Altered Sphingolipid Hydrolase Activities and Alpha-Synuclein Level in Late-Onset Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Assessment of Enzyme Activities and Lysosphingolipid Concentrations in Blood
2.3. Detection of Alpha-Synuclein Level in CD45+ Blood Cells
2.4. Next Generation Sequencing and Variant Calling Analysis of LSDs Genes
2.5. Statistical Analysis
3. Results
3.1. Lysosomal Enzymatic Activities, Lysosphingolipid Concentrations, and Alpha-Synuclein Level in Patients with Late-Onset SCZ
3.2. Correlation Analysis of Lysosomal Enzyme Activities, Lysosphingolipid Concentrations, and Alpha-Synuclein Level in Patients with Late-Onset SCZ
3.3. Enzyme Activities, Lysosphingolipid Concentrations, and Alpha-Synuclein Level Are Associated with the Age at Onset of SCZ
3.4. Selection of Rare Deleterious Variants in Patients with Early-Onset SCZ
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howrigan, D.P.; Rose, S.A.; Samocha, K.E.; Fromer, M.; Cerrato, F.; Chen, W.J.; Churchhouse, C.; Chambert, K.; Chandler, S.D.; Daly, M.J.; et al. Exome Sequencing in Schizophrenia-Affected Parent–Offspring Trios Reveals Risk Conferred by Protein-Coding de Novo Mutations. Nat. Neurosci. 2020, 23, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Shen, G.; Nan, G.; Kim, J.M.; Jung, K.Y.; Jeon, B. Comorbid Schizophrenia and Parkinson’s Disease: A Case Series and Brief Review. Neurol. Asia 2017, 22, 139–142. [Google Scholar]
- Zhang, J.P.; Malhotra, A.K. Genetics of Schizophrenia: What Do We Know? Curr. Psychiatr. 2013, 12, 25–33. [Google Scholar]
- Ripke, S.; Neale, B.M.; Corvin, A.; Walters, J.T.; Farh, K.H.; Holmans, P.A.; Lee, P.; Bulik-Sullivan, B.; Collier, D.A.; Huang, H.; et al. Biological Insights from 108 Schizophrenia-Associated Genetic Loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef]
- Pardiñas, A.F.; Holmans, P.; Pocklington, A.J.; Escott-Price, V.; Ripke, S.; Carrera, N.; Legge, S.E.; Bishop, S.; Cameron, D.; Hamshere, M.L.; et al. Common Schizophrenia Alleles Are Enriched in Mutation-Intolerant Genes and in Regions under Strong Background Selection. Nat. Genet. 2018, 50, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Dennison, C.A.; Legge, S.E.; Pardiñas, A.F.; Walters, J.T.R. Genome-Wide Association Studies in Schizophrenia: Recent Advances, Challenges and Future Perspective. Schizophr. Res. 2020, 217, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Kastner, R.; Guloksuz, S.; Kietzmann, T.; van Os, J.; Rutten, B.P.F. Analysis of GWAS-Derived Schizophrenia Genes for Links to Ischemia-Hypoxia Response of the Brain. Front. Psychiatry 2020, 11, 393. [Google Scholar] [CrossRef] [PubMed]
- Sidransky, E.; Nalls, M.A.; Aasly, J.O.; Aharon-Peretz, J.; Annesi, G.; Barbosa, E.R.; Bar-Shira, A.; Berg, D.; Bras, J.; Brice, A.; et al. Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson’s Disease. N. Engl. J. Med. 2009, 361, 1651–1661. [Google Scholar] [CrossRef]
- Sidransky, E.; Lopez, G. The Link between the GBA Gene and Parkinsonism. Lancet Neurol. 2012, 11, 986–998. [Google Scholar] [CrossRef]
- Siebert, M.; Sidransky, E.; Westbroek, W. Glucocerebrosidase Is Shaking up the Synucleinopathies. Brain 2014, 137, 1304–1322. [Google Scholar] [CrossRef]
- Robak, L.A.; Jansen, I.E.; van Rooij, J.; Uitterlinden, A.G.; Kraaij, R.; Jankovic, J.; Heutink, P.; Shulman, J.M.; Nalls, M.A.; Plagnol, V.; et al. Excessive Burden of Lysosomal Storage Disorder Gene Variants in Parkinson’s Disease. Brain 2017, 140, 3191–3203. [Google Scholar] [CrossRef] [PubMed]
- Emelyanov, A.K.; Usenko, T.S.; Tesson, C.; Senkevich, K.A.; Nikolaev, M.A.; Miliukhina, I.V.; Kopytova, A.E.; Timofeeva, A.A.; Yakimovsky, A.F.; Lesage, S.; et al. Mutation Analysis of Parkinson’s Disease Genes in a Russian Data Set. Neurobiol. Aging 2018, 71, 267.e7–267.e10. [Google Scholar] [CrossRef] [PubMed]
- Pihlstrøm, L.; Schottlaender, L.; Chelban, V.; Consortium, M.S.A.E.; Meissner, W.G.; Federoff, M.; Singleton, A.; Houlden, H. Lysosomal Storage Disorder Gene Variants in Multiple System Atrophy. Brain 2018, 141, e53. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Pan, H.; Liu, Z.; Wang, Y.; Zeng, Q.; Fang, Z.; Luo, T.; Xu, K.; Wang, Z.; Zhou, X.; et al. The Association Between Lysosomal Storage Disorder Genes and Parkinson’s Disease: A Large Cohort Study in Chinese Mainland Population. Front. Aging Neurosci. 2021, 13, 749109. [Google Scholar] [CrossRef] [PubMed]
- Moors, T.E.; Paciotti, S.; Ingrassia, A.; Quadri, M.; Breedveld, G.; Tasegian, A.; Chiasserini, D.; Eusebi, P.; Duran-Pacheco, G.; Kremer, T.; et al. Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson’s Disease and Dementia with Lewy Bodies. Mol. Neurobiol. 2019, 56, 1344–1355. [Google Scholar] [CrossRef] [PubMed]
- Usenko, T.S.; Senkevich, K.A.; Bezrukova, A.I.; Baydakova, G.V.; Basharova, K.S.; Zhuravlev, A.S.; Gracheva, E.V.; Kudrevatykh, A.V.; Miliukhina, I.V.; Krasakov, I.V.; et al. Impaired Sphingolipid Hydrolase Activities in Dementia with Lewy Bodies and Multiple System Atrophy. Mol. Neurobiol. 2022, 59, 2277–2287. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Xu, J.; Chen, J.; Kim, S.; Reimers, M.; Bacanu, S.-A.; Yu, H.; Liu, C.; Sun, J.; Wang, Q.; et al. Transcriptome Sequencing and Genome-Wide Association Analyses Reveal Lysosomal Function and Actin Cytoskeleton Remodeling in Schizophrenia and Bipolar Disorder. Mol. Psychiatry 2015, 20, 563–572. [Google Scholar] [CrossRef]
- Zhuo, C.; Hou, W.; Tian, H.; Wang, L.; Li, R. Lipidomics of the Brain, Retina, and Biofluids: From the Biological Landscape to Potential Clinical Application in Schizophrenia. Transl. Psychiatry 2020, 10, 391. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; Myung, W.; Shim, I.; Lee, H.; Kim, B.; Cho, S.K.; Yoon, J.; Kim, D.K.; Won, H.-H. Shared Genetic Background between Parkinson’s Disease and Schizophrenia: A Two-Sample Mendelian Randomization Study. Brain Sci. 2021, 11, 1042. [Google Scholar] [CrossRef]
- Pchelina, S.; Emelyanov, A.; Baydakova, G.; Andoskin, P.; Senkevich, K.; Nikolaev, M.; Miliukhina, I.; Yakimovskii, A.; Timofeeva, A.; Fedotova, E.; et al. Oligomeric α-Synuclein and Glucocerebrosidase Activity Levels in GBA-Associated Parkinson’s Disease. Neurosci. Lett. 2017, 636, 70–76. [Google Scholar] [CrossRef]
- Barbour, R.; Kling, K.; Anderson, J.P.; Banducci, K.; Cole, T.; Diep, L.; Fox, M.; Goldstein, J.M.; Soriano, F.; Seubert, P.; et al. Red Blood Cells Are the Major Source of Alpha-Synuclein in Blood. Neurodegener. Dis. 2008, 5, 55–59. [Google Scholar] [CrossRef]
- Yakubova, A.; Shagimardanova, E.; Grigoryeva, T.; Boulygina, E.; Shigapova, L.; Siniagina, M.; Blatt, N.L.; Giniatullin, R.; Rizvanov, A.A. Genomic Screening of Chronic Migraine Patients Identified Genes Linked to Drug and Endogenous Substances Metabolism. Bionanoscience 2022, 12, 154–159. [Google Scholar] [CrossRef]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Poplin, R.; Ruano-Rubio, V.; Depristo, M.; Fennell, T.; Carneiro, M.; Auwera, G.; Kling, D.; Gauthier, L.; Levy-Moonshine, A.; Roazen, D.; et al. Scaling Accurate Genetic Variant Discovery to Tens of Thousands of Samples. bioRxiv 2017. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional Annotation of Genetic Variants from High-Throughput Sequencing Data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Ganesh, S.; Ahmed, P.H.; Nadella, R.K.; More, R.P.; Seshadri, M.; Viswanath, B.; Rao, M.; Jain, S.; Mukherjee, O. Exome Sequencing in Families with Severe Mental Illness Identifies Novel and Rare Variants in Genes Implicated in Mendelian Neuropsychiatric Syndromes. Psychiatry Clin. Neurosci. 2019, 73, 11–19. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Weisburd, B.; Thomas, B.; Solomonson, M.; Ruderfer, D.M.; Kavanagh, D.; Hamamsy, T.; Lek, M.; Samocha, K.E.; Cummings, B.B.; et al. The ExAC Browser: Displaying Reference Data Information from over 60 000 Exomes. Nucleic Acids Res. 2017, 45, D840–D845. [Google Scholar] [CrossRef]
- Alcalay, R.N.; Wolf, P.; Levy, O.A.; Kang, U.J.; Waters, C.; Fahn, S.; Ford, B.; Kuo, S.H.; Vanegas, N.; Shah, H.; et al. Alpha Galactosidase A Activity in Parkinson’s Disease. Neurobiol. Dis. 2018, 112, 85–90. [Google Scholar] [CrossRef]
- Kopytova, A.E.; Usenko, T.S.; Bezrukova, A.I.; Basharova, K.S.; Andreeva, T.V.; Volkova, E.V.; Manakhov, A.D.; Baydakova, G.V.; Palchikova, E.I.; Zakharova, E.Y.; et al. Elevated Level of Blood Lysosphingolipids in Patients with Schizophrenia. Russ. J. Genet. 2023, 59, 579–584. [Google Scholar] [CrossRef]
- Pchelina, S.; Baydakova, G.; Nikolaev, M.; Senkevich, K.; Emelyanov, A.; Kopytova, A.; Miliukhina, I.; Yakimovskii, A.; Timofeeva, A.; Berkovich, O.; et al. Blood Lysosphingolipids Accumulation in Patients with Parkinson’s Disease with Glucocerebrosidase 1 Mutations. Mov. Disord. 2018, 33, 1325–1330. [Google Scholar] [CrossRef]
- Emelyanov, A.; Kulabukhova, D.; Garaeva, L.; Senkevich, K.; Verbitskaya, E.; Nikolaev, M.; Andoskin, P.; Kopytova, A.; Milyukhina, I.; Yakimovskii, A.; et al. SNCA Variants and Alpha-Synuclein Level in CD45+ Blood Cells in Parkinson’s Disease. J. Neurol. Sci. 2018, 395, 135–140. [Google Scholar] [CrossRef]
- Tkachev, A.I.; Stekolshchikova, E.A.; Morozova, A.Y.; Anikanov, N.A.; Zorkina, Y.A.; Alekseyeva, P.N.; Khobta, E.B.; Andreyuk, D.S.; Zozulya, S.A.; Barkhatova, A.N.; et al. Ceramides: Shared Lipid Biomarkers of Cardiovascular Disease and Schizophrenia. Consort. Psychiatr. 2021, 2, 35–43. [Google Scholar] [CrossRef]
- Czubowicz, K.; Jęśko, H.; Wencel, P.; Lukiw, W.J.; Strosznajder, R.P. The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer’s Disease and Other Neurodegenerative Disorders. Mol. Neurobiol. 2019, 56, 5436–5455. [Google Scholar] [CrossRef]
- De Vries, P.J.; Honer, W.G.; Kemp, P.M.; McKenna, P.J. Dementia as a Complication of Schizophrenia. J. Neurol. Neurosurg. Psychiatry 2001, 70, 588–596. [Google Scholar] [CrossRef]
- Komatsu, H.; Kato, M.; Kinpara, T.; Ono, T.; Kakuto, Y. Possible Multiple System Atrophy with Predominant Parkinsonism in a Patient with Chronic Schizophrenia: A Case Report. BMC Psychiatry 2018, 18, 141. [Google Scholar] [CrossRef]
- Kuusimäki, T.; Al-Abdulrasul, H.; Kurki, S.; Hietala, J.; Hartikainen, S.; Koponen, M.; Tolppanen, A.M.; Kaasinen, V. Increased Risk of Parkinson’s Disease in Patients with Schizophrenia Spectrum Disorders. Mov. Disord. 2021, 36, 1353–1361. [Google Scholar] [CrossRef]
- Schwarz, E.; Prabakaran, S.; Whitfield, P.; Major, H.; Leweke, F.M.; Koethe, D.; McKenna, P.; Bahn, S. High Throughput Lipidomic Profiling of Schizophrenia and Bipolar Disorder Brain Tissue Reveals Alterations of Free Fatty Acids, Phosphatidylcholines, and Ceramides. J. Proteome Res. 2008, 7, 4266–4277. [Google Scholar] [CrossRef]
- Wood, P.L. Targeted Lipidomics and Metabolomics Evaluations of Cortical Neuronal Stress in Schizophrenia. Schizophr. Res. 2019, 212, 107–112. [Google Scholar] [CrossRef]
- Tessier, C.; Sweers, K.; Frajerman, A.; Bergaoui, H.; Ferreri, F.; Delva, C.; Lapidus, N.; Lamaziere, A.; Roiser, J.P.; De Hert, M.; et al. Membrane Lipidomics in Schizophrenia Patients: A Correlational Study with Clinical and Cognitive Manifestations. Transl. Psychiatry 2016, 6, e906. [Google Scholar] [CrossRef]
- Paciotti, S.; Albi, E.; Parnetti, L.; Beccari, T. Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson’s Disease. J. Clin. Med. 2020, 9, 594. [Google Scholar] [CrossRef]
- Takahashi, N.; Sakurai, T.; Davis, K.L.; Buxbaum, J.D. Linking Oligodendrocyte and Myelin Dysfunction to Neurocircuitry Abnormalities in Schizophrenia. Prog. Neurobiol. 2011, 93, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Vallée, A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int. J. Mol. Sci. 2022, 23, 2810. [Google Scholar] [CrossRef] [PubMed]
- Kanfer, J.N.; McCartney, D.G.; Singh, I.N.; Freysz, L. Acidic Phospholipids Inhibit the Phospholipase D Activity of Rat Brain Neuronal Nuclei. FEBS Lett. 1996, 383, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Schuchman, E.H. Niemann-Pick Disease Types A and B: Acid Sphingomyelinase Deficiencies. Metab. Mol. Bases Inherit. Dis. 2001, 3, 3589–3610. [Google Scholar]
- Zhuo, C.; Zhao, F.; Tian, H.; Chen, J.; Li, Q.; Yang, L.; Ping, J.; Li, R.; Wang, L.; Xu, Y.; et al. Acid Sphingomyelinase/Ceramide System in Schizophrenia: Implications for Therapeutic Intervention as a Potential Novel Target. Transl. Psychiatry 2022, 12, 260. [Google Scholar] [CrossRef]
- Mihaylova, V.; Hantke, J.; Sinigerska, I.; Cherninkova, S.; Raicheva, M.; Bouwer, S.; Tincheva, R.; Khuyomdziev, D.; Bertranpetit, J.; Chandler, D.; et al. Highly Variable Neural Involvement in Sphingomyelinase-Deficient Niemann–Pick Disease Caused by an Ancestral Gypsy Mutation. Brain 2007, 130, 1050–1061. [Google Scholar] [CrossRef]
- Akhtar, M.M.; Elliott, P.M. Anderson-Fabry Disease in Heart Failure. Biophys. Rev. 2018, 10, 1107–1119. [Google Scholar] [CrossRef]
- Kondo, Y.; Duncan, I.D. Myelin Repair by Transplantation of Myelin-Forming Cells in Globoid Cell Leukodystrophy. J. Neurosci. Res. 2016, 94, 1195–1202. [Google Scholar] [CrossRef]
- Gouvêa-Junqueira, D.; Falvella, A.C.B.; Antunes, A.S.L.M.; Seabra, G.; Brandão-Teles, C.; Martins-de-Souza, D.; Crunfli, F. Novel Treatment Strategies Targeting Myelin and Oligodendrocyte Dysfunction in Schizophrenia. Front. Psychiatry 2020, 11, 379. [Google Scholar] [CrossRef]
- Hill, C.H.; Cook, G.M.; Spratley, S.J.; Fawke, S.; Graham, S.C.; Deane, J.E. The Mechanism of Glycosphingolipid Degradation Revealed by a GALC-SapA Complex Structure. Nat. Commun. 2018, 9, 151. [Google Scholar] [CrossRef]
- Popovic, K.; Holyoake, J.; Pomès, R.; Privé, G.G. Structure of Saposin A Lipoprotein Discs. Proc. Natl. Acad. Sci. USA 2012, 109, 2908–2912. [Google Scholar] [CrossRef] [PubMed]
- Weber-Fahr, W.; Englisch, S.; Esser, A.; Tunc-Skarka, N.; Meyer-Lindenberg, A.; Ende, G.; Zink, M. Altered Phospholipid Metabolism in Schizophrenia: A Phosphorus 31 Nuclear Magnetic Resonance Spectroscopy Study. Psychiatry Res. Neuroimaging 2013, 214, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Dodge, J.C. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases. Front. Mol. Neurosci. 2017, 10, 356. [Google Scholar] [CrossRef] [PubMed]
- Hordeaux, J.; Dubreil, L.; Robveille, C.; Deniaud, J.; Pascal, Q.; Dequéant, B.; Pailloux, J.; Lagalice, L.; Ledevin, M.; Babarit, C.; et al. Long-Term Neurologic and Cardiac Correction by Intrathecal Gene Therapy in Pompe Disease. Acta Neuropathol. Commun. 2017, 5, 66. [Google Scholar] [CrossRef] [PubMed]
- Korlimarla, A.; Lim, J.-A.; Kishnani, P.S.; Sun, B. An Emerging Phenotype of Central Nervous System Involvement in Pompe Disease: From Bench to Bedside and Beyond. Ann. Transl. Med. 2019, 7, 289. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, K.; Ross, O.A.; Vilariño-Güell, C.; Cobb, S.A.; Kachergus, J.M.; Mann, D.M.A.; Snowden, J.; Richardson, A.M.T.; Neary, D.; Robinson, C.A.; et al. Glucocerebrosidase Mutations in Diffuse Lewy Body Disease. Park. Relat. Disord. 2011, 17, 55–57. [Google Scholar] [CrossRef]
- Alcalay, R.N.; Wolf, P.; Chiang, M.S.R.; Helesicova, K.; Zhang, X.K.; Merchant, K.; Hutten, S.J.; Scherzer, C.; Caspell-Garcia, C.; Blauwendraat, C.; et al. Longitudinal Measurements of Glucocerebrosidase Activity in Parkinson’s Patients. Ann. Clin. Transl. Neurol. 2020, 7, 1816–1830. [Google Scholar] [CrossRef]
- Motyl, J.A.; Strosznajder, J.B.; Wencel, A.; Strosznajder, R.P. Recent Insights into the Interplay of Alpha-Synuclein and Sphingolipid Signaling in Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 6277. [Google Scholar] [CrossRef]
- Mor, D.E.; Ischiropoulos, H. The Convergence of Dopamine and α-Synuclein: Implications for Parkinson’s Disease. J. Exp. Neurosci. 2018, 12, 1179069518761360. [Google Scholar] [CrossRef]
- Butler, B.; Sambo, D.O.; Khoshbouei, H. Alpha-Synuclein Modulates Dopamine Neurotransmission. J. Chem. Neuroanat. 2017, 83, 41–49. [Google Scholar] [CrossRef]
- Swant, J.; Goodwin, J.S.; North, A.; Ali, A.A.; Gamble-George, J.; Chirwa, S.; Khoshbouei, H. α-Synuclein Stimulates a Dopamine Transporter-Dependent Chloride Current and Modulates the Activity of the Transporter. J. Biol. Chem. 2011, 286, 43933–43943. [Google Scholar] [CrossRef]
- Lee, P.H.; Lee, G.; Park, H.J.; Bang, O.Y.; Joo, I.S.; Huh, K. The Plasma Alpha-Synuclein Levels in Patients with Parkinson’s Disease and Multiple System Atrophy. J. Neural. Transm. 2006, 113, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Hansson, O.; Hall, S.; Öhrfelt, A.; Zetterberg, H.; Blennow, K.; Minthon, L.; Nägga, K.; Londos, E.; Varghese, S.; Majbour, N.K.; et al. Levels of Cerebrospinal Fluid α-Synuclein Oligomers Are Increased in Parkinson’s Disease with Dementia and Dementia with Lewy Bodies Compared to Alzheimer’s Disease. Alzheimer’s Res. Ther. 2014, 6, 25. [Google Scholar] [CrossRef]
- Vivacqua, G.; Latorre, A.; Suppa, A.; Nardi, M.; Pietracupa, S.; Mancinelli, R.; Fabbrini, G.; Colosimo, C.; Gaudio, E.; Berardelli, A. Abnormal Salivary Total and Oligomeric Alpha-Synuclein in Parkinson’s Disease. PLoS ONE 2016, 11, e0151156. [Google Scholar] [CrossRef]
- Noori-Daloii, M.R.; Kheirollahi, M.; Mahbod, P.; Mohammadi, F.; Astaneh, A.N.; Zarindast, M.R.; Azimi, C.; Mohammadi, M.R. Alpha- and Beta-Synucleins MRNA Expression in Lymphocytes of Schizophrenia Patients. Genet. Test. Mol. Biomark. 2010, 14, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Demirel, Ö.F.; Cetin, İ.; Turan, Ş.; Sağlam, T.; Yıldız, N.; Duran, A. Decreased Expression of α-Synuclein, Nogo-A and UCH-L1 in Patients with Schizophrenia: A Preliminary Serum Study. Psychiatry Investig. 2017, 14, 344–349. [Google Scholar] [CrossRef]
- Gupta, A.K.; Pokhriyal, R.; Das, U.; Khan, M.I.; Ratna Kumar, D.; Gupta, R.; Chadda, R.K.; Ramachandran, R.; Goyal, V.; Tripathi, M.; et al. Evaluation of α-Synuclein and Apolipoprotein E as Potential Biomarkers in Cerebrospinal Fluid to Monitor Pharmacotherapeutic Efficacy in Dopamine Dictated Disease States of Parkinson’s Disease and Schizophrenia. Neuropsychiatr. Dis. Treat. 2019, 15, 2073–2085. [Google Scholar] [CrossRef] [PubMed]
- Göverti, D.; Büyüklüoğlu, N.; Nazik Yüksel, R.; Kaya, H.; Yücel, Ç.; Göka, E. Decreased Serum Levels of α-Synuclein in Patients with Schizophrenia and Their Unaffected Siblings. Early Interv. Psychiatry 2023, 17, 1079–1086. [Google Scholar] [CrossRef]
- Takamura, S.; Ikeda, A.; Nishioka, K.; Furuya, H.; Tashiro, M.; Matsushima, T.; Li, Y.; Yoshino, H.; Funayama, M.; Morinobu, S.; et al. Schizophrenia as a Prodromal Symptom in a Patient Harboring SNCA Duplication. Park. Relat. Disord. 2016, 25, 108–109. [Google Scholar] [CrossRef]
- Kéri, S.; Moustafa, A.A.; Myers, C.E.; Benedek, G.; Gluck, M.A. α-Synuclein Gene Duplication Impairs Reward Learning. Proc. Natl. Acad. Sci. USA 2010, 107, 15992–15994. [Google Scholar] [CrossRef]
- Kim, H.-J.; Jeon, B.S.; Yoon, M.-Y.; Park, S.-S.; Lee, K.-W. Increased Expression of Alpha-Synuclein by SNCA Duplication Is Associated with Resistance to Toxic Stimuli. J. Mol. Neurosci. 2012, 47, 249–255. [Google Scholar] [CrossRef]
- Mokretar, K.; Pease, D.; Taanman, J.-W.; Soenmez, A.; Ejaz, A.; Lashley, T.; Ling, H.; Gentleman, S.; Houlden, H.; Holton, J.L.; et al. Somatic Copy Number Gains of α-Synuclein (SNCA) in Parkinson’s Disease and Multiple System Atrophy Brains. Brain 2018, 141, 2419–2431. [Google Scholar] [CrossRef]
- Kurzawa-Akanbi, M.; Hanson, P.; Blain, P.; Lett, D.; Mckeith, I.; Chinnery, P.; Morris, C. Glucocerebrosidase Mutations Alter the Endoplasmic Reticulum and Lysosomes in Lewy Body Disease. J. Neurochem. 2012, 123, 298–309. [Google Scholar] [CrossRef]
- Fredriksen, K.; Aivazidis, S.; Sharma, K.; Burbidge, K.J.; Pitcairn, C.; Zunke, F.; Gelyana, E.; Mazzulli, J.R. Pathological α-Syn Aggregation Is Mediated by Glycosphingolipid Chain Length and the Physiological State of α-Syn In Vivo. Proc. Natl. Acad. Sci. USA 2021, 118, e2108489118. [Google Scholar] [CrossRef]
- Zunke, F.; Moise, A.C.; Belur, N.R.; Gelyana, E.; Stojkovska, I.; Dzaferbegovic, H.; Toker, N.J.; Jeon, S.; Fredriksen, K.; Mazzulli, J.R. Reversible Conformational Conversion of α-Synuclein into Toxic Assemblies by Glucosylceramide. Neuron 2018, 97, 92–107. [Google Scholar] [CrossRef]
- Gan-Or, Z.; Ozelius, L.J.; Bar-Shira, A.; Saunders-Pullman, R.; Mirelman, A.; Kornreich, R.; Gana-Weisz, M.; Raymond, D.; Rozenkrantz, L.; Deik, A.; et al. The p.L302P Mutation in the Lysosomal Enzyme Gene SMPD1 Is a Risk Factor for Parkinson Disease. Neurology 2013, 80, 1606–1610. [Google Scholar] [CrossRef]
- Nalls, M.A.; Duran, R.; Lopez, G.; Kurzawa-Akanbi, M.; McKeith, I.G.; Chinnery, P.F.; Morris, C.M.; Theuns, J.; Crosiers, D.; Cras, P.; et al. A Multicenter Study of Glucocerebrosidase Mutations in Dementia with Lewy Bodies. JAMA Neurol. 2013, 70, 727–735. [Google Scholar] [CrossRef]
- O’Regan, G.; de Souza, R.-M.; Balestrino, R.; Schapira, A.H. Glucocerebrosidase Mutations in Parkinson Disease. J. Park. Dis. 2017, 7, 411–422. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, G.; Fratila, O.; Buhas, C.; Judea-Pusta, C.T.; Negrut, N.; Bustea, C.; Bungau, S. Cross-Talks among GBA Mutations, Glucocerebrosidase, and α-Synuclein in GBA-Associated Parkinson’s Disease and Their Targeted Therapeutic Approaches: A Comprehensive Review. Transl. Neurodegener. 2021, 10, 4. [Google Scholar] [CrossRef]
- Trakadis, Y.J.; Fulginiti, V.; Walterfang, M. Inborn Errors of Metabolism Associated with Psychosis: Literature Review and Case-Control Study Using Exome Data from 5090 Adult Individuals. J. Inherit. Metab. Dis. 2018, 41, 613–621. [Google Scholar] [CrossRef]
- Deconinck, N.; Messaaoui, A.; Ziereisen, F.; Kadhim, H.; Sznajer, Y.; Pelc, K.; Nassogne, M.C.; Vanier, M.T.; Dan, B. Metachromatic Leukodystrophy without Arylsulfatase A Deficiency: A New Case of Saposin-B Deficiency. Eur. J. Paediatr. Neurol. 2008, 12, 46–50. [Google Scholar] [CrossRef]
- Kumperscak, H.G.; Paschke, E.; Gradisnik, P.; Vidmar, J.; Bradac, S.U. Adult Metachromatic Leukodystrophy: Disorganized Schizophrenia-like Symptoms and Postpartum Depression in 2 Sisters. J. Psychiatry Neurosci. 2005, 30, 33–36. [Google Scholar]
- Clarke, L.A.; Russell, C.S.; Pownall, S.; Warrington, C.L.; Borowski, A.; Dimmick, J.E.; Toone, J.; Jirik, F.R. Murine Mucopolysaccharidosis Type I: Targeted Disruption of the Murine Alpha-L-Iduronidase Gene. Hum. Mol. Genet. 1997, 6, 503–511. [Google Scholar] [CrossRef]
- Grosse, S.D.; Lam, W.K.K.; Wiggins, L.D.; Kemper, A.R. Cognitive Outcomes and Age of Detection of Severe Mucopolysaccharidosis Type 1. Genet. Med. 2017, 19, 975–982. [Google Scholar] [CrossRef]
- Viana, G.M.; Priestman, D.A.; Platt, F.M.; Khan, S.; Tomatsu, S.; Pshezhetsky, A. V Brain Pathology in Mucopolysaccharidoses (MPS) Patients with Neurological Forms. J. Clin. Med. 2020, 9, 396. [Google Scholar] [CrossRef]
- Blumenreich, S.; Barav, O.B.; Jenkins, B.J.; Futerman, A.H. Lysosomal Storage Disorders Shed Light on Lysosomal Dysfunction in Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 4966. [Google Scholar] [CrossRef]
Groups | Age at Exam, Mean ± SD, Years | Age at Onset, Mean ± SD, Years | Sex (Male–Female) | Positive and Negative Syndrome Scale (PANSS) | Montreal Cognitive Assessment (MoCA) |
---|---|---|---|---|---|
Patients with SCZ with late-onset (N = 52) | 61.0 ± 11.1 | 51.1 ± 11.5 | 20:32 | 75.9 ± 15.8 | 25.9 ± 2.39 |
Patients with sPD (N = 180) | 63.5 ± 9.2 | 57.6 ± 10.2 | 75:105 | - | - |
Controls (N = 176) | 62.4 ± 8.9 | - | 70:106 | - | - |
Patients with SCZ with early-onset_NGS (N = 23) | 31.4 ± 8.75 | NA | 23:0 | NA | NA |
Controls_NGS (N = 21) | 35.5 ± 9.06 | - | 21:0 | - | - |
Groups | Estimated Parameters, Mean ± SE | ||||||||
---|---|---|---|---|---|---|---|---|---|
Enzyme Activity in the Whole Blood, Mmol/L/h | Substrate Concentration in the Whole Blood, ng/mL | ||||||||
ASMase | GCase | GLA | GALC | IDUA | GAA | LysoSM | HexSph | LysoGb3 | |
Patients with late-onset SCZ (N = 52) | 2.79 ± 0.13 p = 3.2 × 10−8 * p = 1.8 × 10−11 ** | 6.78 ± 0.32 | 6.63 ± 0.45 p = 2.2 × 10−6 * p = 7.9 × 10−5 ** | 2.49 ± 0.13 p = 0.0054 * | 6.71 ± 0.34 | 7.21 ± 0.45 p = 0.019 ** | 6.76 ± 0.58 p = 1.3 × 10−7 * p = 1.1 × 10−12 ** | 6.03 ± 0.36 p = 1.6 × 10−9 * p = 5.8 × 10−11 ** | 1.24 ± 0.06 p = 1.4 × 10−10 * p = 1.4 × 10−8 ** |
sPD (N = 180) | 4.94 ± 0.17 | 7.65 ± 0.30 | 45.01 ± 0.26 | 2.50 ± 0.12 p = 0.011 * | 7.53 ± 0.24 | 8.63 ± 0.33 | 3.53 ± 0.09 p = 0.00021 * | 3.49 ± 0.19 | 0.86 ± 0.04 |
Controls (N = 176) | 44.71 ± 0.18 | 7.42 ± 0.34 | 4.66 ± 0.18 | 2.15 ± 0.09 | 7.94 ± 0.28 | 8.30 ± 0.30 | 4.11 ± 0.12 | 3.59 ± 0.19 | 0.82 ± 0.03 |
Group | Parameters | Odds Ratio | 95% CI | p-Value |
---|---|---|---|---|
Enzymatic activities | ||||
Patients with SCZ with late- onset | GCase | 0.994 | 0.971–1.018 | 0.6621 |
GLA | 1.051 | 1.025–1.077 | 0.0001 | |
ASMase | 0.925 | 0.889–0.963 | 0.0002 | |
GALC | 1.016 | 0.958–1.078 | 0.5786 | |
IDUA | 0.998 | 0.970–1.027 | 0.9124 | |
GAA | 1.004 | 0.980–1.0295 | 0.7201 | |
Age | 1.000 | 0.993–1.007 | 0.8792 | |
Sex | 0.999 | 0.871–1.145 | 0.9887 | |
Substrate concentrations | ||||
HexSph | 1.072 | 1.047–1.098 | 4.53 × 10−8 | |
LysoGb3 | 1.290 | 1.092–1.523 | 0.0032 | |
LysoSM | 1.059 | 1.037–1.081 | 1.95 × 10−7 | |
Age | 0.997 | 0.991–1.004 | 0.4540 | |
Sex | 0.976 | 0.862–1.106 | 0.7071 | |
Alpha-synuclein level | ||||
Alpha-synuclein | 1.017 | 1.006–1.028 | 0.0027 | |
Age | 1.093 | 0.989–1.004 | 0.4657 | |
Sex | 0.997 | 0.944–1.264 | 0.2344 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usenko, T.; Bezrukova, A.; Basharova, K.; Baydakova, G.; Shagimardanova, E.; Blatt, N.; Rizvanov, A.; Limankin, O.; Novitskiy, M.; Shnayder, N.; et al. Altered Sphingolipid Hydrolase Activities and Alpha-Synuclein Level in Late-Onset Schizophrenia. Metabolites 2024, 14, 30. https://doi.org/10.3390/metabo14010030
Usenko T, Bezrukova A, Basharova K, Baydakova G, Shagimardanova E, Blatt N, Rizvanov A, Limankin O, Novitskiy M, Shnayder N, et al. Altered Sphingolipid Hydrolase Activities and Alpha-Synuclein Level in Late-Onset Schizophrenia. Metabolites. 2024; 14(1):30. https://doi.org/10.3390/metabo14010030
Chicago/Turabian StyleUsenko, Tatiana, Anastasia Bezrukova, Katerina Basharova, Galina Baydakova, Elena Shagimardanova, Nataliya Blatt, Albert Rizvanov, Oleg Limankin, Maxim Novitskiy, Natalia Shnayder, and et al. 2024. "Altered Sphingolipid Hydrolase Activities and Alpha-Synuclein Level in Late-Onset Schizophrenia" Metabolites 14, no. 1: 30. https://doi.org/10.3390/metabo14010030
APA StyleUsenko, T., Bezrukova, A., Basharova, K., Baydakova, G., Shagimardanova, E., Blatt, N., Rizvanov, A., Limankin, O., Novitskiy, M., Shnayder, N., Izyumchenko, A., Nikolaev, M., Zabotina, A., Lavrinova, A., Kulabukhova, D., Nasyrova, R., Palchikova, E., Zalutskaya, N., Miliukhina, I., ... Pchelina, S. (2024). Altered Sphingolipid Hydrolase Activities and Alpha-Synuclein Level in Late-Onset Schizophrenia. Metabolites, 14(1), 30. https://doi.org/10.3390/metabo14010030