time course of the reduction in nitric oxide concentration in exhaled gas after exposure to hyperbaric hyperoxia. Diving Hyperb. Med. J. 2009, 39, 77–80. [Google Scholar]
- van Ooij, P.J.; Houtkooper, A.; van Hulst, R. Variations in exhaled nitric oxide concentration after three types of dives. Diving Hyperb. Med. 2010, 40, 4–7. [Google Scholar]
- Caspersen, C.; Stensrud, T.; Thorsen, E. Bronchial nitric oxide flux and alveolar nitric oxide concentration after exposure to hyperoxia. Aviat. Space Environ. Med. 2011, 82, 946–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uusijärvi, J.; Eriksson, K.; Larsson, A.C.; Nihlén, C.; Schiffer, T.; Lindholm, P.; Weitzberg, E. Effects of hyperbaric oxygen on nitric oxide generation in humans. Nitric Oxide 2015, 44, 88–97. [Google Scholar] [CrossRef]
- Castagna, O.; Bergmann, C.; Blatteau, J.E. Is a 12-h Nitrox dive hazardous for pulmonary function? Eur. J. Appl. Physiol. 2019, 119, 2723–2731. [Google Scholar] [CrossRef]
- Fothergill, D.M.; Ross, W. Impulse oscillometery and spirometry indices of pulmonary function in a diver with severe symptoms of pulmonary oxygen toxicity. In Abstract & Conference Book TRICON2018 (Second Tricontinental Conference on Diving and Hyperbaric Medicine); 44th Annual Meeting of the European Underwater and Baromedical Society (EUBS), 47nd Annual Scientific Meeting of the South Pacific Underwater Medical Society (SPUMS), Conference of the South African Underwater and Hyperbaric Medical Association, Durban, South Africa, 23–29 September 2018; Bennett, M., Germonpre, P., Eds.; Londocor Event Management (PTY) Ltd.: Roodepoort, South Africa, 2018; p. 68. [Google Scholar]
- Canning, B.J.; Woo, A.; Mazzone, S.B. Neuronal Modulation of Airway and Vascular Tone and Their Influence on Nonspecific Airways Responsiveness in Asthma. J. Allergy 2012, 2012, 108149. [Google Scholar] [CrossRef] [Green Version]
- Turanlahti, M.; Pesonen, E.; Lassus, P.; Andersson, S. Nitric oxide and hyperoxia in oxidative lung injury. Acta Paediatr. 2000, 89, 966–970. [Google Scholar] [CrossRef]
- Sun, X.-J.; Liu, W.-W.; Han, C.-H.; Zhang, P.-X.; Zheng, J.; Liu, K. Nitric oxide and hyperoxic acute lung injury. Med. Gas Res. 2016, 6, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fismen, L.; Eide, T.; Hjelde, A.; Svardal, A.M.; Djurhuus, R. Hyperoxia but not ambient pressure decreases tetrahydrobiopterin level without affecting the enzymatic capability of nitric oxide synthase in human endothelial cells. Eur. J. Appl. Physiol. 2013, 113, 1695–1704. [Google Scholar] [CrossRef] [PubMed]
- Hesthammer, R.; Eide, T.; Thorsen, E.; Svardal, A.M.; Djurhuus, R. Decrease of tetrahydrobiopterin and NO generation in endothelial cells exposed to simulated diving. Undersea Hyperb. Med. 2019, 46, 159–169. [Google Scholar] [CrossRef]
- Hesthammer, R.; Dahle, S.; Storesund, J.P.; Eide, T.; Djurhuus, R.; Svardal, A.M.; Thorsen, E. Nitric oxide in exhaled gas and tetrahydrobiopterin in plasma after exposure to hyperoxia. Undersea Hyperb. Med. 2020, 47, 197–202. [Google Scholar] [CrossRef]
- McNeill, E.; Channon, K.M. The role of tetrahydrobiopterin in inflammation and cardiovascular disease. Thromb. Haemost. 2012, 108, 832–839. [Google Scholar] [CrossRef] [PubMed]
Subject | Baseline FENO | Post-Dive 1 6 h O2 | Post-Dive 2 8 h O2 | Rec 1 | Rec 2 | Rec 3 | |
---|---|---|---|---|---|---|---|
Mean ppb | CV × 2 (%) | ||||||
5 | 59 | 24% | −55% | −65% | −11% | 0% | −6% |
7 | 44 | 32% | −58% | −67% | +5% | 0% | +22% |
1 | 41 | 16% | −44% | −61% | −5.7% | +28% | −4% |
8 | 38 | 30% | −46% | −60% | +14% | +76% | +36% |
2 | 24 | 22% | −51% | NA | +37% | +3% | +15% |
4 | 24 | 34% | −65% | NA | +9% | +40% | +10% |
3 | 21 | 34% | −57% | NA | −5% | +2% | +4% |
9 | 19 | 20% | −64% | NA | +55% | +34% | +66% |
Mean | 34 ppb | 26.5% | −55% † | −63% † | +12% | +23% | +18% |
Subject | Baseline FVC | Post-Dive 1 6 h O2 | Post-Dive 2 8 h O2 | Rec 1 | Rec 2 | Rec 3 | |
---|---|---|---|---|---|---|---|
Mean (L BTPS) | CV × 2 (%) | ||||||
5 | 5.61 | 4.9% | −0.8% | +1.9% * | −1.5% | −0.4% | −0.6% |
7 | 4.22 | 6.3% | +1.9% | −0.5% * | +0.9% | −2.8% | −1.9% |
1 | 5.99 | 2.2% | +4.3% | −2.8% * | −0.5% | −0.7% | −4.2% |
8 | 4.91 | 6.8% | +4.7% | +3.3% * | +3.3% | −0.4% | −0.8% |
2 | 5.58 | 7.0% | +3.6% * | NA | +2.9% | −1.6% | −1.3% |
4 | 5.49 | 6.6% | −3.5% * | NA | −2.2% | −0.4% | −2.7% |
3 | 4.78 | 5.3% | −3.1% * | NA | +1.3% | −5.2% | −0.8% |
9 | 5.49 | 5.3% | −9.3% * | NA | −17.3% * | −7.7% | −5.4% |
Mean | 5.26 L | 5.6% | −0.3% | +0.5% | −1.6% | −2.4% | −2.2% |
Subject | Baseline FIVC | Post-Dive 1 6 h O2 | Post-Dive 2 8 h O2 | Rec 1 | Rec 2 | Rec 3 | |
---|---|---|---|---|---|---|---|
Mean (L BTPS) | CV × 2 (%) | ||||||
5 | 6.15 | 5.5% | −0.7% | +0.5% * | −2.4% | −0.8% | −0.2% |
7 | 4.57 | 4.4% | +2.0% | +3.9% * | −1.8% | −0.4% | +2.6% |
1 | 6.93 | 3.3% | −2.6% | −0.7% * | −0.3% | +0.7% | −0.3% |
8 | 5.35 | 3.2% | +4.9% | +4.9% * | +5.8% | +6.5% | +1.9% |
2 | 6.43 | 4.4% | −6.8% * | NA | −4.0% | −1.4% | −1.7% |
4 | 6.61 | 6.0% | −3.4% * | NA | +0.5% | −2.1% | +5.6% |
3 | 5.43 | 2.7% | −18.8% * | NA | −5.0% | −0.9% | −5.0% |
9 | 6.15 | 5.9% | −15.1% * | NA | −12.5% * | −12.5% | −10.4% |
Mean | 5.95 L | 4.5% | −5.1% | +2.2% | −2.5% | −1.4% | −0.9% |
Subject | Baseline DLCO | Post-Dive 1 6 h O2 | Post-Dive 2 8 h O2 | Rec 1 | Rec 2 | Rec 3 | |
---|---|---|---|---|---|---|---|
Mean (mL/mmHg/min) | CV × 2 (%) | ||||||
5 | 37.9 | 8.7% | +3.2% | +2.6% * | +0.3% | +1.3% | −5.0% |
7 | 26.1 | 7.0% | −2.2% | −5.6% * | −2.2% | −5.6% | −2.2% |
1 | 41.1 | 9.5% | −3.1% | −7.3% * | −17.0% | −6.5% | −6.8% |
8 | 33.1 | 11.2% | −3.1% | −4.3% * | −10.1% | −9.8% | −0.4% |
2 | 40.6 | 13.9% | −10.1% * | NA | −7.7% | −15.1% | −21.7% |
4 | 45.5 | 15.4% | −17.8% * | NA | −20.0% | −4.0% | −10.7% |
3 | 39.6 | 6.9% | −16.6% * | NA | +3.6% | −8.5% | −3.2% |
9 | 38.3 | 8.7% | −13.0% * | NA | −9.6% * | −27.6% | −20.8% |
Mean | 37.8 | 10.2% | −7.8% | −3.7% | −7.8% | −9.5% | −8.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fothergill, D.M.; Gertner, J.W. Exhaled Nitric Oxide and Pulmonary Oxygen Toxicity Susceptibility. Metabolites 2023, 13, 930. https://doi.org/10.3390/metabo13080930
Fothergill DM, Gertner JW. Exhaled Nitric Oxide and Pulmonary Oxygen Toxicity Susceptibility. Metabolites. 2023; 13(8):930. https://doi.org/10.3390/metabo13080930
Chicago/Turabian StyleFothergill, David M., and Jeffery W. Gertner. 2023. "Exhaled Nitric Oxide and Pulmonary Oxygen Toxicity Susceptibility" Metabolites 13, no. 8: 930. https://doi.org/10.3390/metabo13080930
APA StyleFothergill, D. M., & Gertner, J. W. (2023). Exhaled Nitric Oxide and Pulmonary Oxygen Toxicity Susceptibility. Metabolites, 13(8), 930. https://doi.org/10.3390/metabo13080930