The Assessment of Anthropometric Measures and Changes in Selected Biochemical Parameters in Obese Children in Relation to Blood Lead Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Initial Phase of the Program
2.3. Data Collection Procedure
2.3.1. Anthropometric Measurements
2.3.2. Blood Pressure
2.3.3. Body Composition Analysis
2.4. Data Analysis Methods
2.4.1. Biochemical Analyses
- Glucose concentration: the enzymatic method with hexokinase;
- Insulin concentration: the electrochemiluminescence method (ECLIA);
- Total cholesterol concentration: the enzymatic colorimetric method;
- HDL and LDL cholesterol concentrations: the homogeneous colorimetric enzymatic method;
- Triglycerides (TG) concentration: the enzymatic colorimetric method;
- TSH concentration: electrochemiluminescence assay (ECLIA);
- fT4 concentration: electrochemiluminescence assay (ECLIA);
- AST concentration: the kinetic method;
- ALT concentration: the kinetic method.
2.4.2. Lead Determination
2.5. Statistical Analysis Methods
3. Results
3.1. Characteristics of the Study Group
3.2. Percentage Distribution of the Analyzed Parameters
3.2.1. ALT
3.2.2. AST
3.2.3. Glucose
3.2.4. Cholesterol
3.2.5. HDL
3.2.6. LDL
3.2.7. Insulin
3.2.8. HOMA-IR
3.2.9. Lead
3.3. Dependencies between Evaluated Parameters
3.4. Correlations
4. Discussion
4.1. Lead in Children’s Blood
4.2. The Blood Lead Levels and Blood Pressure in Children
4.3. Blood Lead Levels and Absolute Fat Tissue Content and TG Concentration
4.4. Blood Lead Levels and Insulin
5. Limitation of This Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kubasik, M.; Bogdański, P.; Suliburska, J. Minerals in the pathogenesis of obesity and its complications. Forum Zaburzeń Metab. 2018, 9, 141–151. (In Polish) [Google Scholar]
- Wąsowski, M.; Walicka, M.; Marcinowska-Suchowierska, E. Obesity—Definition, epidemiology, pathogenesis. Postępy Nauk. Med. 2013, 4, 301–306. (In Polish) [Google Scholar]
- Zyskan, A.; Gawrys, W.; Ślęzak, A. The impact of industrial toxins and harmful substances on the human body. Pr. Nauk. Akad. Im. J. Długosza W Częstochowie. Tech. Inform. Inżynieria Bezpieczeństwa 2018, 6, 779–789. (In Polish) [Google Scholar] [CrossRef]
- Heindel, J.J. History of the obesogen field: Looking back to look forward. Front. Endocrinol. 2019, 10, 411858. [Google Scholar] [CrossRef]
- Liu, D.; Shi, Q.; Liu, C.; Sun, Q.; Zeng, X. Effects of Endocrine-Disrupting Heavy Metals on Human Health. Toxics 2023, 11, 322. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR) 2013. Substance Priority List. 2019. Available online: https://www.atsdr.cdc.gov/SPL/index.html (accessed on 16 January 2024).
- World Health Organization (WHO). Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. 2009. Available online: https://www.who.int/publications/i/item/9789241563871 (accessed on 1 October 2024).
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health. United States Department of Health and Human Services, Atlanta, 2004. Available online: https://www.cdc.gov/lead-prevention/about/index.html?CDC_AAref_Val=https://www.cdc.gov/nceh/lead/ACCLPP/meetingMinutes/lessThan10MtgMAR04.pdf (accessed on 16 January 2024).
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health. Preventing Lead Poisoning in Young Children. Atlanta, 2005. Available online: https://stacks.cdc.gov/view/cdc/97650 (accessed on 1 October 2024).
- Centers for Disease Control and Prevention (CDC). Interpreting and Managing Blood Lead Levels < 10 μg/dL in Children and Reducing Childhood Exposures to Lead: Recommendations of CDC’s Advisory Committee on Childhood Lead Poisoning Prevention. Centers for Disease Control and Prevention MMWR Recomm Rep. 2007. Volume 56, pp. 1–16. Available online: http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5608a1.htm (accessed on 16 January 2024).
- Centers for Disease Control and Prevention (CDC). Report of the Advisory Committee on Childhood Lead Poisoning Prevention of the Centers for Disease Control and Prevention Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention. 2012. Available online: https://stacks.cdc.gov/view/cdc/11859 (accessed on 1 October 2024).
- Centers for Disease Control and Prevention (CDC). Childhood Lead Poisoning Prevention. Blood Lead Reference Value. Atlanta, United States Centers for Disease Control and Prevention. 2021. Available online: https://www.cdc.gov/lead-prevention/php/news-features/updates-blood-lead-reference-value.html (accessed on 1 October 2024).
- Kułaga, Z.; Różdżyńska–Świątkowska, A.; Grajda, A.; Gurzkowska, B.; Wojtyło, M.; Góźdź, M.; Świąder-Leśniak, A.; Litwin, M. Percentile charts for assessing the growth and nutritional status of Polish children and adolescents from birth to 18 years of age. Stand. Med. 2015, 12, 119–135. (In Polish) [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Centers for Disease Control and Prevention Growth Charts: United States. Percentile Data Files with LMS Values. 2000. Available online: https://www.cdc.gov/growthcharts/percentile_data_files.htm (accessed on 1 October 2024).
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Recommendations of the Polish Society of Nephrology Regarding the Management of a Child with Elevated Blood Pressure. Available online: https://journals.viamedica.pl/arterial_hypertension/article/view/58873 (accessed on 1 October 2024).
- Horsley, L. AAP clinical report on lipid screening in children. Am. Fam. Physician 2009, 79, 703–705. [Google Scholar]
- World Health Organization (WHO). Preventing Disease through Healthy Environments. 2010. Available online: https://www.who.int/publications/i/item/9789241565196 (accessed on 1 October 2024).
- Centers for Disease Control and Prevention (CDC). Sources of Lead. 2012. Available online: https://www.cdc.gov/lead-prevention/php/data/blood-lead-surveillance.html (accessed on 1 October 2024).
- Organization for Economic Cooperation and Development (OECD) Report. Available online: https://stats.oecd.org/viewhtml.aspx?datasetcode=EXP_PM2_5&lang=en> (accessed on 16 February 2022).
- Rees, N.; Fuller, R. The Toxic Truth: Children’s Exposure to Lead Pollution Undermines a Generation of Future Potential; UNICEF: New York, NY, USA, 2020. [Google Scholar]
- Barton, H.J. Advantages of the use of deciduous teeth, hair, and blood analysis for lead and cadmium bio-monitoring in children. A Study of 6-Year-Old children from Kraków (Poland). Biol. Trace Elem. Res. 2011, 143, 637–658. [Google Scholar] [CrossRef]
- Jedrychowski, W.; Perera, F.P.; Jankowski, J.; Mrozek-Budzyn, D.; Mroz, E.; Flak, E.; Edwards, S.; Skarupa, A.; Lisowska-Miszczyk, I. Very low prenatal exposure to lead and mental development of children in infancy and early childhood: Kraków prospective cohort study. Neuroepidemiology 2009, 32, 270–278. [Google Scholar] [CrossRef]
- Hrubá, F.; Strömberg, U.; Černá, M.; Chen, C.; Harari, F.; Harari, R.; Milena Horvat, M.; Koppová, K.; Kos, A.; Krsková, A.; et al. Blood cadmium, mercury, and lead in children: An international comparison of cities in six European countries, and China, Ecuador, and Morocco. Environ. Int. 2012, 41, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Homa, D.M.; Meyer, P.A.; Brody, D.J.; Caldwell, K.L.; Pirkle, J.L.; Brown, M.J. Trends in blood lead levels and blood lead testing among US children aged 1 to 5 years, 1988–2004. Pediatrics 2009, 123, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, J. Blood lead levels in children. China Environ. Res. 2006, 101, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Mathee, A.; Röllin, H.; von Schirnding, Y.; Levin, J.; Naik, I. Reductions in blood lead levels among school children following the introduction of unleaded petrol in South Africa. Environ. Res. 2006, 100, 319–322. [Google Scholar] [CrossRef]
- Kaiser, R.; Henderson, A.K.; Daley, W.R.; Naughton, M.; Khan, M.H.; Rahman, M.; Kieszak, S.; Rubin, C.H. Blood lead levels of primary school children in Dhaka, Bangladesh. Environ. Health Perspect. 2001, 109, 563–566. [Google Scholar] [CrossRef]
- US Food and Drug Administration (FDA). Lead in Food, Foodwares, and Dietary Supplements, 2020. Available online: https://www.fda.gov/food/environmental-contaminants-food/lead-food-and-foodwares (accessed on 1 October 2024).
- Eichler, A.; Gramlich, G.; Kellerhals, T.; Tobler, L.; Schwikowski, M. Pb pollution from leaded gasoline in South America in the context of a 2000-year metallurgical history. Sci. Adv. 2015, 1, e1400196. [Google Scholar] [CrossRef]
- Angelon-Gaetz, K.A.; Klaus, C.; Chaudhry, E.A.; Bean, D.K. Lead in spices, herbal remedies, and ceremonial powders sampled from home investigations for children with elevated blood lead levels—North Carolina, 2011–2018. Morb. Mortal. Wkly. Rep. 2018, 67, 1290–1294. [Google Scholar] [CrossRef]
- Téllez-Rojo, M.M.; BautistaArredondo, L.F.; Trejo-Valdivia, B.; Cantoral, A.; Estrada-Sánchez, D.; Kraiem, R.; Pantic, I.; Rosa-Parra, A.; Gómez-Acosta, L.M.; RomeroMartínez, M.; et al. National report on blood lead levels and use of glazed clay in vulnerable children. Salud Pública México 2019, 61, 787. (In Polish) [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC), United States Centers for Disease Control and Prevention. Low Level Lead Exposure Harms Children—A Renewed Call For Primary Prevention: Report of the Advisory Committee on Childhood Lead Poisoning Prevention. Atlanta, United States Centers for Disease Control and Prevention, 2012. Available online: https://stacks.cdc.gov/view/cdc/11859/cdc_11859_DS1.pdf (accessed on 1 October 2024).
- Mill, J.G. Obesity and risk of hypertension: A growing problem in children and adolescents. Arq. Bras. Cardiol. 2023, 120, e20220940. [Google Scholar] [CrossRef]
- Nawrot, T.S.; Thijs, L.; Den Hond, E.M.; Roles, H.A.; Staessen, J.A. An epidemiological re-appraisal of the association between blood pressure and blood lead: A meta-analysis. J. Hum. Hypertens. 2002, 16, 123–131. [Google Scholar] [CrossRef]
- Skoczyńska, A. Genetic aspects of hypertensive effect of lead. Med. Pracy 2008, 59, 325–332. (In Polish) [Google Scholar]
- Nash, D.; Magder, L.; Lustberg, M.; Sherwin, R.W.; Rubin, R.J.; Kaufmann, R.B.; Silbergeld, E.K. Blood lead, blood pressure, and hypertension in perimenopausal and postmenopausal women. JAMA 2003, 289, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Vupputuri, S.; He, J.; Muntner, P.; Bazzano, L.A.; Whelton, P.K.; Batuman, V. Blood lead level is associated with elevated blood pressure in blacks. Hypertension 2003, 41, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Victery, W. Evidence for effects of chronic lead exposure on blood pressure in experimental animals: An overview. Environ. Health Perspect. 1988, 78, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Puri, V.N. Acute effects of cadmium on the renin angiotensin system in rats. Biochem. Pharmacol. 1992, 44, 187–188. [Google Scholar] [CrossRef]
- Skoczyńska, A.; Wróbel, J.; Andrzejak, R. Lead-cadmium interaction effect on the responsiveness of rat mesenteric vessels to norepinephrine and angiotensin II. Toxicology 2001, 162, 157–170. [Google Scholar] [CrossRef]
- Skoczyńska, A. Lead as a Risk Factor for Cardiovascular Diseases; Górnicki Wydawnictwo Medyczne: Wrocław, Poland, 2006. (In Polish) [Google Scholar]
- Magri, J.; Sammut, M.; Savona-Ventura, C. Lead and other metals in gesttional hypertension. Int. J. Gynaecol. Obstet. 2003, 83, 29–36. [Google Scholar] [CrossRef]
- Hu, H.; Aro, A.; Payton, M.; Korrick, S.; Sparrow, D.; Weiss, S.T.; Rotnitzky, A. The relationship of bone and blood lead to hypertension: The Normative Aging Study. JAMA 1996, 275, 1171–1176. [Google Scholar] [CrossRef]
- Lee, B.-K.; Ahn, J.; Kim, N.-S.; Lee, C.B.; Park, J.; Kim, Y. Association of Blood Pressure with Exposure to Lead and Cadmium: Analysis of Data from the 2008–2013 Korean National Health and Nutrition Examination Survey. Biol. Trace Elem. Res. 2016, 174, 40–51. [Google Scholar] [CrossRef]
- Staessen, J.A.; Bulpitt, C.J.; Fagard, R.; Lauwerys, R.R.; Roles, H.; Thijs, L.; Amery, A. Hypertension caused by low-level lead exposure: Myth or fact? J. Cardiovasc. Risk. 1994, 1, 87–97. [Google Scholar] [CrossRef]
- Staessen, J. Low-level lead exposure, renal function and blood pressure. Verh. K. Acad. Geneeskd. Belg. 1995, 57, 527–574. [Google Scholar]
- Martin, D.; Glass, T.A.; Bandeen-Roche, K.; Todd, A.C.; Shi, W.; Schwartz, B.S. Association of blood lead and tibia lead with blood pressure and hypertension in a community sample of older adults. Am. J. Epidemiol. 2006, 163, 467–478. [Google Scholar] [CrossRef]
- Gąssowska, M.; Baranowska-Bosiacka, I.; Moczydłowska, J.; Frontczak-Baniewicz, M.; Gewartowska, M.; Strużyńska, L.; Gutowska, I.; Chlubek, D.; Adamczyk, A. Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring. Toxicology 2016, 12, 13–29. [Google Scholar] [CrossRef]
- Baranowska-Bosiacka, I.; Strużyńska, L.; Gutowska, I.; Machalińska, A.; Kolasa, A.; Kłos, P.; Czapski, G.A.; Kurzawski, M.; Prokopowicz, A.; Marchlewicz, M.; et al. Perinatal exposure to lead induces morphological, ultrastructural and molecular alterations in the hippocampus. Toxicology 2013, 7, 187–200. [Google Scholar] [CrossRef]
- Baranowska-Bosiacka, I.; Kosińska, I.; Jamioł, D.; Gutowska, I.; Prokopowicz, A.; Rębacz-Maron, E.; Goschorska, M.; Olszowski, T.; Chlubek, D. Environmental Lead (Pb) Exposure versus Fatty Acid Content in Blood and Milk of the Mother and in the Blood of Newborn Children. Biol. Trace Elem. Res. 2016, 170, 279–287. [Google Scholar] [CrossRef]
- Farzan, S.F.; Howe, C.G.; Chen, Y.; Gilbert-Diamond, D.; Cottingham, K.L.; Jackson, B.P.; Weinstein, A.R.; Karaga, M.R. Prenatal Lead Exposure and Elevated Blood Pressure in Children. Environ. Int. 2018, 121, 1289–1296. [Google Scholar] [CrossRef]
- Skoczyńska, A. Atherogenic effects of lead and cadmium. Czyn. Ryzyka 1999/2000, 4/1, 20–25. (In Polish) [Google Scholar]
- Hernández-Mendoza, H.; Rios-Lugo, M.J.; Álvarez-Loredo, H.E.; Romero-Guzmán, E.T.; Gaytán-Hernández, D.; Martínez-Navarro, I.; Juárez-Flores, B.I.; Chang-Rueda, C. Serum lead levels and its association with overweight and obesity. J. Trace Elem. Med. Biol. 2022, 72, 126984. [Google Scholar] [CrossRef]
- Wang, N.; Lu, M.; Chen, C.; Xia, F.; Han, B.; Li, Q.; Cheng, J.; Chen, Y.; Zhu, C.; Jensen, M.D.; et al. Adiposity Genetic Risk Score Modifies the Association Between Blood Lead Level and Body Mass Index. JCEM J. Clin. Endocrinol. Metab. 2018, 103, 4005–4013. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Yang, M. Environmental exposure to lead (Pb) and variations in its susceptibility. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2014, 32, 159–185. [Google Scholar] [CrossRef]
- Wang, G.; DiBari, J.; Bind, E.; Steffens, A.M.; Mukherjee, J.; Azuine, R.E.; Singh, G.K.; Hong, X.; Ji, Y.; Ji, H.; et al. Association between maternal exposure to lead, maternal folate status, and intergenerational risk of childhood overweight and obesity. JAMA Netw. Open. 2019, 2, e1912343. [Google Scholar] [CrossRef] [PubMed]
- Scinicariello, F.; Buser, M.C.; Mevissen, M.; Portier, C.J. Blood lead level association with lower body weight in NHANES 1999-2006. Toxicol. Appl. Pharmacol. 2013, 273, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, B.K. Body fat percentage and hemoglobin levels are related to blood lead, cadmium, and mercury concentrations in a Korean Adult Population (KNHANES 2008-2010). Biol. Trace Elem. Res. 2013, 151, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Huzior-Bałajewicz, A.; Pietrzyk, J.J.; Schlegel-Zawadzka, M.; Piatkowska, E.; Zachwieja, Z. The influence of lead and cadmium environmental pollution on anthropometric health factors in children. Przegl. Lek. 2001, 58, 315–324. [Google Scholar]
- Lamb, M.R.; Janevic, T.; Liu, X.; Cooper, T.; Kline, J.; Factor-Litvak, P. Environmental lead exposure, maternal throid function, and childhood growth. Environ. Res. 2008, 106, 195–202. [Google Scholar] [CrossRef]
Lipids | Age | Values (mg/dL) | ||
---|---|---|---|---|
Optimal | Borderline | High | ||
Total cholesterol | <170 | 170–199 | ≥200 | |
LDL | <110 | 110–129 | ≥130 | |
HDL | <10 years | >40 | 30–40 | |
Triglycerides | <10 years | <75 | 75–99 | ≥100 |
Parameter | n | SD | Min | Max | M | |
---|---|---|---|---|---|---|
age [years] | 129 | 8.27 | 0.8 | 7.1 | 10.7 | 8.1 |
body weight [kg] | 135 | 38.5 | 6.2 | 25.5 | 59.6 | 37.7 |
SDS of body weight | 129 | 4.0 | 2.2 | 0.3 | 18.6 | 3.7 |
body height [cm] | 135 | 133.3 | 6.6 | 116 | 156 | 133 |
SDS of body height | 129 | 0.8 | 1.1 | −3.3 | 3.4 | 0.8 |
BMI [kg/m2] | 135 | 21.5 | 2.2 | 15.4 | 31.4 | 21.1 |
SDS of BMI | 129 | 4.5 | 1.8 | −0.3 | 13.7 | 4.1 |
systolic blood pressure [mmHg] | 134 | 104.2 | 8.8 | 80 | 138 | 104 |
diastolic blood pressure [mmHg] | 134 | 67.5 | 7.3 | 51 | 84 | 67 |
Parameter | n | SD | Min | Max | M | |
---|---|---|---|---|---|---|
body fat content [%] | 135 | 22.0 | 6.0 | 3 | 33 | 24 |
fat tissue mass [kg] | 135 | 8.4 | 3.2 | 0 | 17 | 8 |
fat-free mass [kg] | 135 | 29.3 | 4.3 | 21 | 44 | 29 |
water content [%] | 135 | 21.0 | 3.2 | 15 | 32 | 21 |
muscle mass [kg] | 135 | 27.1 | 4.1 | 19 | 41 | 27 |
Parameter | Girls | Boys | p | ||||
---|---|---|---|---|---|---|---|
n | SD | n | SD | ||||
age [years] | 73 | 8.3 | 0.7 | 56 | 8.3 | 0.8 | 0.0 |
body weight [kg] | 79 | 37.9 | 5.5 | 56 | 29.5 | 7.1 | 0.1 |
SDS of body weight | 73 | 3.8 | 1.8 | 56 | 4.2 | 2.7 | 0.3 |
body height [cm] | 79 | 132.6 | 6.2 | 56 | 134.3 | 7.0 | 0.1 |
SDS of body height | 73 | 0.7 | 1.2 | 56 | 0.9 | 1.1 | 0.4 |
BMI [kg/m2] | 79 | 21.3 | 1.9 | 56 | 21.7 | 2.7 | 0.3 |
SDS of BMI | 73 | 4.4 | 1.4 | 56 | 4.7 | 2.2 | 0.3 |
systolic blood pressure [mmHg] | 79 | 104.5 | 8.9 | 56 | 102.1 | 16.3 | 0.3 |
diastolic blood pressure [mmHg] | 79 | 68.8 | 6.9 | 56 | 64.4 | 11.5 | <0.01 |
Parameter | Girls | Boys | p | ||||
---|---|---|---|---|---|---|---|
n | SD | n | SD | ||||
body fat content [%] | 79 | 25.1 | 3.8 | 56 | 17.6 | 5.7 | <0.001 |
fat tissue mass [kg] | 79 | 9.4 | 2.5 | 56 | 7.0 | 3.56 | <0.001 |
fat-free mass [kg] | 79 | 27.7 | 3.6 | 56 | 31.7 | 4.2 | <0.001 |
water content [%] | 79 | 19.7 | 2.5 | 56 | 22.7 | 3.0 | <0.001 |
muscle mass [kg] | 79 | 25.4 | 3.8 | 56 | 29.5 | 4.0 | <0.001 |
Parameter | n | SD | Min. | Max. | Median | |
---|---|---|---|---|---|---|
blood lead levels [µg/dL] | 115 | 3.8 | 2.3 | 0.1 | 10.5 | 3.6 |
ALT [U/L] | 92 | 18.4 | 9.3 | 5 | 70 | 15 |
AST [U/L] | 92 | 25.8 | 6.8 | 13 | 63 | 25 |
glucose [mg/dL] | 92 | 90.9 | 5.8 | 75.9 | 106.2 | 90.8 |
glucose [mmol/L] | 92 | 5.1 | 0.3 | 4.2 | 5.9 | 5.0 |
total cholesterol [mg/dL] | 90 | 160.9 | 27.8 | 98.6 | 258 | 159.6 |
HDL [mg/dL] | 92 | 53.9 | 10.7 | 33.4 | 86.3 | 53.4 |
LDL [mg/dL] | 92 | 104.1 | 25.8 | 32.7 | 197.3 | 101.4 |
TG [mg/dL] | 91 | 75.6 | 38.1 | 22.6 | 213 | 67.3 |
insulin [µIU/mL] | 91 | 10.3 | 4.8 | 2.5 | 32.1 | 9.4 |
HOMA IR | 91 | 2.3 | 1.1 | 0.5 | 6.7 | 2.1 |
Parameter | Girls | Boys | p | ||||
---|---|---|---|---|---|---|---|
n | SD | n | SD | ||||
blood lead levels [µg/dL] | 66 | 3.7 | 2.3 | 49 | 4.0 | 2.4 | 0.4 |
ALT [U/L] | 58 | 17.0 | 6.5 | 49 | 20.9 | 12.5 | 0.05 |
AST [U/L] | 58 | 25.4 | 6.8 | 49 | 25.6 | 6.7 | 0.4 |
glucose [mg/dL] | 58 | 90.2 | 5.9 | 49 | 92.2 | 5.4 | 0.09 |
total cholesterol [mg/dL] | 56 | 166.3 | 28.2 | 49 | 152.0 | 25.1 | 0.01 |
HDL [mg/dL] | 58 | 54.3 | 11.0 | 49 | 53.1 | 10.2 | 0.6 |
LDL [mg/dL] | 58 | 109.1 | 24.6 | 49 | 95.7 | 25.9 | 0.01 |
TG [mg/dL] | 57 | 76.7 | 32.9 | 49 | 74.0 | 46.0 | 0.7 |
insulin [uIU/mL] | 57 | 10.2 | 4.2 | 49 | 10.4 | 5.6 | 0.9 |
HOMA IR | 57 | 2.3 | 0.98 | 49 | 2.4 | 1.3 | 0.7 |
Parameter | Pb ≤ 5 µg/dL (n = 34) | Pb > 5 µg/dL (n = 15) | p | ||
---|---|---|---|---|---|
SD | SD | ||||
body weight [kg] | 39.3 | 7.9 | 38.6 | 4.7 | 0.8 |
BMI [kg/m2] | 21.8 | 3.0 | 21.3 | 1.7 | 0.6 |
systolic blood pressure [mmHg] | 101.5 | 6.9 | 107.3 | 11.6 | <0.05 |
diastolic blood pressure [mmHg] | 64.7 | 6.8 | 65.1 | 7.4 | 0.8 |
fat tissue content [%] | 18.0 | 5.9 | 15.7 | 4.9 | 0.2 |
fat tissue mass [kg] | 7.2 | 3.8 | 5.9 | 2.6 | 0.2 |
fat-free mass [kg] | 31.3 | 4.8 | 31.7 | 2.9 | 0.8 |
water content [%] | 22.4 | 3.5 | 22.9 | 2.0 | 0.6 |
muscle mass [kg] | 29.2 | 4.6 | 29.5 | 2.7 | 0.8 |
Parameter | Blood Lead Level [µg/dL] | ||
---|---|---|---|
n | r | p | |
body weight [kg] | 114 | 0.01 | 0.9 |
body height [cm] | 114 | 0.04 | 0.7 |
BMI [kg/m2] | 114 | −0.02 | 0.9 |
systolic blood pressure [mmHg] | 113 | 0.24 | 0.01 |
diastolic blood pressure [mmHg] | 113 | 0.19 | 0.04 |
fat tissue content [%] | 114 | −0.20 | 0.03 |
fat tissue mass [kg] | 114 | −0.14 | 0.1 |
fat-free mass [kg] | 114 | 0.11 | 0.2 |
water content [%] | 114 | 0.13 | 0.2 |
muscle weight [kg] | 114 | 0.12 | 0.2 |
ALT [U/L] | 78 | 0.05 | 0.7 |
AST [U/L] | 78 | −0.05 | 0.7 |
glucose [mg/dL] | 78 | −0.05 | 0.7 |
cholesterol [mg/dL] | 76 | −0.08 | 0.5 |
HDL [mg/dL] | 78 | 0.11 | 0.3 |
LDL [mg/dL] | 78 | −0.08 | 0.5 |
TG [mg/dL] | 77 | −0.26 | 0.02 |
insulin [µIU/mL] | 77 | −0.13 | 0.3 |
HOMA IR | 77 | −0.12 | 0.3 |
Parameter | Blood Lead Level [µg/dL] | ||
---|---|---|---|
n | r | p | |
body weight [kg] | 110 | −0.02 | 0.8 |
body height [cm] | 110 | 0.00 | 0.9 |
BMI [kg/m2] | 110 | −0.02 | 0.9 |
systolic blood pressure [mmHg] | 109 | 0.26 | <0.01 |
diastolic blood pressure [mmHg] | 109 | 0.19 | <0.05 |
fat tissue content [%] | 110 | −0.19 | <0.05 |
fat tissue mass [kg] | 110 | −0.14 | 0.1 |
fat-free mass [kg] | 110 | 0.06 | 0.5 |
water content [%] | 110 | 0.08 | 0.4 |
muscle weight [kg] | 110 | 0.06 | 0.5 |
ALT [U/L] | 76 | 0.03 | 0.8 |
AST [U/L] | 76 | −0.09 | 0.5 |
glucose [mg/dL] | 78 | −0.07 | 0.5 |
cholesterol [mg/dL] | 74 | −0.06 | 0.6 |
HDL [mg/dL] | 76 | 0.12 | 0.3 |
LDL [mg/dL] | 76 | −0.06 | 0.6 |
TG [mg/dL] | 75 | −0.26 | <0.05 |
insulin [µIU/mL] | 75 | −0.13 | 0.3 |
HOMA IR | 75 | −0.13 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozorska, K.; Baranowska-Bosiacka, I.; Raducha, D.; Kupnicka, P.; Bosiacki, M.; Bosiacka, B.; Szmit-Domagalska, J.; Ratajczak, J.; Horodnicka-Józwa, A.; Walczak, M.; et al. The Assessment of Anthropometric Measures and Changes in Selected Biochemical Parameters in Obese Children in Relation to Blood Lead Level. Metabolites 2024, 14, 540. https://doi.org/10.3390/metabo14100540
Pozorska K, Baranowska-Bosiacka I, Raducha D, Kupnicka P, Bosiacki M, Bosiacka B, Szmit-Domagalska J, Ratajczak J, Horodnicka-Józwa A, Walczak M, et al. The Assessment of Anthropometric Measures and Changes in Selected Biochemical Parameters in Obese Children in Relation to Blood Lead Level. Metabolites. 2024; 14(10):540. https://doi.org/10.3390/metabo14100540
Chicago/Turabian StylePozorska, Katarzyna, Irena Baranowska-Bosiacka, Dominika Raducha, Patrycja Kupnicka, Mateusz Bosiacki, Beata Bosiacka, Justyna Szmit-Domagalska, Joanna Ratajczak, Anita Horodnicka-Józwa, Mieczysław Walczak, and et al. 2024. "The Assessment of Anthropometric Measures and Changes in Selected Biochemical Parameters in Obese Children in Relation to Blood Lead Level" Metabolites 14, no. 10: 540. https://doi.org/10.3390/metabo14100540
APA StylePozorska, K., Baranowska-Bosiacka, I., Raducha, D., Kupnicka, P., Bosiacki, M., Bosiacka, B., Szmit-Domagalska, J., Ratajczak, J., Horodnicka-Józwa, A., Walczak, M., Chlubek, D., & Petriczko, E. (2024). The Assessment of Anthropometric Measures and Changes in Selected Biochemical Parameters in Obese Children in Relation to Blood Lead Level. Metabolites, 14(10), 540. https://doi.org/10.3390/metabo14100540