In Silico Analysis of Novel Bacterial Metabolites with Anticancer Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Collection and Bacterial Endophyte Isolate
2.2. Bacterial Strain Maintenance
2.3. Genome Extraction, Library Preparation, and Sequencing
2.4. Genome Assembly and Annotation
2.5. Phylogenetic Analysis
2.6. Liquid Chromatography–Mass Spectrometry Analysis (LC–MS)
2.7. Secondary Metabolites and Proteins Selection
2.8. Molecular Docking
2.9. Absorption, Distribution, Metabolism, Elimination, and Toxicity (ADMET) Analysis
3. Results
3.1. Phylogeny Characterisation of Strain MHSD_37 and Secondary Metabolite Biosynthesis Gene Clusters Analysis
3.2. Identification and Annotation of Secondary Metabolites Using LC–MS
3.3. In Silico Analysis of the Anticancer Potential of Secondary Metabolites from MHSD_37
3.4. ADMET Screening of the Secondary Metabolites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Gusev, E.Y.; Zotova, N.V. Cellular stress and general pathological processes. Curr. Pharm. Des. 2019, 25, 251–297. [Google Scholar] [CrossRef]
- Available online: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/ (accessed on 25 January 2024).
- Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence#heading-Zero (accessed on 25 January 2024).
- Available online: https://seer.cancer.gov/statfacts/html/common.html (accessed on 25 January 2024).
- Chan, C.W.; Tai, D.; Kwong, S.; Chow, K.M.; Chan, D.N.; Law, B.M. The effects of pharmacological and non-pharmacological interventions on symptom management and quality of life among breast cancer survivors undergoing adjuvant endocrine therapy: A systematic review. Int. J. Environ. Res. 2020, 17, 2950. [Google Scholar] [CrossRef]
- Singh, P.; Chaturvedi, A. Complementary and alternative medicine in cancer pain management: A systematic review. Indian J. Palliat. Care. 2015, 21, 105. [Google Scholar] [CrossRef]
- Gowan, J.; Roller, L. Disease state management: Anticholinergic medicines-practice considerations and alternatives. AJP Aust. J. Pharm. 2022, 103, 76–84. [Google Scholar]
- Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019, 2, 141. [Google Scholar] [CrossRef]
- Song, G.; Cheng, L.; Chao, Y.; Yang, K.; Liu, Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv. Mater. 2017, 29, 1700996. [Google Scholar] [CrossRef]
- Sharma, P.; Mehta, M.; Dhanjal, D.S.; Kaur, S.; Gupta, G.; Singh, H.; Thangavelu, L.; Rajeshkumar, S.; Tambuwala, M.; Bakshi, H.A.; et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem. Biol. Interact. 2019, 309, 108720. [Google Scholar] [CrossRef]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton. Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Song, X.; Li, X.; Chen, M.; Guo, J.; Yang, D.; Chen, Z.; Zhao, S. Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resist. Updates 2023, 68, 100962. [Google Scholar] [CrossRef] [PubMed]
- Haider, T.; Pandey, V.; Banjare, N.; Gupta, P.N.; Soni, V. Drug resistance in cancer: Mechanisms and tackling strategies. Pharmacol. Rep. 2023, 72, 1125–1151. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017, 7, 339. [Google Scholar] [CrossRef]
- Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis 2018, 35, 309–318. [Google Scholar] [CrossRef]
- Nussinov, R.; Tsai, C.J.; Jang, H. Anticancer drug resistance: An update and perspective. Drug Resist. Updates 2021, 59, 00796. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv. Sci. 2018, 5, 1700964. [Google Scholar] [CrossRef]
- Morales-Cruz, M.; Delgado, Y.; Castillo, B.; Figueroa, C.M.; Molina, A.M.; Torres, A.; Milián, M.; Griebenow, K. Smart targeting to improve cancer therapeutics. Drug Des. Dev. Ther. 2019, 13, 3753–3772. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Weng, Z.; Li, Q.; Zhao, L.; Yu, N.; Deng, L.; Xu, W.; Yang, Y.; Zhu, Z.; et al. A new anti-HER2 antibody that enhances the anti-tumor efficacy of trastuzumab and pertuzumab with a distinct mechanism of action. Mol. Immunol. 2020, 119, 48–58. [Google Scholar] [CrossRef]
- Dogan, E.; Kara, H.G.; Kosova, B.; Cetintas, V.B. Targeting Apoptosis to Overcome Chemotherapy Resistance; Exon Publications: Brisbane City, QLD, Australia, 2022; pp. 163–180. [Google Scholar]
- Davids, M.S.; Letai, A. Targeting the B-cell lymphoma/leukemia 2 family in cancer. J. Clin. Oncol. 2012, 30, 3127. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.T.; Li, Z.L.; He, Z.X.; Qiu, J.X.; Zhou, S.F. Molecular mechanisms for tumour resistance to chemotherapy. Clin. Exp. Pharmacol. Physiol. 2016, 43, 723–737. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, F.U.; Sufiyan Chhipa, A.; Mishra, V.; Gupta, V.K.; Rawat, S.G.; Kumar, A.; Pathak, C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep. 2022, 5, 1291. [Google Scholar] [CrossRef] [PubMed]
- Sajid, A.; Lusvarghi, S.; Murakami, M.; Chufan, E.E.; Abel, B.; Gottesman, M.M.; Durell, S.R.; Ambudkar, S.V. Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein. Proc. Natl. Acad. Sci. USA 2020, 117, 29609–29617. [Google Scholar] [CrossRef]
- Goebel, J.; Chmielewski, J.; Hrycyna, C.A. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: Future opportunities for structure-based drug design of inhibitors. Cancer Drug Resist. 2021, 4, 784. [Google Scholar] [CrossRef]
- Robinson, K.; Tiriveedhi, V. Perplexing role of P-glycoprotein in tumor microenvironment. Front. Oncol. 2020, 10, 265. [Google Scholar] [CrossRef]
- Pal, D.; Rai, A.; Checker, R.; Patwardhan, R.S.; Singh, B.; Sharma, D.; Sandur, S.K. Role of protein S-Glutathionylation in cancer progression and development of resistance to anti-cancer drugs. Arch. Biochem. Biophys. 2021, 704, 108890. [Google Scholar] [CrossRef]
- Lv, N.; Huang, C.; Huang, H.; Dong, Z.; Chen, X.; Lu, C.; Zhang, Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants 2023, 12, 1970. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021, 6, 201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, Q.; Xiao, W.; Zhao, Y.; Pi, J.; Xu, H.; Zhao, H.; Xu, J.; Evans, C.E.; Jin, H. Advances in anti-tumor treatments targeting the CD47/SIRPα axis. Front. Immunol. 2020, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Badodekar, N.; Sharma, A.; Patil, V.; Telang, G.; Sharma, R.; Patil, S.; Vyas, N.; Somasundaram, I. Angiogenesis induction in breast cancer: A paracrine paradigm. Cell Biochem. Funct. 2021, 39, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Elebiyo, T.C.; Rotimi, D.; Evbuomwan, I.O.; Maimako, R.F.; Iyobhebhe, M.; Ojo, O.A.; Oluba, O.M.; Adeyemi, O.S. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat. Res. Commun. 2022, 32, 100620. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.F.; Wang, Z.C.; Lou, D.; Fang, Q.Q.; Hu, Y.Y.; Zhao, W.Y.; Zhang, L.Y.; Wu, L.H.; Tan, W.Q. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed. Pharmacother. 2020, 129, 110287. [Google Scholar] [CrossRef] [PubMed]
- Stephen, N.M.; Deepika, U.R.; Maradagi, T.; Sugawara, T.; Hirata, T.; Ganesan, P. Insight on the cellular and molecular basis of blood vessel formation: A specific focus on tumor targets and therapy. MedComm–Oncol. 2023, 2, 22. [Google Scholar] [CrossRef]
- Usman, S.; Waseem, N.H.; Nguyen TK, N.; Mohsin, S.; Jamal, A.; Teh, M.T.; Waseem, A. Vimentin is at the heart of epithelial mesenchymal transition (EMT) mediated metastasis. Cancers 2021, 13, 4985. [Google Scholar] [CrossRef] [PubMed]
- Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines 2022, 10, 1686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Li, M.Y.; Wang, Z.; Zuo, H.X.; Wang, J.Y.; Xing, Y.; Jin, C.; Xu, G.; Piao, L.; Piao, H.; et al. Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer. Phytomedicine 2020, 68, 153172. [Google Scholar] [CrossRef] [PubMed]
- Labrie, M.; Brugge, J.S.; Mills, G.B.; Zervantonakis, I.K. Therapy resistance: Opportunities created by adaptive responses to targeted therapies in cancer. Nat. Rev. Cancer 2022, 22, 323–339. [Google Scholar] [CrossRef]
- Kifle, Z.D.; Tadele, M.; Alemu, E.; Gedamu, T.; Ayele, A.G. A recent development of new therapeutic agents and novel drug targets for cancer treatment. SAGE Open Med. 2021, 9, 20503121211067083. [Google Scholar] [CrossRef]
- Marak, B.N.; Dowarah, J.; Khiangte, L.; Singh, V.P. A comprehensive insight on the recent development of cyclic dependent kinase inhibitors as anticancer agents. Eur. J. Med. Chem. 2020, 203, 112571. [Google Scholar] [CrossRef]
- Maity, T.K.; Kim, E.Y.; Cultraro, C.M.; Venugopalan, A.; Khare, L.; Poddutoori, R.; Marappan, S.; Syed, S.D.; Telford, W.G.; Samajdar, S.; et al. Novel CDK12/13 Inhibitors AU-15506 and AU-16770 Are Potent Anti-Cancer Agents in EGFR Mutant Lung Adenocarcinoma with and without Osimertinib Resistance. Cancers 2023, 15, 2263. [Google Scholar] [CrossRef]
- Molehin, D.; Filleur, S.; Pruitt, K. Regulation of aromatase expression: Potential therapeutic insight into breast cancer treatment. Mol. Cell Endocrinol. 2021, 531, 111321. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, W.L.; Zhang, R.N.; He, X.S.; Wang, J.R.; Liu, Y.X.; Wang, Y.; Yang, X.M.; Zhang, Y.J.; Gan, W.J. The role of TGF-β signaling pathways in cancer and its potential as a therapeutic target. Evid. Based. Complement. Altern. Med. 2021, 2021, 15–31. [Google Scholar] [CrossRef]
- Erkisa, M.; Sariman, M.; Geyik, O.G.; Geyik, C.; Stanojkovic, T.; Ulukaya, E. Natural products as a promising therapeutic strategy to target cancer stem cells. Curr. Med. Chem. 2022, 29, 741–783. [Google Scholar] [CrossRef]
- Basit, A.; Shah, S.T.; Ullah, I.; Ullah, I.; Mohamed, H.I. Microbial Bioactive Compounds Produced by Endophytes (Bacteria and Fungi) and Their Uses in Plant Health. In Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 285–318. [Google Scholar]
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M. The Galaxy Platform for Accessible, Reproducible and Collaborative Biomedical Analyses: 2018 Update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Mikheenko, A.; Prjibelski, A.; Saveliev, V.; Antipov, D.; Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 2018, 34, i142–i150. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef]
- Lee, I.; OukKim, Y.; Park, S.-C.; Chun, J. OrthoANI: An Improved Algorithm and Software for Calculating Average Nucleotide Identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016, 8, 61–81. [Google Scholar] [CrossRef]
- Kim, H.W.; Wang, M.; Leber, C.A.; Nothias, L.-F.; Reher, R.; Kang, K.B.; van der Hooft, J.J.J.; Dorrestein, P.C.; Gerwick, W.H.; Cottrell, G.W. NPClassifier: A Deep Neural Network-Based Structural Classification Tool for Natural Products. J. Nat. Prod. 2021, 84, 2795–2807. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Walker, K.; Long, R.; Croteau, R. The final acylation step in taxol biosynthesis: Cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proc. Natl. Acad. Sci. USA 2002, 14, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Murakami, T.; Kurita, K.; Yamamoto, N. Low-molecular-weight anti-HIV-1 peptides from the amino-terminal sequence of RANTES: Possible lead compounds for coreceptor-directed anti-HIV-1 agents. Bioorganic Med. Chem. Lett. 1999, 9, 1357–1360. [Google Scholar] [CrossRef] [PubMed]
- Paudel, B.; Maharjan, R.; Rajbhandari, P.; Aryal, N.; Aziz, S.; Bhattarai, K.; Baral, B.; Malla, R.; Bhattarai, H.D. Maculosin, a non-toxic antioxidant compound isolated from Streptomyces sp. KTM18. Pharm. Biol. 2021, 59, 933–936. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.Y.; Zhao, D.G.; Gao, K. Structural investigation and biological activity of sesquiterpene lactones from the traditional Chinese herb Inula racemosa. J. Nat. Prod. 2013, 76, 564–570. [Google Scholar] [CrossRef]
- El-Gendy, B.e.l.-D.; Rateb, M.E. Antibacterial activity of diketopiperazines isolated from a marine fungus using t-butoxycarbonyl group as a simple tool for purification. Bioorganic Med. Chem. Lett. 2015, 25, 3125–3128. [Google Scholar] [CrossRef]
- Kher, S.S.; Penzo, M.; Fulle, S.; Finn, P.W.; Blackman, M.J.; Jirgensons, A. Substrate derived peptidic α-ketoamides as inhibitors of the malarial protease PfSUB1. Bioorganic Med. Chem. Lett. 2014, 24, 4486–4489. [Google Scholar] [CrossRef]
- Wu, S.; Qi, W.; Su, R.; Li, T.; Lu, D.; He, Z. CoMFA and CoMSIA analysis of ACE-inhibitory, antimicrobial and bitter-tasting peptides. Eur. J. Med. Chem. 2014, 84, 100–106. [Google Scholar] [CrossRef]
- Li, Q.; Yan, J.; Zhang, L.; Chen, P. Antifibrotic effects of N-acetyl-seryl-aspartyl-lysyl-proline mediated by the regulation of MCP-1 and ED-1 expression on rats with silicosis. Wei Sheng Yan Jiu 2008, 7, 666–670. (In Chinese) [Google Scholar]
- Mayer, R.; Picard, I.; Lawton, P.; Grellier, P.; Barrault, C.; Monsigny, M.; Schrével, J. Peptide derivatives specific for a Plasmodium falciparum proteinase inhibit the human erythrocyte invasion by merozoites. J. Med. Chem. 1991, 34, 3029–3035. [Google Scholar] [CrossRef]
- Georgsson, J.; Sköld, C.; Botros, M.; Lindeberg, G.; Nyberg, F.; Karlén, A.; Hallberg, A.; Larhed, M. Synthesis of a new class of druglike angiotensin II C-terminal mimics with affinity for the AT2 receptor. J. Med. Chem. 2007, 50, 1711–1715. [Google Scholar] [CrossRef] [PubMed]
- LeBeau, A.M.; Banerjee, S.R.; Pomper, M.G.; Mease, R.C.; Denmeade, S.R. Optimization of peptide-based inhibitors of prostate-specific antigen (PSA) as targeted imaging agents for prostate cancer. Bioorganic Med. Chem. Lett. 2009, 17, 4888–4893. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.S.; Venkatraman, S.; Furness, K.; Nimkar, S.; Shepherd, T.A.; Wang, Q.M.; Aubé, J.; Hanzlik, R.P. Synthesis and evaluation of peptidyl Michael acceptors that inactivate human rhinovirus 3C protease and inhibit virus replication. J. Med. Chem. 1998, 41, 2579–2587. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.G.; Lynch, M.; Plaut, A.G.; Burton, J. Tetrapeptide inhibitors of the IgA1 proteinases from type I Neisseria gonorrhoeae. J. Med. Chem. 1989, 32, 2407–2411. [Google Scholar] [CrossRef]
- Marlowe, C.K.; Sinha, U.; Gunn, A.C.; Scarborough, R.M. Design, synthesis and structure-activity relationship of a series of arginine aldehyde factor Xa inhibitors. Part 1: Structures based on the (D)-Arg-Gly-Arg tripeptide sequence. Bioorganic Med. Chem. Lett. 2003, 10, 13–16. [Google Scholar] [CrossRef]
- Noever, D. Naturally occurring protease inhibitors potent against the human immunodeficiency virus. Biochem. Biophys. Res. Commun. 1996, 227, 125–130. [Google Scholar] [CrossRef]
- Yin, Z.; Kelso, M.J.; Beck, J.L.; Oakley, A.J. Structural and thermodynamic dissection of linear motif recognition by the E. coli sliding clamp. J. Med. Chem. 2013, 56, 8665–8673. [Google Scholar] [CrossRef] [PubMed]
- Chapelat, J.; Berst, F.; Marzinzik, A.L.; Moebitz, H.; Drueckes, P.; Trappe, J.; Fabbro, D.; Seebach, D. The Substrate-Activity-Screening methodology applied to receptor tyrosine kinases: A proof-of-concept study. Eur. J. Med. Chem. 2012, 57, 1–9. [Google Scholar] [CrossRef]
- Zin, N.M.; Baba, M.S.; Zainal-Abidin, A.H.; Latip, J.; Mazlan, N.W.; Edrada-Ebel, R. Gancidin W, a potential low-toxicity antimalarial agent isolated from an endophytic Streptomyces SUK10. Drug Des. Dev. Ther. 2017, 11, 351–363. [Google Scholar] [CrossRef]
- Dragovich, P.S.; Webber, S.E.; Babine, R.E.; Fuhrman, S.A.; Patick, A.K.; Matthews, D.A.; Reich, S.H.; Marakovits, J.T.; Prins, T.J.; Zhou, R.; et al. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 2. Peptide structure-activity studies. J. Med. Chem. 1998, 41, 2819–2834. [Google Scholar] [CrossRef] [PubMed]
- Llinàs-Brunet, M.; Bailey, M.D.; Ghiro, E.; Gorys, V.; Halmos, T.; Poirier, M.; Rancourt, J.; Goudreau, N. A systematic approach to the optimization of substrate-based inhibitors of the hepatitis C virus NS3 protease: Discovery of potent and specific tripeptide inhibitors. J. Med. Chem. 2004, 47, 6584–6594. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, H.; Zhu, H.; Wang, X.; Zhang, L.; Li, M.; Li, Q.; Yuan, Y.; Xu, W. Novel aminopeptidase N (APN/CD13) inhibitors derived from 3-phenylalanyl-N′-substituted-2,6-piperidinedione. Bioorganic Med. Chem. Lett. 2010, 18, 5981–5987. [Google Scholar] [CrossRef]
- May, J.J.; Wendrich, T.M.; Marahiel, M.A. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem. 2001, 276, 7209–7217. [Google Scholar] [CrossRef]
- Deaton, J.; Sun, J.; Holzenburg, A.; Struck, D.K.; Berry, J.; Young, R. Functional bacteriorhodopsin is efficiently solubilized and delivered to membranes by the chaperonin GroEL. Proc. Natl. Acad. Sci. USA 2004, 101, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Chung, D.D.L. Flexible graphite modified by carbon black paste for use as a thermal interface material. Carbon 2011, 49, 1075–1086. [Google Scholar] [CrossRef]
- Downs, C.A.; DiNardo, J.C.; Stien, D.; Rodrigues, A.M.; Lebaron, P. Benzophenone accumulates over time from the degradation of octocrylene in commercial sunscreen products. Chem. Res. Toxicol. 2021, 34, 1046–1054. [Google Scholar] [CrossRef]
- Dimopoulou, A.; Theologidis, I.; Benaki, D.; Koukounia, M.; Zervakou, A.; Tzima, A.; Diallinas, G.; Hatzinikolaou, D.G.; Skandalis, N. Direct Antibiotic Activity of Bacillibactin Broadens the Biocontrol Range of Bacillus amyloliquefaciens MBI600. Msphere 2021, 6, 0037621. [Google Scholar] [CrossRef] [PubMed]
- Sur, S.; Romo, T.D.; Grossfield, A. Selectivity and Mechanism of Fengycin, an Antimicrobial Lipopeptide, from Molecular Dynamics. J. Phys. Chem. B 2018, 122, 2219–2226. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.R.; Hashemi, S.M. Development and therapeutic potential of 2-aminothiazole derivatives in anticancer drug discovery. Med. Chem. Res. 2021, 30, 771–806. [Google Scholar] [CrossRef] [PubMed]
- Eckert, E.; Münch, F.; Göen, T.; Purbojo, A.; Müller, J.; Cesnjevar, R. Comparative study on the migration of di-2-ethylhexyl phthalate (DEHP) and tri-2-ethylhexyl trimellitate (TOTM) into blood from PVC tubing material of a heart-lung machine. Chemosphere 2016, 145, 10–16. [Google Scholar] [CrossRef]
- Chen, X.; Dai, X.; Liu, Y.; Yang, Y.; Yuan, L.; He, X.; Gong, G. Solanum nigrum Linn.: An Insight into Current Research on Traditional Uses, Phytochemistry, and Pharmacology. Front. Pharmacol. 2022, 13, 918071. [Google Scholar] [CrossRef]
- Park, S.T.; Kim, J. Trends in next-generation sequencing and a new era for whole genome sequencing. Int. Neurourol. J. 2016, 20, S76. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Hahnke, R.L.; Petersen, J.; Scheuner, C.; Michael, V.; Fiebig, A.; Rohde, C.; Rohde, M.; Fartmann, B.; Goodwin, L.A.; et al. Complete genome sequence of DSM 30083 T, the type strain (U5/41 T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand. Genom. Sci. 2014, 9, 1–19. [Google Scholar]
- Nalli, Y.; Singh, S.; Gajjar, A.; Mahizhaveni, B.; Dusthackeer, V.N.A.; Shinde, P.B. Bacillibactin class siderophores produced by the endophyte Bacillus subtilis NPROOT3 as antimycobacterial agents. Lett. Appl. Microbiol. 2023, 76, ovac026. [Google Scholar]
- Wu, Z.Z.; Ding, G.F.; Huang, F.F.; Yang, Z.S.; Yu, F.M.; Tang, Y.P.; Jia, Y.L.; Zheng, Y.Y.; Chen, R. Anticancer activity of Anthopleura anjunae oligopeptides in prostate cancer DU-145 cells. Mar. Drugs 2018, 16, 125. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.; Joo, C.; Kim, G.Y.; Ko, K.S.; Huh, K.M.; Han, J.; Choi, J.S. Cationic oligopeptide-functionalized mitochondria targeting sequence show mitochondria targeting and anticancer activity. Macromol. Res. 2019, 27, 1071–1080. [Google Scholar] [CrossRef]
- Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. Molecular docking and dynamics simulation study of bioactive compounds from Ficus carica L. with important anticancer drug targets. PLoS ONE 2021, 16, e0254035. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Wang, J.; Zhou, R.; Li, Y.; Yu, H.; Hou, T. ADMET evaluation in drug discovery. 11. PharmacoKinetics Knowledge Base (PKKB): A comprehensive database of pharmacokinetic and toxic properties for drugs. J. Chem. Inf. Model. 2012, 52, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Aaghaz, S.; Gohel, V.; Kamal, A. Peptides as potential anticancer agents. Curr. Top. Med. Chem. 2019, 19, 1491–1511. [Google Scholar] [CrossRef] [PubMed]
Precursor (m/z) | Retention Time | Fragments | Class | Molecular Formula | Metabolite Annotation | Biological Activity | References |
---|---|---|---|---|---|---|---|
734.31 | 6.13 | 716, 690, 672, 660 | Diterpenoids | C40H47NO12 | 3′-N-Debenzoyl-2′-deoxytaxol | Anticancer | [61] |
545.26 | 6.4 | 412, 242, 155 | Oligopeptide | C22H36N6O10 | Acetyl-DTTPA-NH2 | Anti-HIV | [62] |
261.12 | 6.73 | 188, 136, 107 | Alpha amino acid | C14H16N2O3 | Maculosin | Antioxidant | [63] |
314.17 | 7 | 215 | Lipid | C15H22O3 | Racemosalactone A | Anticancer | [64] |
197.13 | 7.01 | 154, 112 | Alpha amino acid | C10H16N2O2 | Cyclo(-Pro-Val) | Antifungal | [65] |
528.27 | 7.31 | 510, 464, 286, 299 | Oligopeptide | C23H37N5O9 | n.a. | Antimalarial | [66] |
262.14 | 7.39 | 120, 116, 106 | Peptide | C14H18N2O3 | Phenylalanylproline | Antimicrobial | [67] |
530.25 | 7.61 | 318, 300, 205, 171, 143 | Oligopeptide | C22H35N5O10 | n.a. | Anticancer | [68] |
765.34 | 7.66 | 652, 608, 579, 466, 419 | Oligopeptide | C38H48N6O11 | n.a. | Antimalarial | [69] |
408.23 | 7.69 | 293, 235, 156, 128, 109 | Oligopeptide | C19H29N5O5 | n.a. | Anti-angiotensin II | [70] |
680.37 | 7.69 | 549, 452, 434, 424, 406 | Oligopeptide | C31H49N7O10 | n.a. | Anticancer | [71] |
702.35 | 7.69 | 658, 575, 545, 462 | Oligopeptide | C36H49N5O8 | n.a. | Anti-virus | [72] |
401.21 | 7.76 | 286, 258, 173, 171, 143 | Oligopeptide | C17H28N4O7 | n.a. | Antibacterial | [73] |
444.23 | 7.77 | 369, 301, 237, 186, 141 | Oligopeptide | C16H29N9O6 | n.a. | Anticlot | [74] |
888.42 | 7.79 | 863, 757, 747, 677, 653 | Oligopeptide | C39H59N11O14 | n.a. | Anti-virus | [75] |
587.31 | 8.25 | 438, 411, 417, 354, 343 | Oligopeptide | C25H42N6O10 | n.a. | Antimicrobial | [76] |
757.32 | 8.29 | 658, 583, 511, 485, 468 | Oligopeptide | C38H48N2O14 | n.a. | Anticancer | [77] |
411.26 | 8.32 | 298, 215, 197, 181, 169 | Oligopeptide | C20H34N4O5 | n.a. | Antimicrobial | [67] |
211.14 | 8.37 | 183, 154, 138, 114 | Alpha amino acid | C11H18N2O2 | Gancidin W | Antimalarial agent | [78] |
578.29 | 8.39 | 447, 417, 402, 384, 316 | Oligopeptide | C27H39N5O9 | n.a. | Antimalarial agent | [68] |
574.32 | 9.17 | 505, 461, 344, 314, 243 | Oligopeptide | C29H43N5O7 | n.a. | Anti-virus | [79] |
701.32 | 9.29 | 536, 518, 477, 449, 423 | Phenylalanine | C38H44N4O9 | n.a. | Anti-virus | [80] |
481.21 | 9.48 | 384, 338, 237 | Oligopeptide | C25H28N4O6 | n.a. | Anticancer | [81] |
883.27 | 9.88 | 690, 672, 611, 589, 536 | Cyclic depsipeptides | C39H42N6O18 | Corneybactin | Iron acquisition | [82] |
365.28 | 14.78 | 307, 287, 262, 240, 126 | Alpha amino acids | C19H39N2O3 | Empigen BR | Surfactant | [83] |
279.16 | 16.51 | 149, 140, 121 | Benzoic acid esters | C16H22O4 | Hatcol DBP | Plasticizer | [84] |
362.21 | 19.11 | 232, 203, 176, 105 | Cinnamic acid esters | C24H27NO2 | Octocrylene | Sunscreen | [85] |
631.41 | 24.44 | 599, 585, 379, 333, 323 | Terpene glycosides | C33H58O11 | Kurilensoside f | Antimicrobial | [86] |
506.53 | 24.48 | 268, 258, 239 | N-acyl amines | C34H67NO | Oleyl palmitamide | Plasticizer | [87] |
551.59 | 24.48 | 506, 297, 268, 107 | N-acyl amines | C36H74N2O | Butanamide, 4-(dioctylamino) | Anticancer | [88] |
547.4 | 25.53 | 323, 305, 193, 165 | Benzoic acid esters | C33H54O6 | hatcol 2000 | Plasticizer | [89] |
Metabolite | PubChem ID | Binding Energy (kcal/mole) | Important Interactions |
---|---|---|---|
1 | 44420768 | −3.13 | Hydrogen bond: TYR124:HN, TYR124:HH. |
2 | 126672973 | −1.34 | Hydrogen bond: ARG33:HH11; ARG44:HH11, GLU45:HN |
3 | 12376189 | −3.46 | LEU98:HN |
4 | 102173172 | −1.06 | THR1:H1, GLY61:HN |
Water Solubility | Caco2 Permeability | Intestinal Absorption (Human) | Skin Permeability | P-Glycoprotein Substrate | P-Glycoprotein I Inhibitor | P-Glycoprotein II Inhibitor | VDss (Human) | Fraction Unbound (Human) | BBB Permeability | T. Pyriformis Toxicity | Minnow Toxicity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Numeric (log mol/L) | Numeric (log Papp in 10−6 cm/s) | Numeric (% Absorbed) | Numeric (log Kp) | Categorical (Yes/No) | Categorical (Yes/No) | Categorical (Yes/No) | Numeric (log L/kg) | Numeric (Fu) | Numeric (log BB) | Numeric (log μg/L) | Numeric (log mM) | |
3 | −2.811 | −0.837 | 13 | −2.375 | Yes | No | No | −0.617 | 0.457 | −1.467 | 0.285 | 3.444 |
1 | −2.872 | −0.517 | 27 | −2.375 | Yes | No | No | −0.899 | 0.684 | −1.48 | 0.285 | 3.828 |
2 | −2.85 | −0.813 | 0 | −2.735 | Yes | No | No | −1.191 | 0.543 | −1.566 | 0.285 | 8.151 |
4 | −3.49 | −0.307 | 17 | −2.37 | Yes | No | No | −1.21 | 0.464 | 0.065 | 0.285 | 7.633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maumela, P.; Serepa-Dlamini, M.H. In Silico Analysis of Novel Bacterial Metabolites with Anticancer Activities. Metabolites 2024, 14, 163. https://doi.org/10.3390/metabo14030163
Maumela P, Serepa-Dlamini MH. In Silico Analysis of Novel Bacterial Metabolites with Anticancer Activities. Metabolites. 2024; 14(3):163. https://doi.org/10.3390/metabo14030163
Chicago/Turabian StyleMaumela, Pfariso, and Mahloro Hope Serepa-Dlamini. 2024. "In Silico Analysis of Novel Bacterial Metabolites with Anticancer Activities" Metabolites 14, no. 3: 163. https://doi.org/10.3390/metabo14030163
APA StyleMaumela, P., & Serepa-Dlamini, M. H. (2024). In Silico Analysis of Novel Bacterial Metabolites with Anticancer Activities. Metabolites, 14(3), 163. https://doi.org/10.3390/metabo14030163