Research Progress on Antioxidant Peptides from Fish By-Products: Purification, Identification, and Structure–Activity Relationship
Abstract
:1. Introduction
2. Antioxidant Peptides Derived from Fish By-Products
2.1. Antioxidant Peptides Extracted from Fish Scales
2.2. Antioxidant Peptides Extracted from Fish Skin
2.3. Antioxidant Peptides Extracted from Fish Head
2.4. Antioxidant Peptides Extracted from Fish Viscera
3. The Separation and Purification of Antioxidant Peptides
4. The Relationship between the Structure of Antioxidant Peptides and Their Activity
4.1. The Relationship between Antioxidant Activity and Amino Acid Residue Types or Sequence
Source | Amino Acid Sequence | Antioxidant Property (In Vivo) | Characteristics | References |
---|---|---|---|---|
Green odorous frog (Odorrana margaratae) skin | GLLSGHYGRASPVAC | The peptide reduced the levels of lipid peroxidation and malondialdehyde and protected epidermal cells from UVB-induced apoptosis by inhibiting DNA damage via down-regulation of p53, caspase-3, caspase-9, and Bax and up-regulation of Bcl-2. | DPPH RSA: 5~20%; ABST+ RSA: 5~90%; Fe3+ reduction capacity:1~7% | [52] |
Oyster (Crassostrea hongkongensis) | LTDDQVDEIIRN LTDDQVDEIIRNT LTDDQVDEIIR MWEGEEPTPSEGGPTPK WEGEEPTPSEGGPTPK NNDDIEGSPFK SIDVVILDPH | OPs treatment promoted antioxidant enzyme (SOD and GPH-Px) activities and decreased malondialdehyde (MDA) level in the skin. OPs protected against UVB-induced skin photodamage by virtue of its antioxidative and anti-inflammatory properties, as well as regulating the abnormal expression of MMP-1. The possible molecular mechanism underlying OPs anti-photoaging is possibly related to down-regulating of the MAPK/NF-κB signaling pathway, while promoting TGF-β production in the skin. | molecular weights (<2000 Da): 95.6% | [53] |
Hemiscorpius lepturus | YLYELR AFPYYGHHLG | HL-7 (927.30 Da) exhibits higher antioxidant activity than HL-10 (1161.41 Da) in preventing the decline of CAT and SOD activities in the serum and liver of mice induced by D-galactose. | activity of CAT in the D-galactose-treated group (2.57 mK/mg protein) | [54] |
Walnut | TNPSDSAPGTIR EDFGGGHPDPN MLPHHKDAES- VAVVTRG RAT HFREGDVIAFPAGVAH DIVAIPAGVAH VREIREGDVVAIPAGVAH LVYIEQGEGLLGL ATGEGFEWVSFK LPHHKDAESVAVVTRGRAT RGDIVAIPAGVAH REGDVIAFPAGVAH GLRGEEMEEMVQSA EGDIIAFPAGVAH FMLPHHKDAESVAVVTRGRAT | The increase in SOD and GSH-Px activities and the decrease in MDA levels in the liver and serum tissues of mice indicate that the polypeptide exerts good antioxidant activity in vivo. | DPPH RSA: 76.31 ± 1.52%; | [55] |
Apostichopus japonicus | HEPFYGNEGALR | Increasing antioxidant enzyme activities in mice with acute alcoholic liver injury. A 20 mg/kg peptide supplement could activate the Nrf2/HO-1 pathway and block the nuclear translocation of NF-κB to alleviate oxidative stress and inflammation | [56] | |
Large yellow croaker (Pseudosciaena crocea) | The protein hydrolysate of large yellow croaker can stimulate the increase in the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, lead to an elevation in the level of reduced glutathione, and reduce the level of malondialdehyde. | [57] | ||
Whey protein | Enhancing the activities of catalase, superoxide dismutase, and glutathione peroxidase and reducing the level of malondialdehyde provide protective effects against d-galactose-induced aging. | [58] | ||
Whole-grain Qingke (Tibetan Hordeum vulgare L.) | WGCQ WGPQ | Reducing the fasting plasma glucose, malondialdehyde, reactive oxygen species, plasma cortisol, and brain amyloid beta peptide (1–42) levels and increasing the superoxide dismutase and glutathione peroxidase activities, plasma dehydroepiandrosterone and 5-hydroxytryptamine levels, and brain gamma-aminobutyric acid contents of DT-mice | [59] | |
Seahorse (Hippocampus) | PAGPRGPA | Restoring the superoxide dismutase (SOD) and glutathione (GSH) levels and attenuating ethanol-induced oxidative damage and inflammation. Regulating the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway to protect LO2 cells from oxidative damage by promoting the expression of antioxidant enzymes | IC50 values (DPPH): 367.63 μg m L−1 (SBP), 6.03 μg m L−1 (Trolox); IC50 values (ABTS): 467.38 μg m L−1 (SBP), 6.65 μg m L−1 (Trolox); | [60] |
Horse mackerel (Magalaspis cordyla) | ACFL | When peptides control free radicals, the chain reaction from superoxide to hydrogen peroxide does not occur in the presence of SOD and CAT, thereby restoring the activities of catalase and superoxide dismutase. | [61] |
4.2. The Relationship between Antioxidant Activity and Amino Acid Position
4.3. The Relationship between Antioxidant Activity and Molecular Weight
5. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadasivam, N.; Kim, Y.J.; Radhakrishnan, K.; Kim, D.K. Oxidative Stress, Genomic Integrity, and Liver Diseases. Molecules 2022, 27, 3159. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.S.; Santos, M.; Silva, L.K.R.; Pereira, L.C.L.; Santo, I.A.; Lannes, S.C.D.; da Silva, M.V. Natural antioxidants used in meat products: A brief review. Meat Sci. 2019, 148, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Stoia, M.; Oancea, S. Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends. Antioxidants 2022, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- Sarmadi, B.H.; Ismail, A. Antioxidative peptides from food proteins: A review. Peptides 2010, 31, 1949–1956. [Google Scholar] [CrossRef]
- Xu, B.T.; Dong, Q.; Yu, C.X.; Chen, H.Y.; Zhao, Y.; Zhang, B.S.; Yu, P.L.; Chen, M.J. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants 2024, 13, 479. [Google Scholar] [CrossRef]
- Chen, J.L.; Gong, F.; Chen, M.F.; Li, C.Y.; Hong, P.Z.; Sun, S.L.; Zhou, C.X.; Qian, Z.J. In Vitro Vascular-Protective Effects of a Tilapia By-Product Oligopeptide on Angiotensin II-Induced Hypertensive Endothelial Injury in HUVEC by Nrf2/NF-κB Pathways. Mar. Drugs 2019, 17, 431. [Google Scholar] [CrossRef]
- Shaw, C.; Knopf, K.; Kloas, W. Fish Feeds in Aquaponics and Beyond: A Novel Concept to Evaluate Protein Sources in Diets for Circular Multitrophic Food Production Systems. Sustainability 2022, 14, 4064. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Ye, X.Q.; Hou, Z.Q.; Chen, S.G. Sustainable utilization of proteins from fish processing by-products: Extraction, biological activities and applications. Trends Food Sci. Technol. 2024, 143, 104276. [Google Scholar] [CrossRef]
- Jia, X.Y.; Zhu, M.F.; Zhang, L.; Ma, T.X.; Li, Y.H.; Sheng, W.S.; Tu, Z.C. Extraction optimization and screening of antioxidant peptides from grass carp meat and synergistic–antagonistic effect. Food Sci. Nutr. 2022, 10, 1481–1493. [Google Scholar] [CrossRef]
- Chen, W.; Hong, Y.; Jia, Z.; Huang, G. Purification and Identification of Antioxidant Peptides from Hydrolysates of Large Yellow Croaker (Pseudosciaena crocea) Scales. Trans. ASABE 2020, 63, 289–294. [Google Scholar] [CrossRef]
- Qiu, Y.T.; Wang, Y.M.; Yang, X.R.; Zhao, Y.Q.; Chi, C.F.; Wang, B. Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Scales: Preparation, Identification and Activity Evaluation. Mar. Drugs 2019, 17, 565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Duan, X.; Zhuang, Y.L. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides 2012, 38, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Sampath Kumar, N.S.; Nazeer, R.A.; Jaiganesh, R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber). Amino Acids 2011, 42, 1641–1649. [Google Scholar] [CrossRef]
- Je, J.-Y.; Qian, Z.-J.; Lee, S.-H.; Byun, H.-G.; Kim, S.-K. Purification and Antioxidant Properties of Bigeye Tuna (Thunnus obesus) Dark Muscle Peptide on Free Radical-Mediated Oxidative Systems. J. Med. Food 2008, 11, 629–637. [Google Scholar] [CrossRef]
- Hu, X.M.; Wang, Y.M.; Zhao, Y.Q.; Chi, C.F.; Wang, B. Antioxidant Peptides from the Protein Hydrolysate of Monkfish (Lophius litulon) Muscle: Purification, Identification, and Cytoprotective Function on HepG2 Cells Damage by H2O2. Mar. Drugs 2020, 18, 153. [Google Scholar] [CrossRef]
- He, Y.; Pan, X.; Chi, C.F.; Sun, K.L.; Wang, B. Ten new pentapeptides from protein hydrolysate of miiuy croaker (Miichthys miiuy) muscle: Preparation, identification, and antioxidant activity evaluation. LWT-Food Sci. Technol. 2019, 105, 1–8. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, G.X.; Zhao, Y.Q.; Qiu, Y.T.; Chi, C.F.; Wang, B. Identification and Active Evaluation of Antioxidant Peptides from Protein Hydrolysates of Skipjack Tuna (Katsuwonus pelamis) Head. Antioxidants 2019, 8, 318. [Google Scholar] [CrossRef]
- Bougatef, A.; Nedjar-Arroume, N.; Manni, L.; Ravallec, R.; Barkia, A.; Guillochon, D.; Nasri, M. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem. 2010, 118, 559–565. [Google Scholar] [CrossRef]
- Kumar, N.S.S.; Nazeer, R.A.; Jaiganesh, R. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides 2011, 32, 1496–1501. [Google Scholar] [CrossRef]
- Zhao, W.H.; Luo, Q.B.; Pan, X.; Chi, C.F.; Sun, K.L.; Wang, B. Preparation, identification, and activity evaluation of ten antioxidant peptides from protein hydrolysate of swim bladders of miiuy croaker (Miichthys miiuy). J. Funct. Food. 2018, 47, 503–511. [Google Scholar] [CrossRef]
- Chinh, N.T.; Manh, V.Q.; Trung, V.Q.; Lam, T.D.; Huynh, M.D.; Tung, N.Q.; Trinh, N.D.; Hoang, T. Characterization of Collagen Derived from Tropical Freshwater Carp Fish Scale Wastes and Its Amino Acid Sequence. Nat. Prod. Commun. 2019, 14, 1–12. [Google Scholar] [CrossRef]
- Nurilmala, M.; Suryamarevita, H.; Hizbullah, H.H.; Jacoeb, A.M.; Ochiai, Y. Fish skin as a biomaterial for halal collagen and gelatin. Saudi J. Biol. Sci. 2022, 29, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Ideia, P.; Pinto, J.; Ferreira, R.; Figueiredo, L.; Spinola, V.; Castilho, P.C. Fish Processing Industry Residues: A Review of Valuable Products Extraction and Characterization Methods. Waste Biomass Valorization 2020, 11, 3223–3246. [Google Scholar] [CrossRef]
- Sari, R.N.; Suryaningrum, T.D.; Ayudiarti, D.L.; Hastarini, E.; Suryanti; Fransisca, D. Conversion of fisheries processing by-product into salted-egg fish skin chips. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012117. [Google Scholar] [CrossRef]
- Yemisken, E.; Jiménez-Rosado, M.; Perez-Puyana, V.; Sancar, S.; Bektas, S.; Yildiz, T.; Eryilmaz, L.; Romero, A. Alternative sources of marine bioactive compounds from the Black Sea: Isolation and characterization of fish skin collagen from Neogobius melanostomus (Pallas 1814) (Perciformes: Gobiidae). Reg. Stud. Mar. Sci. 2023, 60, 102887. [Google Scholar] [CrossRef]
- Islam, M.R.; Li, W.; Ogata, Y.; Yoshioka, T.; Ura, K.; Yasuaki, T. Production and antioxidant activity of peptides from sturgeon head. Sustain. Chem. Pharm. 2023, 31, 100944. [Google Scholar] [CrossRef]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef]
- Ganesh, R.J.; Nazeer, R.A.; Kumar, N.S.S. Purification and Identification of Antioxidant Peptide from Black Pomfret, Parastromateus niger (Bloch, 1975) Viscera Protein Hydrolysate. Food Sci. Biotechnol. 2011, 20, 1087–1094. [Google Scholar] [CrossRef]
- Je, J.Y.; Lee, K.H.; Lee, M.H.; Ahn, C.B. Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Res. Int. 2009, 42, 1266–1272. [Google Scholar] [CrossRef]
- Farvin, K.H.S.; Andersen, L.L.; Otte, J.; Nielsen, H.H.; Jessen, F.; Jacobsen, C. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chem. 2016, 204, 409–419. [Google Scholar] [CrossRef]
- Lee, J.K.; Jeon, J.K.; Byun, H.G. Effect of angiotensin I converting enzyme inhibitory peptide purified from skate skin hydrolysate. Food Chem. 2011, 125, 495–499. [Google Scholar] [CrossRef]
- Dong, Y.; Qi, G.H.; Yang, Z.P.; Wang, H.X.; Wang, S.L.; Chen, G.T. Preparation, Separation and Antioxidant Properties of Hydrolysates Derived from Grifola frondosa Protein. Czech. J. Food Sci. 2015, 33, 500–506. [Google Scholar] [CrossRef]
- Jang, J.H.; Jeong, S.C.; Kim, J.H.; Lee, Y.H.; Ju, Y.C.; Lee, J.S. Characterisation of a new antihypertensive angiotensin I-converting enzyme inhibitory peptide from Pleurotus cornucopiae. Food Chem. 2011, 127, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Esfandi, R.; Walters, M.E.; Tsopmo, A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 2019, 5, e01538. [Google Scholar] [CrossRef] [PubMed]
- Rajapakse, N.; Mendis, E.; Jung, W.K.; Je, J.Y.; Kim, S.K. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res. Int. 2005, 38, 175–182. [Google Scholar] [CrossRef]
- Agrawal, H.; Joshi, R.; Gupta, M. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem. 2016, 204, 365–372. [Google Scholar] [CrossRef]
- Wang, M.; Li, C.; Li, H.; Wu, Z.; Chen, B.; Lei, Y.; Shen, Y. In Vitro and In Silico Antioxidant Activity of Novel Peptides Prepared from Paeonia Ostii ‘Feng Dan’ Hydrolysate. Antioxidants 2019, 8, 433. [Google Scholar] [CrossRef]
- Fan, J.; He, J.; Zhuang, Y.; Sun, L. Purification and Identification of Antioxidant Peptides from Enzymatic Hydrolysates of Tilapia (Oreochromis niloticus) Frame Protein. Molecules 2012, 17, 12836–12850. [Google Scholar] [CrossRef]
- Chi, C.F.; Hu, F.Y.; Wang, B.; Li, T.; Ding, G.F. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. J. Funct. Food. 2015, 15, 301–313. [Google Scholar] [CrossRef]
- Matsui, R.; Honda, R.; Kanome, M.; Hagiwara, A.; Matsuda, Y.; Togitani, T.; Ikemoto, N.; Terashima, M. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem. 2018, 245, 750–755. [Google Scholar] [CrossRef]
- Chunkao, S.; Youravong, W.; Yupanqui, C.T.; Alashi, A.M.; Aluko, R.E. Structure and Function of Mung Bean Protein-Derived Iron-Binding Antioxidant Peptides. Foods 2020, 9, 1406. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wan, S.Y.; Liu, J.; Zou, Y.X.; Liao, S.T. Antioxidant Activity and Stability Study of Peptides from Enzymatically Hydrolyzed Male Silkmoth. J. Food Process Preserv. 2017, 41, e13081. [Google Scholar] [CrossRef]
- Huo, J.Y.; Luo, X.L.; Huang, M.Q.; Wu, J.H.; Zhang, J.L.; Liu, X.X.; Li, H.H.; Sun, X.T. Identification and Antioxidant Activity of a Novel Peptide from Baijiu. Int. J. Pept. Res. Ther. 2020, 26, 1199–1210. [Google Scholar] [CrossRef]
- Bamdad, F.; Ahmed, S.; Chen, L.Y. Specifically designed peptide structures effectively suppressed oxidative reactions in chemical and cellular systems. J. Funct. Food. 2015, 18, 35–46. [Google Scholar] [CrossRef]
- Ghassem, M.; Arihara, K.; Mohammadi, S.; Sani, N.A.; Babji, A.S. Identification of two novel antioxidant peptides from edible bird’s nest (Aerodramus fuciphagus) protein hydrolysates. Food Funct. 2017, 8, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.; Dunn, C.M.; McClements, D.J.; Decker, E.A. Use of caseinophosphopeptides as natural antioxidants in oil-in-water emulsions. J. Agric. Food Chem. 2003, 51, 2365–2370. [Google Scholar] [CrossRef]
- Saiga, A.; Tanabe, S.; Nishimura, T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 2003, 51, 3661–3667. [Google Scholar] [CrossRef] [PubMed]
- Udenigwe, C.C.; Aluko, R.E. Chemometric Analysis of the Amino Acid Requirements of Antioxidant Food Protein Hydrolysates. Int. J. Mol. Sci. 2011, 12, 3148–3161. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.D.; Bonneil, É.; Simpson, B.K. Generation of antioxidative peptides from Atlantic sea cucumber using alcalase versus trypsin: In vitro activity, de novo sequencing, and in silico docking for in vivo function prediction. Food Chem. 2020, 306, 125581. [Google Scholar] [CrossRef]
- Li, Q.Y.; Shi, C.C.; Wang, M.; Zhou, M.; Liang, M.; Zhang, T.; Yuan, E.D.; Wang, Z.; Yao, M.J.; Ren, J.Y. Tryptophan residue enhances in vitro walnut protein-derived peptides exerting xanthine oxidase inhibition and antioxidant activities. J. Funct. Food. 2019, 53, 276–285. [Google Scholar] [CrossRef]
- Suetsuna, K.; Ukeda, H.; Ochi, H. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 2000, 11, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, C.; Wang, S.; Wang, Y.; Fu, Z.; Zhang, Y.; Sun, H.; Xie, C.; Fu, Y.; Tao, J.; et al. A novel amphibian-derived peptide alleviated ultraviolet B-induced photodamage in mice. Biomed. Pharmacother. 2021, 136, 111258. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Chen, B.; Zheng, Q.; Zhu, G.; Cao, W.; Qin, X.; Zhang, C. Ameliorative Effects of Peptides from the Oyster (Crassostrea hongkongensis) Protein Hydrolysates against UVB-Induced Skin Photodamage in Mice. Mar. Drugs 2020, 18, 288. [Google Scholar] [CrossRef] [PubMed]
- Setayesh-Mehr, Z.; Ghasemi, L.V.; Asoodeh, A. Evaluation of the in vivo antihypertensive effect and antioxidant activity of HL-7 and HL-10 peptide in mice. Mol. Biol. Rep. 2021, 48, 5571–5578. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Yuan, J.-F.; Liu, H.-P.; Li, M.-Y.; Wu, Y.-R. Purification and identification of dual-enzyme hydrolysates obtained from defatted walnut and its antioxidant effects on d-galactose-induced aging mice. J. Food Meas. Charact. 2020, 15, 1034–1043. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhuo, H.; Yang, L.; Ouyang, H.; Chen, J.; Liu, B.; Huang, H. A Peptide HEPFYGNEGALR from Apostichopus japonicus Alleviates Acute Alcoholic Liver Injury by Enhancing Antioxidant Response in Male C57BL/6J Mice. Molecules 2022, 27, 5839. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, N.N.; Li, Z.Y.; Tian, Y.T.; Zhang, L.T.; Zheng, B.D. Antioxidant Efficacy of Protein Hydrolysates from Large Yellow Croaker (Pseudosciaena crocea) in D-galactose-Induced Aging Mice. J. Aquat. Food Prod. Technol. 2016, 26, 17–28. [Google Scholar] [CrossRef]
- Peng, X.; Kong, B.; Yu, H.; Diao, X. Protective effect of whey protein hydrolysates against oxidative stress in d-galactose-induced ageing rats. Int. Dairy J. 2014, 34, 80–85. [Google Scholar] [CrossRef]
- Xia, X.; Xing, Y.; Li, G.; Wu, J.; Kan, J. Antioxidant activity of whole grain Qingke (Tibetan Hordeum vulgare L.) toward oxidative stress in d-galactose induced mouse model. J. Funct. Food. 2018, 45, 355–362. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, X.; Zhao, Y.; Tang, X.; Feng, L.; Wang, B.; Chen, J. The three-spot seahorse-derived peptide PAGPRGPA attenuates ethanol-induced oxidative stress in LO2 cells through MAPKs, the Keap1/Nrf2 signalling pathway and amino acid metabolism. Food Funct. 2021, 12, 1672–1687. [Google Scholar] [CrossRef]
- Sampath Kumar, N.S.; Nazeer, R.A. In vivo antioxidant activity of peptide purified from viscera protein hydrolysate of horse mackerel (Magalaspis cordyla). Int. J. Food Sci. Technol. 2012, 47, 1558–1562. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Structural and functional properties of food protein-derived antioxidant peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Pedrouso, M.; Lorenzo, J.M.; Borrajo, P.; Franco, D. In Search of Antioxidant Peptides from Porcine Liver Hydrolysates Using Analytical and Peptidomic Approach. Antioxidants 2022, 11, 27. [Google Scholar] [CrossRef]
- Li, Y.W.; Li, B.; He, J.; Qian, P. Structure–activity relationship study of antioxidative peptides by QSAR modeling: The amino acid next to C-terminus affects the activity. J. Pept. Sci. 2011, 17, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Li, W.J.; Li, H.M.; Li, J.; Xu, J.; Fang, L.; Liu, C.L.; Wu, D.; Min, W.H. Structure-activity relationship of walnut peptide in gastrointestinal digestion, absorption and antioxidant activity. LWT-Food Sci. Technol. 2023, 189, 115521. [Google Scholar] [CrossRef]
- Wang, N.; Wang, W.; Sadiq, F.A.; Wang, S.L.; Liu, C.Q.; Jin, J.C. Involvement of Nrf2 and Keap1 in the activation of antioxidant responsive element (ARE) by chemopreventive agent peptides from soft-shelled turtle. Process Biochem. 2020, 92, 174–181. [Google Scholar] [CrossRef]
- Chen, P.H.; Huang, P.T.; Liang, Y.Y.; Wang, Q.E.; Miao, J.Y. The antioxidant peptides from walnut protein hydrolysates and their protective activity against alcoholic injury. Food Funct. 2024, 15, 5315–5328. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Shang, Y.T.; Li, S.T.; Chen, Z.; Xia, J.X.; Tian, Y.L.; Jia, Y.M.; Ma, A.J. Molecular Docking Revealed the Potential Anti-Oxidative Stress Mechanism of the Walnut Polypeptide on HT22 Cells. Foods 2023, 12, 1554. [Google Scholar] [CrossRef]
- Guo, X.J.; Liu, J.X.; Wang, C.; Wen, Z.S.; Zheng, B. The Antioxidant Mechanism of Peptides Extracted from Tuna Protein Revealed Using a Molecular Docking Simulation. Antioxidants 2024, 13, 166. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Xiong, Y.L.L.; Zhai, J.J.; Zhu, H.N.; Dziubla, T. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food Chem. 2010, 118, 582–588. [Google Scholar] [CrossRef]
- Han, J.J.; Huang, Z.B.; Tang, S.S.; Lu, C.Y.; Wan, H.T.; Zhou, J.; Li, Y.; Ming, T.H.; Wang, Z.J.J.; Su, X.R. The novel peptides ICRD and LCGEC screened from tuna roe show antioxidative activity via Keap1/Nrf2-ARE pathway regulation and gut microbiota modulation. Food Chem. 2020, 327, 127094. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Li, D.N.; Zhu, C.C.; Rong, Y.Z.; Zeng, W.H. Characterisation of antioxidant peptides from enzymatic hydrolysate of golden melon seeds protein. Int. J. Food Sci. Technol. 2021, 56, 5904–5912. [Google Scholar] [CrossRef]
- Xia, J.A.; Song, H.D.; Huang, K.; Li, S.; Guan, X. Purification and characterization of antioxidant peptides from enzymatic hydrolysate of mungbean protein. J. Food Sci. 2020, 85, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Aondona, M.M.; Ikya, J.K.; Ukeyima, M.T.; Gborigo, T.; Aluko, R.E.; Girgih, A.T. In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. J. Food Biochem. 2021, 45, e13587. [Google Scholar] [CrossRef]
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
Source | Amino Acid Sequence | Enzymatic Hydrolysis Method | Antioxidant Property (In Vitro) | Characteristics | References |
---|---|---|---|---|---|
Large yellow croaker (Pseudosciaena crocea) scales | QRPPEPR (879.4 Da) QKVWKYCD (1070.4 Da) VGLPGLSGPVG (952.5 Da) | Hydrolysis with 3.0% E/S (enzyme/scale) of alcalase at 54 °C for 2.3 h. | Eliminating DPPH The smaller the molecular weight, the higher the antioxidant activity. | DPPH RSA: 59.1% | [10] |
Skipjack tuna (Katsuwonus pelamis) scales | DGPKGH (609.61 Da) MLGPFGPS (804.92 Da) | Enzymatic hydrolysis with 2 g/100 g alcalase at pH 8 and temperature 50 °C for 4 h. | Eliminating ·OH, DPPH, O2−· The fragment TGH-I with the lowest molecular weight (<3 kDa) exhibits the strongest activity. The Gly, Glu, Asp, Lys, and 2Gly in the amino acid sequences of TGP5, TGP7, and TGP9 may play significant roles in their free radical scavenging activity. | DH: 25.35 ± 1.68%; ·OH RSA: 29.46 ± 1.37% 80.51 ± 3.05% (TGP5) 85.66 ± 2.68% (TGP7) 82.41 ± 2.34% (TGP9) | [11] |
Tilapia (Oreochromis niloticus) skin | EGL (317.33 Da) YGDEY (645.21 Da) | The optimum hydrolysis conditions for properase E and multifect neutral were 4.5 h, pH 9.0, E/S 5%, and 55 °C and pH 8.0, 4.5 h, E/S 5%, and 35 °C, respectively. | Eliminating ·OH The high antioxidant activity of EGL may be attributed to the presence of Leu at the C-terminus. Metal-chelating amino acid residues Glu and Asp were detected in YGDEY, and its high hydroxyl radical activity may be related to the presence of Tyr at the C- and N-terminals. | DH: 18.01% and 12.60% IC50 value: 4.61 and 6.45 μg mL−1 | [12] |
Horse mackerel (Magalaspis cordyla) skin | NHRYDR (856 Da) GNRGFACRHA (1101.5 Da) | According to an enzyme-to-substrate ratio of 1/100 (w/w), first pepsin is used for enzymatic hydrolysis under conditions of pH 2.5 and 37 °C, followed by the addition of trypsin and α-chymotrypsin for continued enzymatic hydrolysis at pH 8 for 2.5 h. | Eliminating ·OH, DPPH, chelating metal ion | DPPH RSA: 56.4 and 36.3% | [13] |
Croaker (Otolithes ruber) skin | DPPH RSA: 65.3 and 41.2% | ||||
Bigeye tuna (Thunnus obesus) muscle | H-LNLPTAVYMVT-OH (1222 Da) | The mixing of 100 g of substrate with 1 g of enzyme in a 10-L reactor, stirred and cultured for 8 h at the optimal temperature for each enzyme. (a-chymotrypsin, Neutrase® [Novo Nordisk Co., Bagsvaerd, Denmark], papain, pepsin, and trypsin) | Eliminating ·OH, DPPH, O2−·, inhibiting lipid oxidation, and effectively scavenging intracellular free radicals The presence of Pro, Leu, Ala, and Tyr has a strong scavenging effect on free radicals. | DH: 74.4–80.9%; DPPH RSA: 40.1 ± 1.9 μM | [14] |
Monkish (Lophius litulon) muscle | EDIVCW (763.82 Da) MEPVW (660.75 Da) YWDAW (739.75 Da) | Hydrolysis with pepsin at 37 °C, with a total enzyme dosage of 1%, is carried out for two hours. Subsequently, the pH is adjusted to 7 with a 1M NaOH solution, and then further hydrolysis is performed with trypsin at 37 °C, with a total enzyme dosage of 1%, for an additional 2 h. | Eliminating ·OH, DPPH, O2−· Enhancing the endogenous antioxidant enzyme defense system and inducing HepG2 cells to escape from oxidative stress. | DH: 27.24 ± 1.57%; DPPH RSA: 44.54 ± 3.12% ·OH RSA: 41.32 ± 2.73% | [15] |
Grass carp (Ctenopharyngodon idellus) muscle | VAGW (431.22 Da) APPAMW (671.31 Da) LFGY (498.25 Da) FYYGK (676.32 Da) LLLYK (648.42 Da) | Hydrolysis with protamex (10,000 U/g) at pH 8.0, 50 °C for 3 h, followed by hydrolysis with alcalase (6000 U/g) at pH 9.0, 50 °C for 2 h, and the protein– liquid ratio was 4%. | Eliminating DPPH, ABTS+ The VAGW exhibits the highest activity, and the C-terminal amino acid Trp plays a significant role in the synergistic effect. | ABTS RSA: 139.77 μmol GSH/g | [9] |
miiuy croaker (Miichthys miiuy) muscle | YASVV (739.88 Da) NFWWP (569.64 Da) FWKVV (611.66 Da) TWKVV (625.73 Da) FMPLH (1092.23 Da) YFLWP (527.58 Da) VIAPW (578.67 Da) WVWWW (831.98 Da) MWKVW (559.53 Da) IRWWW (574.64 Da) | Hydrolysis by trypsin at pH 8.0, 50 °C, neutrase at pH 7.0, 60 °C, pepsin at pH 2.0, 37 °C, alcalase at pH 8.0, 50 °C, and papain at pH 7.5, 50 °C with total enzyme dose of 1.5% for 5 h. | Scavenging free radicals, reducing oxidative stress, and inhibiting lipid peroxidation Phe, Trp Val, and Lys in the AA sequence of MP3 (FWKVV) and Phe, Met, Pro, Leu, and His in the AA sequence of MP5 (FMPLH) should play a crucial role for their antioxidant capabilities. | DPPH RSA: 52.28 ± 2.80% (papain); 44.15 ± 2.36% (alcalase); 40.86 ± 2.31%(neutrase); 38.75 ± 1.56% (trypsin); 32.76 ± 1.48% (pepsin) | [16] |
Skipjack tuna (Katsuwonus pelamis) head | WEPPR (683.34 Da) VEE (375.39 Da) WMFDW (783.90 Da) DAGPYGPI (788.90 Da) WMGPY (652.79 Da) ERGPLGPH (861.95 Da) EMGPA (503.58 Da) | First, hydrolyze with pepsin at 37.0 ± 2 °C and pH 1.5, using a protease dosage of 1 g pepsin/100 g defatted powder for 2 h, then adjust the solution pH to 7. Next, hydrolyze with trypsin for 2 h and increase the solution temperature to 95 ± 2 °C for preservation for 10 min. | Scavenging free radicals, reducing power lipid peroxidation inhibition Trp, Met, Phe, Pro, and Ala are important factors that influence the activities of these peptides. | DH: 25.76 ± 1.68%; ·OH RSA: 0.30~2.43 mg/mL; DPPH RSA: 0.31~0.93 mg/mL | [17] |
Sardinelle (Sardinella aurita) head, viscera | LARL (471.3 Da) GGE (263.08 Da) LHY (431.2 Da) GAH (283.1 Da) GAWA (403.1 Da) PHYL (528.2 Da) GALAAH (538.2 Da) | Under the optimal conditions for each enzyme, the substrate proteins were digested with enzymes at a 0.27:1 (U/mg) enzyme/protein ratio for 3 h. (Alcalase 2.4 L serine-protease from Bacillus licheniformis supplied by Novozymes, crude enzyme preparation from Aspergillus clavatus ES1, alkaline proteases from B. licheniformis NH1, and crude enzyme extract from viscera of sardine) | DPPH radical-scavenging activity The highest activity of Leu-His-Tyr may be attributed to the presence of both His and Tyr residues with its structure. | DH: 5~11%; DPPH RSA: 53.76 ± 1.2% | [18] |
Horse mackerel (Magalaspis cordyla) viscera | ACFL (518.5 Da) | First, pepsin is used for enzymatic hydrolysis under conditions of pH 2.5 and an enzyme-to-substrate ratio of 1/100 (w/w) at 37 °C for 2 h, followed by the addition of trypsin and a-chymotrypsin at the same ratio for an additional 2.5 h of enzymatic hydrolysis. | Eliminating ·OH, DPPH The antioxidant activity is higher than that of tocopherol, and the presence of hydrophobic amino acid residue Leu has a significant positive inhibitory effect on lipid peroxidation. | DPPH RSA: 89.2%; ·OH RSA: 59.1% | [19] |
miiuy croaker (Miichthys miiuy) viscera | FYKWP (739.88 Da) FTGMD (569.64 Da) GFEPY (611.66 Da) YLPYA (625.73 Da) FPPYERRQ (1092.23 Da) GFYAA (527.58 Da) FSGLR (578.67 Da) FPYLRH (831.98Da) VPDDD (559.53 Da) GIEWA (574.64 Da) | Hydrolysis with alcalase at time 3.5 h, temperature 55 °C, pH 9.5, solid–liquid ratio 1:5, and enzyme dose 2.5%. | Eliminating ·OH, DPPH, O2−·, inhibiting lipid peroxidation GIEWAH (574.64 Da) exhibits higher activity than FPYLRH (831.98 Da). The hydrophobic amino acid residues and aromatic amino acid residues in FPYLRH have a positive impact on its antioxidant activity, while those in GIEWAH contribute to scavenging free radicals and inhibiting lipid peroxidation. | ·OH RSA: EC50 0.68 mg/mL and 0.71 mg/ mL for FPYLRH and GIEWA, respectively; DPPH RSA: EC50 0.51 mg/mL and 0.78 mg/mL for FPYLRH and GIEWA, respectively; O2− RSA: EC50 0.34 mg/mL and 0.30 mg/mL for FPYLRH and GIEWA, respectively | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Hu, Q.; Shen, Y.; Wu, Y.; Gao, L.; Xu, X.; Hao, G. Research Progress on Antioxidant Peptides from Fish By-Products: Purification, Identification, and Structure–Activity Relationship. Metabolites 2024, 14, 561. https://doi.org/10.3390/metabo14100561
Liu X, Hu Q, Shen Y, Wu Y, Gao L, Xu X, Hao G. Research Progress on Antioxidant Peptides from Fish By-Products: Purification, Identification, and Structure–Activity Relationship. Metabolites. 2024; 14(10):561. https://doi.org/10.3390/metabo14100561
Chicago/Turabian StyleLiu, Xinru, Qiuyue Hu, Yafang Shen, Yuxin Wu, Lu Gao, Xuechao Xu, and Guijie Hao. 2024. "Research Progress on Antioxidant Peptides from Fish By-Products: Purification, Identification, and Structure–Activity Relationship" Metabolites 14, no. 10: 561. https://doi.org/10.3390/metabo14100561
APA StyleLiu, X., Hu, Q., Shen, Y., Wu, Y., Gao, L., Xu, X., & Hao, G. (2024). Research Progress on Antioxidant Peptides from Fish By-Products: Purification, Identification, and Structure–Activity Relationship. Metabolites, 14(10), 561. https://doi.org/10.3390/metabo14100561