Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Proton Magnetic Resonance Spectroscopy Protocol
2.3. Metabolite Quantification
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franklin, T.B.; Saab, B.J.; Mansuy, I.M. Neural Mechanisms of Stress Resilience and Vulnerability. Neuron 2012, 75, 747–761. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Gianaros, P.J. Stress- and Allostasis-Induced Brain Plasticity. Annu. Rev. Med. 2011, 62, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Musazzi, L.; Tornese, P.; Sala, N.; Popoli, M. Acute or Chronic? A Stressful Question. Trends Neurosci. 2017, 40, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Musazzi, L.; Tornese, P.; Sala, N.; Popoli, M. What Acute Stress Protocols Can Tell Us about PTSD and Stress-Related Neuropsychiatric Disorders. Front. Pharmacol. 2018, 9, 758. [Google Scholar] [CrossRef] [PubMed]
- Joëls, M.; Baram, T.Z. The Neuro-Symphony of Stress. Nat. Rev. Neurosci. 2009, 10, 459. [Google Scholar] [CrossRef]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural Regulation of Endocrine and Autonomic Stress Responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef]
- Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The Stressed Synapse: The Impact of Stress and Glucocorticoids on Glutamate Transmission. Nat. Rev. Neurosci. 2012, 13, 22–37. [Google Scholar] [CrossRef]
- McEwen, B.S.; Bowles, N.P.; Gray, J.D.; Hill, M.N.; Hunter, R.G.; Karatsoreos, I.N.; Nasca, C. Mechanisms of Stress in the Brain. Nat. Neurosci. 2015, 18, 1353–1363. [Google Scholar] [CrossRef]
- Rohleder, N. Stress and Inflammation—The Need to Address the Gap in the Transition between Acute and Chronic Stress Effects. Psychoneuroendocrinology 2019, 105, 164–171. [Google Scholar] [CrossRef]
- Sapolsky, R.M. The possibility of neurotoxicity in the hippocampus in major depression: A primer on neuron death. Biol. Psychiatry 2000, 48, 755–765. [Google Scholar] [CrossRef]
- Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA Cycle Metabolites Control Physiology and Disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Kuzdzal-Fick, J.J.; Fox, S.A.; Strassmann, J.E.; Queller, D.C. High Relatedness Is Necessary and Sufficient to Maintain Multicellularity in Dictyostelium. Science 2011, 334, 1548–1551. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, J.H.F.; Esteves-Ferreira, A.A.; Quinhones, C.G.S.; Pereira-Lima, I.A.; Nunes-Nesi, A.; Fernie, A.R.; Araujo, W.L. Evolution and Functional Implications of the Tricarboxylic Acid Cycle as Revealed by Phylogenetic Analysis. Genome Biol. Evol. 2014, 6, 2830–2848. [Google Scholar] [CrossRef] [PubMed]
- Hertz, L. Astrocytic energy metabolism and glutamate formation—Relevance for 13C-NMR spectroscopy and importance of cytosolic/mitochondrial trafficking. Magn. Reson. Imaging 2011, 29, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.F.; Doepke, A.; Filosa, J.A.; Wardle, R.L.; Lu, A.; Meeker, T.J.; Pyne-Geithman, G.J. N-acetylaspartate as a reservoir for glutamate. Med. Hypotheses 2006, 67, 506–512. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Pu, J.; Gui, S.; Zhong, X.; Tian, L.; Song, X.; Qi, X.; Wang, H.; Xie, P. Chronic Stress in a Rat Model of Depression Disturbs the Glutamine–Glutamate–GABA Cycle in the Striatum, Hippocampus, and Cerebellum. Neuropsychiatr. Dis. Treat. 2020, 16, 557. [Google Scholar] [CrossRef]
- Conrad, C.D.; Wright, R.L.; McLaughlin, K.J. Stress and Vulnerability to Brain Damage. In Encyclopedia of Neuroscience; Elsevier Ltd.: Amsterdam, The Netherlands, 2009; pp. 481–488. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jang, E.J.; Hong, K.S.; Lee, C.; Lee, D.W.; Choi, C.B.; Lee, H.; Choe, B.Y. Acute Restraint-Mediated Increases in Glutamate Levels in the Rat Brain: An in Vivo 1H-MRS Study at 4.7 T. Neurochem. Res. 2012, 37, 740–748. [Google Scholar] [CrossRef]
- Zhou, I.Y.; Ding, A.Y.; Li, Q.; McAlonan, G.M.; Wu, E.X. Magnetic Resonance Spectroscopy Reveals N-Acetylaspartate Reduction in Hippocampus and Cingulate Cortex after Fear Conditioning. Psychiatry Res. Neuroimaging 2012, 204, 178–183. [Google Scholar] [CrossRef]
- Houtepen, L.C.; Schür, R.R.; Wijnen, J.P.; Boer, V.O.; Boks, M.P.M.; Kahn, R.S.; Joëls, M.; Klomp, D.W.; Vinkers, C.H. Acute Stress Effects on GABA and Glutamate Levels in the Prefrontal Cortex: A 7T 1H Magnetic Resonance Spectroscopy Study. Neuroimage Clin. 2017, 14, 195–200. [Google Scholar] [CrossRef]
- Nackley, B.B.; Friedman, B.H. Only Time Will Tell: Acute Stress Response Patterns with Time Series Analysis. Int. J. Psychophysiol. 2021, 166, 160–165. [Google Scholar] [CrossRef]
- Sunwoo, S.H.; Lee, J.S.; Bae, S.J.; Shin, Y.J.; Kim, C.S.; Joo, S.Y.; Choi, H.S.; Suh, M.; Kim, S.W.; Choi, Y.J.; et al. Chronic and Acute Stress Monitoring by Electrophysiological Signals from Adrenal Gland. Proc. Natl. Acad. Sci. USA 2019, 116, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.H.; Lee, M.H.; Yun, C.S.; Kim, Y.T.; Baek, H.M.; Han, B.S.; Kim, D.Y. Dynamic Variation in Hippocampal Metabolism after Acute Stress Exposure: An in Vivo Proton Magnetic Resonance Spectroscopy Study at 9.4 T. J. Spectrosc. 2021, 2021, 6533727. [Google Scholar] [CrossRef]
- Lee, M.H.; Hwang, Y.H.; Yun, C.S.; Han, B.S.; Kim, D.Y. Altered Small-World Property of a Dynamic Metabolic Network in Murine Left Hippocampus after Exposure to Acute Stress. Sci. Rep. 2022, 12, 3885. [Google Scholar] [CrossRef] [PubMed]
- du Sert, N.P.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting Animal Research: Explanation and Elaboration for the Arrive Guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar]
- Ahn, T.; Bae, C.; Medicina, C.Y.-V. Acute Stress-Induced Changes in Hormone and Lipid Levels in Mouse Plasma. Vet. Med. 2016, 61, 57–64. [Google Scholar] [CrossRef]
- Bonneau, R.H.; Sheridan, J.F.; Feng, N.; Glaser, R. Stress-Induced Modulation of the Primary Cellular Immune Response to Herpes Simplex Virus Infection Is Mediated by Both Adrenal-Dependent and Independent Mechanisms. J. Neuroimmunol. 1993, 42, 167–176. [Google Scholar] [CrossRef]
- Simpson, R.; Devenyi, G.A.; Jezzard, P.; Hennessy, T.J.; Near, J. Advanced Processing and Simulation of MRS Data Using the FID Appliance (FID-A)—An Open Source, MATLAB-Based Toolkit. Magn. Reson. Med. 2017, 77, 23–33. [Google Scholar] [CrossRef]
- Near, J.; Edden, R.; Evans, C.J.; Paquin, R.; Harris, A.; Jezzard, P. Frequency and Phase Drift Correction of Magnetic Resonance Spectroscopy Data by Spectral Registration in the Time Domain. Magn. Reson. Med. 2015, 73, 44–50. [Google Scholar] [CrossRef]
- Turner, D.A.; Adamson, D.C. Neuronal-astrocyte metabolic interactions: Understanding the transition into abnormal astrocytoma metabolism. J. Neuropathol. Exp. Neurol. 2011, 70, 167–176. [Google Scholar] [CrossRef]
- Yellen, G. Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal energy metabolism. Cell Metab. 2018, 27, 713–728. [Google Scholar] [CrossRef]
- Magistretti, P.J.; Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015, 86, 883–901. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Nunnari, J.; Suomalainen, A. Mitochondria: In sickness and in health. Cell 2012, 148, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Youle, R.J.; van der Bliek, A.M. Mitochondrial fission, fusion, and stress. Science 2012, 337, 1062–1065. [Google Scholar] [CrossRef]
- McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef]
- Chandel, N.S. Evolution of mitochondria as signaling organelles. Cell Metab. 2015, 22, 204–206. [Google Scholar] [CrossRef]
- Falkowska, A.; Gutowska, I.; Goschorska, M.; Nowacki, P.; Chlubek, D.; Baranowska-Bosiacka, I. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int. J. Mol. Sci. 2015, 16, 25959–25981. [Google Scholar] [CrossRef]
- Rosso, I.M.; Crowley, D.J.; Silveri, M.M.; Rauch, S.L.; Jensen, J.E. Hippocampus Glutamate and N-Acetyl Aspartate Markers of Excitotoxic Neuronal Compromise in Posttraumatic Stress Disorder. Neuropsychopharmacology 2017, 42, 1698–1705. [Google Scholar] [CrossRef]
- Kerksick, C.; Willoughby, D. The Antioxidant Role of Glutathione and N-Acetyl-Cysteine Supplements and Exercise-Induced Oxidative Stress. J. Int. Soc. Sports Nutr. 2005, 2, 38. [Google Scholar] [CrossRef]
- Iwata, Y.; Nakajima, S.; Plitman, E.; Truong, P.; Bani-Fatemi, A.; Caravaggio, F.; Kim, J.; Shah, P.; Mar, W.; Chavez, S.; et al. Glutathione Levels and Glutathione-Glutamate Correlation in Patients with Treatment-Resistant Schizophrenia. Schizophr. Bull. Open 2021, 2, sgab006. [Google Scholar] [CrossRef] [PubMed]
- Marí, M.; Morales, A.; Colell, A.; García-Ruiz, C.; Fernández-Checa, J.C. Mitochondrial glutathione, a key survival antioxidant. Antioxid. Redox Signal. 2009, 11, 2685–2700. [Google Scholar] [CrossRef] [PubMed]
- McBean, G.J. The role of glutathione in the regulation of cell death and inflammation. Biochem. Pharmacol. 2017, 158, 348–359. [Google Scholar] [CrossRef]
- Patel, A.B.; Clark, J.F. Role of N-acetylaspartate in the regulation of mitochondrial energy metabolism. Front. Neurosci. 2017, 11, 122. [Google Scholar] [CrossRef]
- Ford, T.C.; Crewther, D.P. A comprehensive review of the 1H-MRS metabolite spectrum in autism spectrum disorder. Front. Mol. Neurosci. 2016, 9, 14. [Google Scholar] [CrossRef]
- Moffett, J.R.; Ross, B.; Arun, P.; Madhavarao, C.N.; Namboodiri, A.M.A. N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology. Prog. Neurobiol. 2007, 81, 89–131. [Google Scholar] [CrossRef]
- Schuff, N.; Neylan, T.C.; Fox-Bosetti, S.; Lenoci, M.; Samuelson, K.W.; Studholme, C.; Kornak, J.; Marmar, C.R.; Weiner, M.W. Abnormal N-Acetylaspartate in Hippocampus and Anterior Cingulate in Posttraumatic Stress Disorder. Psychiatry Res. Neuroimaging 2008, 162, 147–157. [Google Scholar] [CrossRef]
- Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic Energy Use and Supply. Neuron 2012, 75, 762–777. [Google Scholar] [CrossRef]
- Osborne, D.M.; Pearson-Leary, J.; McNay, E.C. The Neuroenergetics of Stress Hormones in the Hippocampus and Implications for Memory. Front. Neurosci. 2015, 9, 164. [Google Scholar] [CrossRef]
- Attwell, D.; Laughlin, S.B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 2001, 21, 1133–1145. [Google Scholar] [CrossRef]
- Moffett, J.R.; Arun, P.; Ariyannur, P.S.; Namboodiri, A.M.A. N-Acetylaspartate Reductions in Brain Injury: Impact on Post-Injury Neuroenergetics, Lipid Synthesis, and Protein Acetylation. Front. Neuroenergetics 2013, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Bröer, S.; Brookes, N. Transfer of Glutamine between Astrocytes and Neurons. J. Neurochem. 2001, 77, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.Y.; Gruetter, R. Dynamic or Inert Metabolism? Turnover of N-Acetyl Aspartate and Glutathione from D-[1-13C] Glucose in the Rat Brain in Vivo. J. Neurochem. 2004, 91, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Lushchak, V.I. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions. J. Amino Acids 2012, 2012, 736837. [Google Scholar] [CrossRef]
- Pickering, A.M.; Vojtovich, L.; Tower, J.; Davies, K.J.A. Oxidative Stress Adaptation with Acute, Chronic, and Repeated Stress. Free. Radic. Biol. Med. 2013, 55, 109–118. [Google Scholar] [CrossRef]
- Li, W.; Busu, C.; Circu, M.L.; Aw, T.Y. Glutathione in Cerebral Microvascular Endothelial Biology and Pathobiology: Implications for Brain Homeostasis. Int. J. Cell Biol. 2012, 2012, 434971. [Google Scholar] [CrossRef]
- Whillier, S.; Garcia, B.; Chapman, B.E.; Kuchel, P.W.; Raftos, J.E. Glutamine and α-Ketoglutarate as Glutamate Sources for Glutathione Synthesis in Human Erythrocytes. FEBS J. 2011, 278, 3152–3163. [Google Scholar] [CrossRef]
- Lukasik, V.M.; Gillies, R.J. Animal Anaesthesia for in Vivo Magnetic Resonance. NMR Biomed. 2003, 16, 459–467. [Google Scholar] [CrossRef]
- Tremoleda, J.L.; Kerton, A.; Gsell, W. Anaesthesia and Physiological Monitoring during in Vivo Imaging of Laboratory Rodents: Considerations on Experimental Outcomes and Animal Welfare. EJNMMI Res. 2012, 2, 44. [Google Scholar] [CrossRef] [PubMed]
Mean Concentrations of Metabolites in the Left Hippocampus (Standard Error) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Metabolites | Groups | Time Point 1 | Time Point 2 | Time Point 3 | Time Point 4 | Time Point 5 | Time Point 6 | Time Point 7 | Time Point 8 |
GABA | Control | 2.050 (0.065) | 1.980 (0.060) | 1.907 (0.053) | 1.939 (0.097) | 1.843 (0.100) | 1.856 (0.073) | 1.761 (0.086) | 1.805 (0.121) |
Acute stress | 1.986 (0.071) | 1.941 (0.049) | 1.817 (0.048) | 1.819 (0.046) | 1.916 (0.078) | 1.785 (0.060) | 1.902 (0.067) | 1.793 (0.089) | |
Gln | Control | 2.633 (0.215) | 2.634 (0.193) | 2.735 (0.215) | 2.719 (0.202) | 2.850 (0.221) | 2.928 (0.074) | 2.865 (0.180) | 2.861 (0.221) |
Acute stress | 2.332 (0.067) | 2.303 (0.078) | 2.390 (0.087) | 2.409 (0.071) | 2.577 (0.072) | 2.587 (0.072) | 2.653 (0.067) | 2.699 (0.063) | |
Glu | Control | 8.275 (0.139) | 8.129 (0.162) | 7.912 (0.110) | 7.797 (0.127) | 7.587 (0.169) | 7.554 (0.110) | 7.595 (0.149) | 7.394 (0.167) |
Acute stress | 8.582 (0.112) | 8.439 (0.085) | 8.200 (0.101) | 8.041 (0.080) | 8.145 (0.151) | 7.809 (0.204) | 7.768 (0.211) | 7.668 (0.162) | |
GSH | Control | 1.670 (0.032) | 1.764 (0.056) | 1.830 (0.037) | 1.795 (0.044) | 1.829 (0.051) | 1.872 (0.060) | 1.820 (0.060) | 1.895 (0.056) |
Acute stress | 1.661 (0.057) | 1.677 (0.043) | 1.704 (0.041) | 1.695 (0.057) | 1.790 (0.050) | 1.866 (0.060) | 1.850 (0.049) | 1.828 (0.068) | |
NAA | Control | 6.149 (0.105) | 6.097 (0.098) | 6.074 (0.079) | 6.098 (0.092) | 6.205 (0.128) | 6.203 (0.110) | 6.348 (0.137) | 6.478 (0.166) |
Acute stress | 6.015 (0.010) | 5.964 (0.068) | 5.972 (0.075) | 6.042 (0.076) | 6.260 (0.126) | 6.252 (0.137) | 6.266 (0.124) | 6.248 (0.116) |
Control Group | Acute Stress Group | |||||
---|---|---|---|---|---|---|
Pairs of Metabolites | Mean Correlation Coefficient | p-Value | Adjust p-Value | Mean Correlation Coefficient | p-Value | Adjust p-Value |
GABA–Gln | 0.190 | 1.000 | 1.000 | −0.286 | 1.000 | 1.000 |
GABA–Glu | −0.429 | 0.012 | 0.060 | 0.429 | 0.227 | 0.454 |
GABA–GSH | 0.024 | 1.000 | 1.000 | −0.119 | 0.549 | 0.610 |
GABA–NAA | 0.119 | 0.549 | 0.784 | 0.024 | 0.344 | 0.573 |
Gln–Glu | −0.143 | 0.227 | 0.378 | −0.143 | 0.012 | 0.040 * |
Gln–GSH | 0.467 | 0.065 | 0.162 | 0.571 | 0.021 | 0.052 |
Gln–NAA | 0.571 | 0.012 | 0.060 | 0.381 | 0.012 | 0.040 ** |
Glu–GSH | 0.180 | 0.227 | 0.378 | −0.024 | 0.549 | 0.610 |
Glu–NAA | −0.286 | 1.000 | 1.000 | 0.214 | 0.549 | 0.610 |
GSH–NAA | 0.144 | 0.065 | 0.162 | 0.571 | 0.012 | 0.040 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, C.-S.; Hwang, Y.H.; Yeon, J.; Baek, H.-M.; Kim, D.Y.; Han, B.S. Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice. Metabolites 2024, 14, 699. https://doi.org/10.3390/metabo14120699
Yun C-S, Hwang YH, Yeon J, Baek H-M, Kim DY, Han BS. Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice. Metabolites. 2024; 14(12):699. https://doi.org/10.3390/metabo14120699
Chicago/Turabian StyleYun, Chang-Soo, Yoon Ho Hwang, Jehyeong Yeon, Hyeon-Man Baek, Dong Youn Kim, and Bong Soo Han. 2024. "Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice" Metabolites 14, no. 12: 699. https://doi.org/10.3390/metabo14120699
APA StyleYun, C. -S., Hwang, Y. H., Yeon, J., Baek, H. -M., Kim, D. Y., & Han, B. S. (2024). Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice. Metabolites, 14(12), 699. https://doi.org/10.3390/metabo14120699