Employing 11-Ketotestosterone as a Target Analyte for Adrenosterone (11OXO) Administration in Doping Controls
Abstract
:1. Introduction
- -
- Re-evaluation of established thresholds for OHA and OHA/OHE via a retrospective analysis of more than 100.000 doping control samples analyzed in the Cologne doping control laboratory.
- -
- Re-evaluation of the established urinary concentration threshold for KT after implementation of a semi-quantitative approach for KT into the current ITP and inclusion of more than 5000 routine doping control samples.
- -
- Carbon isotope ratio determinations of KT, OHA, and KE as TCs and pregnanediol (PD) as an ERC in more than 100 samples exhibiting elevated urinary concentrations for KT in order to ensure that the elevated concentrations were not due to illicit steroid administrations and to enable the calculation of reference-based thresholds, especially for KT.
- -
- Investigation into an exploratory administration trial encompassing one male volunteer administered with 100 mg 11OXO to elucidate the best urinary marker for the detection in both the ITP and the confirmation procedure (CP) based on CIR.
2. Materials and Methods
2.1. Chemicals and Steroids
2.2. Excretion Study Samples
2.3. Sample Preparation for Quantification of Steroid Concentrations
2.4. Sample Preparation for Carbon Isotope Ratio Determinations
2.5. Gas Chromatography—Combustion—Isotope Ratio Mass Spectrometry
2.6. Gas Chromatography—Triple Quadrupole Mass Spectrometry
2.7. Gas Chromatography—High-Resolution/High-Accuracy Mass Spectrometry
2.8. Athlete Reference Population to Reassess Urinary OHA and OHE Concentrations
2.9. Athlete Reference Population to Estimate Urinary KT Concentrations
2.10. Athlete Reference Subpopulation for IRMS-Based Investigations
2.11. Statistical Analysis
3. Results and Discussion
3.1. Applicability of Preliminary Suggested Thresholds
3.2. Urinary Concentrations Found for KT
3.3. Carbon Isotope Ratios Found for KT and Its Metabolites
3.4. 11OXO Administration Trial
3.4.1. Urinary Concentrations
3.4.2. Urinary CIR and Δ-Values
3.5. Potentially New Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlaghecke, R.; Kley, H.K.; Krüskemper, H.L. The Measurement of 4-Androstene-3,11,17-trione (11-Oxo-androstendione) by Radioimmunoassay in Human Plasma. Steroids 1984, 44, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Michal, G.; Schomburg, D. Biochemical Pathways; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Swart, A.C.; Storbeck, K.H. 11β-hydroxyandrostenedione: Downstream metabolism by 11βHSD, 17βHSD and SRD5A produces novel substrates in familiar pathways. Mol. Cell Endocrinol. 2015, 408, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Savard, K.; Burstein, S.; Rosenkrantz, H.; Dorfman, R.I. The Metabolism of Adrenosterone in vivo. J. Biol. Chem. 1952, 202, 717–725. [Google Scholar] [CrossRef]
- Bradlow, H.L.; Fukushima, D.K.; Kozuma, K.; Zumoff, B.; Hellman, L.; Gallagher, T.F. Metabolism of Adrenosterone. Steroids 1967, 10, 233–244. [Google Scholar] [CrossRef]
- Van Renterghem, P.; van Eenoo, P.; Geyer, H.; Schänzer, W.; Delbeke, F.T. Reference ranges for urinary concentrations and ratios of endogenous steroids, which can be used as markers for steroid misuse, in a Caucasian population of athletes. Steroids 2010, 75, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, D.; Groessl, M.; Pruijm, M.; Ponte, B.; Escher, G.; d’Uscio, C.H.; Guessous, I.; Ehret, G.; Pechère-Bertschi, A.; Martin, P.-Y.; et al. Reference intervals for the urinary steroid metabolome: The impact of sex, age, day and night time on human adult steroidogenesis. PLoS ONE 2019, 14, e0214549. [Google Scholar] [CrossRef]
- WADA Prohibited List 2023. Available online: https://www.wada-ama.org/sites/default/files/2022-09/2023list_en_final_9_september_2022.pdf (accessed on 16 January 2024).
- Brooker, L.; Parr, M.K.; Cawley, A.; Flenker, U.; Howe, C.; Kazlauskas, R.; Schänzer, W.; George, A. Development of criteria for the detection of adrenosterone administration by gas chromatography-mass spectrometry and GC/C/IRMS for doping control. Drug Test. Anal. 2009, 1, 587–595. [Google Scholar] [CrossRef]
- Coplen, T.B. Guidelines and recommended terms of expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef]
- Piper, T.; Thevis, M. Development of mass spectrometry-based methods for the detection of 11-ketotestosterone and 11-ketodihydrotestosterone. Drug Test. Analysis 2023, 15, 566–578. [Google Scholar] [CrossRef]
- Zhang, Y.; Tobias, H.J.; Brenna, J.T. Steroid isotopic standards for gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS). Steroids 2009, 74, 369–378. [Google Scholar] [CrossRef]
- Mareck, U.; Geyer, H.; Opfermann, G.; Thevis, M.; Schänzer, W. Factors influencing the steroid profile in doping control analysis. J. Mass Spectrom. 2008, 43, 877–891. [Google Scholar] [CrossRef]
- Thevis, M.; Fusshöller, G.; Schänzer, W. Zeranol: Doping offence or mycotoxin? A case related study. Drug Test. Anal. 2011, 3, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Donike, M. N-Methyl-N-trimethylsilyl-trifluoracetamide, ein neues Silylierungsmittel aus der Reihe der silylierten. J. Chromatogr. A 1969, 42, 103–104. [Google Scholar] [CrossRef]
- Donike, M.; Zimmermann, J. Zur Darstellung von Trimethylsilyl-, Triethylsilyl-und tert.-Butyldimethylsilyl-enoläthern von Ketosteroiden für gas-chromatographische und massenspektrometrische Untersuchungen. J. Chromatogr. A 1980, 202, 483–486. [Google Scholar] [CrossRef]
- WADA Technical Document–TD2022MRPL. Available online: https://www.wada-ama.org/en/resources/lab-documents/td2022mrpl (accessed on 16 January 2024).
- Solberg, H.E. Approved recommendation (1987) on the theory of reference values. Part 5. Statistical treatment of collected reference values. Determination of reference limits. J. Clin. Chem. Clin. Biochem. 1987, 25, 645–656. [Google Scholar] [CrossRef]
- Laidler, P.; Cowan, D.A.; Hider, R.C.; Kicman, A.T. New Decision Limits and Quality-Control Material for Detecting Human Chorionic Gonadotropin Misuse in Sports. Clin. Chem. 1994, 40, 1306–1311. [Google Scholar] [CrossRef]
- Kicman, A.T.; Coutts, S.B.; Walker, C.J.; Cowan, D.A. Proposed Confirmatory Procedure for Detecting 5α-Dihydrotestosterone Doping in Male Athletes. Clin. Chem. 1995, 41, 1617–1627. [Google Scholar] [CrossRef]
- Piper, T.; Opfermann, G.; Thevis, M.; Schänzer, W. Determination of 13C/12C ratios of endogenous urinary steroids excreted as sulpho conjugates. Rapid Commun. Mass Spectrom. 2010, 24, 3171–3181. [Google Scholar] [CrossRef]
- Piper, T.; Fusshöller, G.; Emery, C.; Schänzer, W.; Saugy, M. Investigations on carbon isotope ratios and concentrations of urinary formestane. Drug Test. Analysis 2012, 4, 942–950. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 16 January 2024).
- Piper, T.; Mareck, U.; Geyer, H.; Flenker, U.; Thevis, M.; Platen, P.; Schänzer, W. Determination of 13C/12C ratios of endogenous urinary steroids: Method validation, reference population and application to doping control purposes. Rapid Commun. Mass Spectrom. 2008, 22, 2161–2175. [Google Scholar] [CrossRef]
- Piper, T.; Geyer, H.; Haenelt, N.; Huelsemann, F.; Schaenzer, W.; Thevis, M. Current Insights into the Steroidal Module of the Athlete Biological Passport. Int. J. Sports Med. 2021, 42, 863–878. [Google Scholar] [CrossRef]
- WADA 2021 Anti-Doping Testing Figures. Available online: https://www.wada-ama.org/en/news/wada-publishes-2021-testing-figures-report (accessed on 16 January 2024).
- Piper, T.; Emery, C.; Thomas, A.; Saugy, M.; Thevis, M. Combination of carbon isotope ratio with hydrogen isotope ratio determinations in sports drug testing. Anal. Bioanal. Chem. 2013, 405, 5455–5466. [Google Scholar] [CrossRef] [PubMed]
- Cawley, A.T.; Trout, G.J.; Kazlauskas, R.; Howe, C.J.; George, A.V. Carbon isotope ratio (δ13C) values of urinary steroids for doping control in sport. Steroids 2009, 74, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Piper, T.; Flenker, U.; Mareck, U.; Schänzer, W. 13C/12C ratios of endogenous urinary steroids investigated for doping control purposes. Drug Test. Analysis 2009, 1, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Piper, T.; Geyer, H.; Nieschlag, E.; Bally, L.; Thevis, M. Carbon isotope ratios of endogenous steroids found in human serum—Method development, validation, and reference population-derived thresholds. Anal. Bioanal. Chem. 2021, 413, 5655–5667. [Google Scholar] [CrossRef]
Sample | OHA [ng/mL] | OHE [ng/mL] | OHA/ OHE | A [ng/mL] | ETIO [ng/mL] | PD [ng/mL] | SG | Sex | IRMS |
---|---|---|---|---|---|---|---|---|---|
S17 | 10,465 | 147 | 71.2 | 22,000 | 3800 | 1700 | 1.025 | female | NA |
S18_1 | 25,250 | 606 | 41.7 | 22,000 | 6100 | 1700 | 1.029 | female | neg |
S18_2 | 25,000 | 691 | 36.2 | 27,000 | 15,000 | 250 | 1.032 | female | pos |
Year | n | OHA/OHE > 20 | % |
---|---|---|---|
2014 | 17,800 | 1837 | 10.3 |
2015 | 19,500 | 1945 | 10.0 |
2016 | 23,000 | 2246 | 9.8 |
2017 | 22,000 | 2101 | 9.6 |
2018 | 21,000 | 1808 | 8.6 |
PD-KT | PD-KE | PD-OHA | |
---|---|---|---|
mean | 1.6 | 0.1 | 0.4 |
SD | 0.99 | 0.73 | 0.76 |
Limit | 4.6 | 2.3 | 2.7 |
KT | KE | OHA | PD | |
---|---|---|---|---|
mean | −23.9 | −21.7 | −22.3 | −21.9 |
SD | 0.61 | 0.48 | 0.59 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piper, T.; Fußhöller, G.; Thevis, M. Employing 11-Ketotestosterone as a Target Analyte for Adrenosterone (11OXO) Administration in Doping Controls. Metabolites 2024, 14, 141. https://doi.org/10.3390/metabo14030141
Piper T, Fußhöller G, Thevis M. Employing 11-Ketotestosterone as a Target Analyte for Adrenosterone (11OXO) Administration in Doping Controls. Metabolites. 2024; 14(3):141. https://doi.org/10.3390/metabo14030141
Chicago/Turabian StylePiper, Thomas, Gregor Fußhöller, and Mario Thevis. 2024. "Employing 11-Ketotestosterone as a Target Analyte for Adrenosterone (11OXO) Administration in Doping Controls" Metabolites 14, no. 3: 141. https://doi.org/10.3390/metabo14030141
APA StylePiper, T., Fußhöller, G., & Thevis, M. (2024). Employing 11-Ketotestosterone as a Target Analyte for Adrenosterone (11OXO) Administration in Doping Controls. Metabolites, 14(3), 141. https://doi.org/10.3390/metabo14030141