Relationship of Thyroid Function with Renal Hemodynamics and Cholesterol Metabolism in Proteinuric Kidney Disease: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Patient Selection
2.3. Data Collection
2.4. Selectivity Index
2.5. Calculation of Renal Physiology
2.6. Data Analysis and Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaysen, G.A. Plasma composition in the nephrotic syndrome. Am. J. Nephrol. 1993, 13, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D. Erythropoietin and transferrin metabolism in nephrotic syndrome. Am. J. Kidney Dis. 2001, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D. Endocrinological consequences of the nephrotic syndrome. Am. J. Nephrol. 1993, 13, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Crew, R.J.; Radhakrishnan, J.; Appel, G. Complications of the nephrotic syndrome and their treatment. Clin. Nephrol. 2004, 62, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.C.; Chertow, G.M.; Go, A.S.; Hsu, C.Y. Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int. 2005, 67, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Chonchol, M.; Zoppini, G.; Salvagno, G.; Pichiri, I.; Franchini, M.; Lippi, G. Prevalence of thyroid autoimmunity and sub-clinical hypothyroidism in persons with chronic kidney disease not requiring chronic dialysis. Clin. Chem. Lab. Med. 2009, 47, 1367–1371. [Google Scholar] [CrossRef] [PubMed]
- Chonchol, M.; Lippi, G.; Salvagno, G.; Zoppini, G.; Muggeo, M.; Targher, G. Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1296–1300. [Google Scholar] [CrossRef]
- Bando, Y.; Ushiogi, Y.; Okafuji, K.; Toya, D.; Tanaka, N.; Miura, S. Non-autoimmune primary hypothyroidism in diabetic and non-diabetic chronic renal dysfunction. Exp. Clin. Endocrinol. Diabetes 2002, 110, 408–415. [Google Scholar] [CrossRef]
- Khatiwada, S.; Rajendra, K.C.; Gautam, S.; Lamsal, M.; Baral, N. Thyroid dysfunction and dyslipidemia in chronic kidney disease patients. BMC Endocr. Disord. 2015, 15, 65. [Google Scholar] [CrossRef]
- Malyszko, J.; Malyszko, J.; Wolczynski, S.; Mysliwiec, M. Adiponectin, leptin and thyroid hormones in patients with chronic renal failure and on renal replacement therapy: Are they related? Nephrol. Dial. Transplant. 2006, 21, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Mariani, L.H.; Berns, J.S. The renal manifestations of thyroid disease. J. Am. Soc. Nephrol. 2012, 23, 22–26. [Google Scholar] [CrossRef]
- Gilles, R.; den Heijer, M.; Ross, A.H.; Sweep, F.C.; Hermus, A.R.; Wetzels, J.F. Thyroid function in patients with proteinuria. Neth. J. Med. 2008, 66, 483–485. [Google Scholar] [PubMed]
- Ferro, C.J.; Mark, P.B.; Kanbay, M.; Sarafidis, P.; Heine, G.H.; Rossignol, P.; Massy, Z.A.; Mallamaci, F.; Valdivielso, J.M.; Malyszko, J.; et al. Lipid management in patients with chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 727–749. [Google Scholar] [CrossRef] [PubMed]
- Noels, H.; Lehrke, M.; Vanholder, R.; Jankowski, J. Lipoproteins and fatty acids in chronic kidney disease: Molecular and metabolic alterations. Nat. Rev. Nephrol. 2021, 17, 528–542. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Liu, R.; Chen, X.; Chen, Y.; Wang, D.; Zhang, F.; Wang, Y. Can levothyroxine treatment reduce urinary albumin excretion rate in patients with early type 2 diabetic nephropathy and subclinical hypothyroidism? A randomized double-blind and placebo-controlled study. Curr. Med. Res. Opin. 2015, 31, 2233–2240. [Google Scholar] [CrossRef] [PubMed]
- Vande Walle, J.; Mauel, R.; Raes, A.; Vandekerckhove, K.; Donckerwolcke, R. ARF in children with minimal change nephrotic syndrome may be related to functional changes of the glomerular basal membrane. Am. J. Kidney Dis. 2003, 43, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Zaritsky, J.J.; Fornoni, A.; Smoyer, W.E. Dyslipidaemia in nephrotic syndrome: Mechanisms and treatment. Nat. Rev. Nephrol. 2018, 14, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Iwazu, Y.; Nemoto, J.; Okuda, K.; Nakazawa, E.; Hashimoto, A.; Fujio, Y.; Sakamoto, M.; Ando, Y.; Muto, S.; Kusano, E. A case of minimal change nephrotic syndrome with acute renal failure complicating Hashimoto’s disease. Clin. Nephrol. 2008, 69, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.M.; Brent, G.A.; Kovesdy, C.P.; Soldin, O.P.; Nguyen, D.; Budoff, M.J.; Brunelli, S.M.; Kalantar-Zadeh, K. Thyroid functional disease: An under-recognized cardiovascular risk factor in kidney disease patients. Nephrol. Dial. Transplant. 2015, 30, 724–737. [Google Scholar] [CrossRef] [PubMed]
- Echterdiek, F.; Ranke, M.B.; Schwenger, V.; Heemann, U.; Latus, J. Kidney disease and thyroid dysfunction: The chicken or egg problem. Pediatr. Nephrol. 2022, 37, 3031–3042. [Google Scholar] [CrossRef]
- Blackaller, G.N.; Chavez-Iniguez, J.S.; Carreon-Bautista, E.E.; Gonzalez-Torres, F.J.; Villareal-Contreras, M.; Barrientos Avalos, J.R.; Aguilera, P.M.; Rosales, F.R.; Jose Antonio, T.M.; Gomez Fregoso, J.A.; et al. A pilot trial on the effect of levothyroxine on proteinuria in patients with advanced CKD. Kidney Int. Rep. 2021, 6, 110–119. [Google Scholar] [CrossRef]
- Cameron, J.S.; Blandford, G. The simple assessment of selectivity in heavy proteinuria. Lancet 1966, 2, 242–247. [Google Scholar] [CrossRef]
- Falk, S.A.; Buric, V.; Hammond, W.S.; Conger, J.D. Serial glomerular and tubular dynamics in thyroidectomized rats with remnant kidneys. Am. J. Kidney Dis. 1991, 17, 218–227. [Google Scholar] [CrossRef]
- Meyrier, A.; Niaudet, P. Acute kidney injury complicating nephrotic syndrome of minimal change disease. Kidney Int. 2018, 94, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Kano, K.; Ando, T.; Ichimura, T. Thyroid function in children with nephrotic syndrome. Pediatr. Nephrol. 1994, 8, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Lee, J.E.; Chung, W.Y. Changes in the thyroid hormone profiles in children with nephrotic syndrome. Korean J. Pediatr. 2019, 62, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Chronic Kidney Disease Prognosis Consortium. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.W.; Han, S.T.; Song, S.H.; Kim, M.K.; Kim, J.S.; Choi, S.O.; Han, B.G. Serum T3 level can predict cardiovascular events and all-cause mortality rates in CKD patients with proteinuria. Ren. Fail. 2012, 34, 364–372. [Google Scholar] [CrossRef]
- Feinstein, E.I.; Kaptein, E.M.; Nicoloff, J.T.; Massry, S.G. Thyroid function in patients with nephrotic syndrome and normal renal function. Am. J. Nephrol. 1982, 2, 70–76. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, G.; Bazzi, C. Pathophysiology of proteinuria. Kidney Int. 2003, 63, 809–825. [Google Scholar] [CrossRef] [PubMed]
- Schussler, G.C. The thyroxine-binding proteins. Thyroid 2000, 10, 141–149. [Google Scholar] [CrossRef] [PubMed]
n | 29 |
Age (years) | 46.3 ± 17.5 |
Femal Sex (n) | 12 (41%) |
Serum total protein (g/dL) | 5.3 ± 1.3 |
Serum albumin (g/dL) | 2.6 ± 0.9 |
Urinary protein (g/day) | 5.18 ± 3.28 |
Creatinine clearance (ml/min) | 109.6 ± 44.0 |
Thyroid-stimulating hormone (µIU/mL) | 7.90 ± 21.74 |
Serum free triiodothyronine (pg/mL) | 2.18 ± 0.44 |
Serum free thyroxine (ng/dL) | 1.03 ± 0.26 |
Filtration fraction | 0.27 ± 0.07 |
Renal plasma flow (ml/min) | 397 ± 128 |
Renal blood flow (ml/min) | 658 ± 203 |
Serum total cholesterol (mg/dL) | 327 ± 127 |
Serum triglycerides (mg/dL) | 192 ± 196 |
Renin–angiotensin system inhibitor (n) | 3 (10%) |
Lipid-lowering agents and prednisolone (n) | 6 (21%) |
Euthyroid (n) | 13 (45%) |
Overt hypothyroid (n) | 6 (21%) |
Subclinical hypothyroid (n) | 10 (34%) |
Variable (Units) | FT3 | FT4 | ||
---|---|---|---|---|
r (p Value) | β (p Value) | r (p Value) | β (p Value) | |
For filtration fraction | ||||
Age (years) | −0.17 (0.38) | −0.17 (0.40) | −0.17 (0.39) | −0.12 (0.61) |
Filtration fraction (%) | 0.55 (<0.01) | 0.58 (<0.01) | 0.29 (0.19) | 0.32 (0.16) |
Drugs a (existing use) | 0.02 (0.93) | 0.11 (0.58) | 0.13 (0.49) | 0.22 (0.33) |
For total cholesterol | ||||
Age (years) | −0.17 (0.38) | −0.17 (0.30) | −0.17 (0.39) | −0.28 (0.08) |
Total cholesterol (mg/dL) | −0.23 (0.22) | −0.24 (0.23) | −0.47 (0.01) | −0.40 (0.01) |
Drugs b (existing use) | −0.01 (0.94) | −0.02 (0.94) | −0.47 (0.01) | 0.47 (0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwazu, Y.; Kotani, K.; Sugase, T.; Nagata, D.; Yamada, T. Relationship of Thyroid Function with Renal Hemodynamics and Cholesterol Metabolism in Proteinuric Kidney Disease: A Pilot Study. Metabolites 2024, 14, 111. https://doi.org/10.3390/metabo14020111
Iwazu Y, Kotani K, Sugase T, Nagata D, Yamada T. Relationship of Thyroid Function with Renal Hemodynamics and Cholesterol Metabolism in Proteinuric Kidney Disease: A Pilot Study. Metabolites. 2024; 14(2):111. https://doi.org/10.3390/metabo14020111
Chicago/Turabian StyleIwazu, Yoshitaka, Kazuhiko Kotani, Taro Sugase, Daisuke Nagata, and Toshiyuki Yamada. 2024. "Relationship of Thyroid Function with Renal Hemodynamics and Cholesterol Metabolism in Proteinuric Kidney Disease: A Pilot Study" Metabolites 14, no. 2: 111. https://doi.org/10.3390/metabo14020111
APA StyleIwazu, Y., Kotani, K., Sugase, T., Nagata, D., & Yamada, T. (2024). Relationship of Thyroid Function with Renal Hemodynamics and Cholesterol Metabolism in Proteinuric Kidney Disease: A Pilot Study. Metabolites, 14(2), 111. https://doi.org/10.3390/metabo14020111