Neural Networks for Conversion of Simulated NMR Spectra from Low-Field to High-Field for Quantitative Metabolomics
Abstract
:1. Introduction
2. Methods
2.1. Data Generation
2.2. Network Architectures, Training, Validation, and Testing
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beek, T.A. Low-field benchtop NMR spectroscopy: Status and prospects in natural product analysis. Phytochem. Anal. 2020, 32, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Blumich, B. Low-field and benchtop NMR. J. Magn. Reason. 2019, 306, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. arXiv 2017. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fishcher, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015. [Google Scholar] [CrossRef]
- Samann, F.; Schanze, T. RunDAE model: Running denoising autoencoder models for denoising ECG signals. Comput. Biol. Med. 2023, 166, 107553. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.; Bader, S.; Lundgren, J. Denoising Induction Motor Sounds Using an Autoencoder. arXiv 2022. [Google Scholar] [CrossRef]
- Aghabiglou, A.; Eksioglu, E.M. Projection-Based cascaded U-Net model for MR image reconstruction. Comput. Methods Programs Biomed. 2021, 207, 106151. [Google Scholar] [CrossRef] [PubMed]
- Lara-Benitez, P.; Carranza-Garcia, M.; Luna-Romera, J.M.; Riquelme, J.C. Temporal Convolutional Networks Applied to Energy-Related Time Series Forecasting. Appl. Sci. 2020, 10, 2322. [Google Scholar] [CrossRef]
- Hewage, P.; Behera, A.; Trovati, M.; Pereira, E.; Ghahremani, M.; Palieri, F.; Liu, Y. Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station. Soft Comput. 2020, 24, 16453–16482. [Google Scholar] [CrossRef]
- Bednarski, B.P.; Singh, A.D.; Zhang, W.; Jones, W.M.; Naeim, A.; Ramezani, R. Temporal convolutional networks and data rebalancing for clinical length of stay and mortality prediction. Sci. Rep. 2022, 12, 21247. [Google Scholar] [CrossRef] [PubMed]
- Periti, F.; Dubossarsky, H.; Tahmasebi, N. (Chat)GPT v BERT: Dawn of Justice for Semantic Change Detection. arXiv 2024. [Google Scholar] [CrossRef]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbia, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language Models are Few-Shot Learners. arXiv 2020. [Google Scholar] [CrossRef]
- Delvin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018. [Google Scholar] [CrossRef]
- Yang, B.; Li, J.; Wong, D.F.; Chao, L.S.; Wang, X.; Tu, Z. Context-Aware Self-Attention Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018, arXiv:1803.01271v2. [Google Scholar]
- Burger, R.; Lindner, S.; Rumpf, J.; Do, X.T.; Diehl, B.W.; Rehahn, M.; Monakhova, Y.B.; Schulze, M. Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin. J. Pharm. Biomed. Anal. 2022, 212, 114649. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, R.A.; Brown, P.B.; McIntyre, S.; Nixon, T.W.; Behar, K.L.; Rothman, D.L. High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. Magn. Reason. Med. 2006, 56, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Rinck, P.A. Magnetic Resonance in Medicine: The Basic Textbook of the European Magnetic Resonance Forum, 14th ed.; Twin Tree: Tokyo, Japan, 2024. [Google Scholar]
- Nanalysis. Available online: https://www.nanalysis.com/nmready-blog/what-to-expect-chemical-shifts-amp-coupling-constants-in-low-field-nmr-spectroscopy (accessed on 2 August 2024).
- Quinn, C.M.; Wang, M.; Polenova, T. NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology. Methods Mol. Biol. 2018, 1688, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.; Fordham, E.J. Contributed review: Nuclear magnetic resonance core analysis at 0.3 T. Rev. Sci. Instrum. 2014, 85, 111502. [Google Scholar] [CrossRef] [PubMed]
Model | DAE | CAE | UNet | UNet-Chunks | TCN | Transformer- 21 Metabolites | Transformer- 21 Met. Adjust SNR | Transformer- 87 Met. Adjust SNR |
MSE | 2.0 × 10−4 | 3.0 × 10−4 | 3.0 × 10−4 | 3.0 × 10−4 | 3.0 × 10−4 | 6.5 × 10−5 | 1.0 × 10−4 | 1.0 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, H.; Tipirneni-Sajja, A. Neural Networks for Conversion of Simulated NMR Spectra from Low-Field to High-Field for Quantitative Metabolomics. Metabolites 2024, 14, 666. https://doi.org/10.3390/metabo14120666
Johnson H, Tipirneni-Sajja A. Neural Networks for Conversion of Simulated NMR Spectra from Low-Field to High-Field for Quantitative Metabolomics. Metabolites. 2024; 14(12):666. https://doi.org/10.3390/metabo14120666
Chicago/Turabian StyleJohnson, Hayden, and Aaryani Tipirneni-Sajja. 2024. "Neural Networks for Conversion of Simulated NMR Spectra from Low-Field to High-Field for Quantitative Metabolomics" Metabolites 14, no. 12: 666. https://doi.org/10.3390/metabo14120666
APA StyleJohnson, H., & Tipirneni-Sajja, A. (2024). Neural Networks for Conversion of Simulated NMR Spectra from Low-Field to High-Field for Quantitative Metabolomics. Metabolites, 14(12), 666. https://doi.org/10.3390/metabo14120666