Protective Role of Selenium-Binding Protein 1 (SELENBP1) in Patients with Ulcerative Colitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Processing and Gene Expression Analysis
2.2. Co-Localization of SELENBP1 in Patients with UC and Controls
2.3. Statistical Analysis
2.4. Ethical Declarations
3. Results
3.1. Patient Demographic, Clinical, and Biochemical Characteristics
3.2. SELENBP1 Gene Expression Is Decreased in Active UC Compared to Remission Disease
3.3. Intestinal Production of SELENBP1 Is Increased in All Layers in the Intestine of Severe UC Patients Compared to Controls
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Porter, R.J.; Kalla, R.; Ho, G.T. Ulcerative colitis: Recent advances in the understanding of disease pathogenesis. F1000Research 2020, 9, F1000 Faculty Rev-294. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, N.; Kumar, D. Role of diet in the management of inflammatory bowel disease. World J. Gastroenterol. 2010, 16, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D. The Role of Diet in Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2016, 12, 51–53. [Google Scholar]
- Mentella, M.C.; Scaldaferri, F.; Pizzoferrato, M.; Gasbarrini, A.; Miggiano, G. Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020, 12, 944. [Google Scholar] [CrossRef]
- Ala, M.; Kheyri, Z. The rationale for selenium supplementation in inflammatory bowel disease: A mechanism-based point of view. Nutrition 2021, 85, 111153. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, C.J.; Meléndez, J.M.; Acuña, N.; Rascon, A. Selenium (Se) in foods in northern Mexico, their contribution to the daily Se intake and the relationship of Se plasma levels and glutathione peroxidase activity. Nutr. Res. 1996, 16, 949–960. [Google Scholar] [CrossRef]
- Barrita, J.L.; Benavides, S.M.; Sánchez, S. Antioxidants and Natural Compounds in Mexican Foods. In Basic Principles and Clinical Significance of Oxidative Stress; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Ye, R.; Huang, J.; Wang, Z.; Chen, Y.; Dong, Y. Trace Element Selenium Effectively Alleviates Intestinal Diseases. Int. J. Mol. Sci. 2021, 22, 11708. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valvano, M.; Capannolo, A.; Cesaro, N.; Stefanelli, G.; Fabiani, S.; Frassino, S.; Monaco, S.; Magistroni, M.; Viscido, A.; Latella, G. Nutrition, Nutritional Status, Micronutrients Deficiency, and Disease Course of Inflammatory Bowel Disease. Nutrients 2023, 15, 3824. [Google Scholar] [CrossRef]
- Han, Y.M.; Yoon, H.; Lim, S.; Sung, M.K.; Shin, C.M.; Park, Y.S.; Kim, N.; Lee, D.H.; Kim, J.S. Risk Factors for Vitamin D, Zinc, and Selenium Deficiencies in Korean Patients with Inflammatory Bowel Disease. Gut Liver 2017, 11, 363–369. [Google Scholar] [CrossRef]
- Stochel-Gaudyn, A.; Fyderek, K.; Kościelniak, P. Serum trace elements profile in the pediatric inflammatory bowel disease progress evaluation. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. GMS 2019, 55, 121–126. [Google Scholar] [CrossRef]
- Rannem, T.; Ladefoged, K.; Hylander, E.; Hegnhoj, J.; Jarnum, S. Selenium status in patients with Crohn’s disease. Am. J. Clin. Nutr. 1992, 56, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Younus, M.; Taher, M.A.; ALMaliki, J.; Alkhalidi, N.; Hussein, R. Selenium Supplementation May Decrease the Rate of Infliximab ADRs in IBD Patients. World J. Pharm. Res. 2015, 4, 193–203. [Google Scholar]
- Speckmann, B.; Steinbrenner, H. Selenium and selenoproteins in inflammatory bowel diseases and experimental colitis. Inflamm. Bowel Dis. 2014, 20, 1110–1119. [Google Scholar] [CrossRef] [PubMed]
- Pol, A.; Renkema, G.H.; Tangerman, A.; Winkel, E.G.; Engelke, U.F.; de Brouwer, A.; Lloyd, K.C.; Araiza, R.S.; van den Heuvel, L.; Omran, H.; et al. Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nat. Genet. 2018, 50, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.H.; Zhao, P.; Deng, Z.; Yang, T.; Qi, Y.X.; An, L.Y.; Sun, D.L.; He, H.Y. Integrative analysis reveals marker genes for intestinal mucosa barrier repairing in clinical patients. iScience 2023, 26, 106831. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto-Furusho, J.K.; Bozada-Gutiérrez, K.E.; Sánchez-Rodríguez, A.; Bojalil-Romano, F.; Barreto-Zuñiga, R.; Martínez-Benitez, B. Validation of a novel integral disease index for evaluating the grade of activity in Mexican patients with ulcerative colitis: A prospective cohort study. Rev. De Gastroenterol. De México 2019, 84, 317–325. [Google Scholar] [CrossRef]
- Yamamoto-Furusho, J.; Salazar-Salas, L.; Fonseca-Camarillo, G.; Barreto, R. P734. Gene expression of SELENBP1 is upregulated in the colonic mucosa and is associated with a long-term remission in patients with ulcerative colitis. J. Crohn’s Colitis 2016, 10 (Suppl. S1), S480–S481. [Google Scholar] [CrossRef]
- Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Razo-López, N.; Barreto-Zúñiga, R.; Martínez-Benítez, B.; Yamamoto-Furusho, J.K. Intestinal production of secreted protein acidic and rich in cysteine (SPARC) in patients with ulcerative colitis. Immunobiology 2021, 226, 152095. [Google Scholar] [CrossRef]
- Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Priego-Ranero, Á.A.; Martínez-Benítez, B.; Barreto-Zúñiga, R.; Yamamoto-Furusho, J.K. Expression of TOB/BTG family members in patients with inflammatory bowel disease. Scand. J. Immunol. 2020, 93, e13004. [Google Scholar] [CrossRef]
- Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Martínez-Benitez, B.; Barreto-Zuñiga, R.; Yamamoto-Furusho, J.K. Increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and MMP10, MMP23 in inflammatory bowel disease: Cross-sectional study. Scand. J. Immunol. 2021, 93, e12962. [Google Scholar] [CrossRef]
- Furuzawa-Carballeda, J.; Lima, G.; Jakez-Ocampo, J.; Llorente, L. Indoleamine 2,3-dioxygenase-expressing peripheral cells in rheumatoid arthritis and systemic lupus erythematosus: A cross-sectional study. Eur. J. Clin. Investig. 2011, 41, 1037–1046. [Google Scholar] [CrossRef]
- Furuzawa Carballeda, J.; Fonseca Camarillo, G.; Yamamoto-Furusho, J.K. Interleukin 27 is upregulated in patients with active inflammatory bowel disease. Immunol. Res. 2016, 64, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Riley, S.A.; Mani, V.; Goodman, M.J.; Dutt, S.; Herd, M.E. Microscopic activity in ulcerative colitis: What does it mean? Gut 1991, 32, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.; Ansong, E.; Diamond, A.M.; Yang, W. A Critical Role for Cysteine 57 in the Biological Functions of Selenium Binding Protein-1. Int. J. Mol. Sci. 2015, 16, 27599–27608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Turan, T.L.; Klein, H.J.; Hackler, J.; Hoerner, L.; Rijntjes, E.; Graf, T.R.; Plock, J.A.; Schomburg, L. Se-rum Selenium-Binding Protein 1 (SELENBP1) in Burn Injury: A Potential Biomarker of Disease Severity and Clinical Course. Antioxidants 2023, 12, 1927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Ding, G.; Gu, C.; Zhou, J.; Kuang, M.; Ji, Y.; He, Y.; Kondo, T.; Fan, J. Decreased selenium-binding protein 1 enhances glutathione peroxidase 1 activity and downregulates HIF-1α to promote hepatocellular carcinoma invasiveness. Clin. Cancer Res. 2012, 18, 3042–3053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, W.; Chen, X.; Wei, G.; Jiang, G.; Zhang, G. Selenium-binding protein 1 transcriptionally activates p21 expression via a p53-independent mechanism, and its frequent reduction is associated with poor prognosis in bladder cancer. J. Transl. Med. 2020, 18, 17. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, S.; Du, Y.; Dai, Y.; Huai, Q.; Li, X.; Du, Y.; Dai, H.; Yuan, W.; Yin, S.; et al. Tumor microenvironment-related gene selenium-binding protein 1 (SELENBP1) is associated with immunotherapy efficacy and survival in colorectal cancer. BMC Gastroenterol. 2022, 22, 437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Steinbrenner, H.; Micoogullari, M.; Hoang, N.A.; Bergheim, I.; Klotz, L.O.; Sies, H. Selenium-binding protein 1 (SELENBP1) is a marker of mature adipocytes. Redox Biol. 2019, 20, 489–495. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Wang, Y.; Sytkowski, A.J. Human selenium binding protein-1 (hSP56) interacts with VDU1 in a selenium-dependent manner. Biochem. Biophys. Res. Commun. 2009, 379, 583–588. [Google Scholar] [CrossRef]
- Porat, A.; Sagiv, Y.; Elazar, Z. A 56-kDa selenium-binding protein participates in intra-Golgi protein transport. J. Biol. Chem. 2000, 275, 14457–14465. [Google Scholar] [CrossRef]
- Li, T.; Yang, W.; Li, M.; Byun, D.S.; Tong, C.; Nasser, S.; Zhuang, M.; Arango, D.; Mariadason, J.M.; Augenlicht, L.H. Expression of selenium-binding protein 1 characterizes intestinal cell maturation and predicts survival for patients with colorectal cancer. Mol. Nutr. Food Res. 2008, 52, 1289–1299. [Google Scholar] [CrossRef] [PubMed]
- Pohl, N.M.; Tong, C.; Fang, W.; Bi, X.; Li, T.; Yang, W. Transcriptional regulation and biological functions of selenium-binding protein 1 in colorectal cancer in vitro and in nude mouse xenografts. PLoS ONE 2009, 4, e7774. [Google Scholar] [CrossRef] [PubMed]
- Kudva, A.K.; Shay, A.E.; Prabhu, K.S. Selenium and inflammatory bowel disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G71–G77. [Google Scholar] [CrossRef]
Clinical Characteristics | Active UC (n = 17) | Remission UC (n = 17) | Controls (n = 20) |
---|---|---|---|
Gender | |||
Male, n (%) | 8 (47) | 8 (47) | 8 (40) |
Female, n (%) | 9 (53) | 9 (53) | 12 (60) |
Age | |||
Median (range) | 35.5 (24–58) | 40 (22–80) | 47.4 (20–67) |
Disease evolution | |||
Median (range) | 7.8 (1–24) | 8 (1–27) | not applicable |
Extent of Disease | |||
E1- proctitis, n (%) | 4 (24) | 3 (18) | not applicable |
E2- Left-sided, n (%) | 3 (18) | 1 (6) | |
E3: Pancolitis, n (%) | 10 (58) | 13 (18) | |
Extraintestinal manifestations | |||
Present, n (%) | 6 (35) | 6 (35) | not applicable |
Absent, n (%) | 11 (65) | 11 (65) | |
Clinical Course of Disease | |||
Initially, n (%) | 5 (29) | 11 (65) | not applicable |
Intermittent, n (%) | 12 (71) | 6 (35) | |
Continuous, n (%) | 0 (0) | 0 (0) | |
Medical Treatment | |||
5-Aminosalicylates, n (%) | 15 (88) | 14 (82) | not applicable |
Steroids, n (%) | 6 (35) | 3 (18) | |
Thiopurines, n (%) | 6 (35) | 3 (18) | |
Anti-TNFα, n (%) | 2 (12) | 0 (0) |
Laboratory Values | Active UC (n = 17) | Remission UC (n = 17) | Controls (n = 20) |
---|---|---|---|
Hemoglobin (g/dL) | |||
Mean ± SD | 13.63 ± 1.87 | 13.78 ± 1.77 | 15.01 ± 2.14 |
Median | 14.2 | 14.2 | 15 |
Range | 10.50–17.4 | 8–15.8 | 10.6–18.50 |
Leukocytes (×103/µL) | |||
Mean ± SD | 9.04 ± 3.26 | 7.07 ± 3.3 | 6.40 ± 1.81 |
Median | 8.4 | 6.10 | 6.15 |
Range | 4.5–15.10 | 3.0–17.8 | 3.4–9.6 |
Platelets units (×103/µL) | |||
Mean ± SD | 349 ± 162 | 283.05 ± 96.09 | 214.66 ± 70.81 |
Median | 331 | 229 | 211 |
Range | 161–831 | 68–436 | 116–325 |
Erythrocyte Sedimentation Rate (mm/h) | |||
Mean ± SD | 24.8 ± 21.9 | 13.1 ± 12.0 | 3.5 ± 1.9 |
Median | 24.7 | 11.0 | 3.0 |
Range | 2.0–66.0 | 2.0–46.0 | 2.0–6.0 |
High-sensitivity C-reactive protein (mg/dL) | |||
Mean ± SD | 1.67 ± 1.80 | 0.54 ± 0.78 | 0.21 ± 0.23 |
Median | 0.90 | 0.19 | 0.11 |
Range | 0.05–6.19 | 0.02–2.33 | 0.05–0.56 |
Albumin (blood serum; g/dL) | |||
Mean ± SD | 4.17 ± 0.70 | 4.53 ± 0.66 | 4.54 ± 0.22 |
Median | 4.2 | 4.7 | 4.5 |
Range | 2.80–5.30 | 3.40–5.30 | 4.3–4.9 |
Fecal calprotectin (μg/g) | |||
Mean ± SD | 1621.1 ± 1839 | 888 ± 1744.83 | Not determined |
Median | 1351 | 282 | |
Range | 0–5605 | 20–6044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Priego-Ranero, Á.A.; Barreto-Zúñiga, R.; Martínez-Benítez, B.; Yamamoto-Furusho, J.K. Protective Role of Selenium-Binding Protein 1 (SELENBP1) in Patients with Ulcerative Colitis. Metabolites 2024, 14, 662. https://doi.org/10.3390/metabo14120662
Fonseca-Camarillo G, Furuzawa-Carballeda J, Priego-Ranero ÁA, Barreto-Zúñiga R, Martínez-Benítez B, Yamamoto-Furusho JK. Protective Role of Selenium-Binding Protein 1 (SELENBP1) in Patients with Ulcerative Colitis. Metabolites. 2024; 14(12):662. https://doi.org/10.3390/metabo14120662
Chicago/Turabian StyleFonseca-Camarillo, Gabriela, Janette Furuzawa-Carballeda, Ángel A. Priego-Ranero, Rafael Barreto-Zúñiga, Braulio Martínez-Benítez, and Jesús K. Yamamoto-Furusho. 2024. "Protective Role of Selenium-Binding Protein 1 (SELENBP1) in Patients with Ulcerative Colitis" Metabolites 14, no. 12: 662. https://doi.org/10.3390/metabo14120662
APA StyleFonseca-Camarillo, G., Furuzawa-Carballeda, J., Priego-Ranero, Á. A., Barreto-Zúñiga, R., Martínez-Benítez, B., & Yamamoto-Furusho, J. K. (2024). Protective Role of Selenium-Binding Protein 1 (SELENBP1) in Patients with Ulcerative Colitis. Metabolites, 14(12), 662. https://doi.org/10.3390/metabo14120662