Intake Biomarkers for Nutrition and Health: Review and Discussion of Methodology Issues
Abstract
:1. Introduction
2. Dietary Intake Biomarkers: Preamble
2.1. Are Dietary Intake Biomarkers Strongly Needed for Reliable Nutritional Epidemiology Association Analyses?
2.2. Objective Measurement of Total Energy Intake
3. Objective Assessment of Food Intake
3.1. Introduction
3.2. Metabolomics Biomarkers for Foods and Food Groups: Two-Step Development Process
3.3. Metabolomic Biomarkers for Foods and Food Groups: Human Feeding Study Using Habitual Diets
3.4. Metabolomics Biomarkers for Nutrients and Nutrient Densities
3.5. Metabolomics Biomarkers for Dietary Patterns
4. Review of the Application of Intake Biomarkers in Clinical Outcome Association Studies
5. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Schoeller, D.A. Recent advances from application of doubly-labeled water to measurement of human energy expenditure. J. Nutr. 1999, 129, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Bingham, S.A. Urine nitrogen as a biomarker for the validation of dietary protein intake. J. Nutr. 2003, 33 (Suppl. S3), 921S–924S. [Google Scholar] [CrossRef]
- Scalbert, A.; Brennan, L.; Manach, C.; Andres-Lacueva, C.; Dragsted, L.O.; Draper, J.; Rappaport, S.M.; van der Hooft, J.J.; Wishart, D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014, 99, 1286–1308. [Google Scholar] [CrossRef]
- Guertin, K.A.; Moore, S.C.; Sampson, J.N.; Huang, W.-Y.; Xiao, Q.; Stolzenberg-Solomon, R.Z.; Sinha, R.; Cross, A.J. Metabolomics in nutritional epidemiology: Identifying metabolites associated with diet and quantifying their potential to uncover diet–disease relations in populations. Am. J. Clin. Nutr. 2014, 100, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, H.; Brennan, L. Metabolomics as a tool in the identification of dietary biomarkers. Proc. Nutr. Soc. 2017, 76, 42–53. [Google Scholar] [CrossRef]
- Guasch-Ferre, M.; Bhupathiraju, S.N.; Hu, F.B. Use of metabolomics in improving assessment of dietary intake. Clin. Chem. 2018, 64, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pena, D.; Brennan, L. Recent advances in the application of metabolomics for nutrition and health. Annu. Rev. Food Sci. Technol. 2019, 10, 479–519. [Google Scholar] [CrossRef]
- Brennan, L.; Hu, F.B.; Sun, Q. Metabolomics meets nutritional epidemiology: Harnessing the potential in metabolomics data. Metabolites 2021, 11, 709. [Google Scholar] [CrossRef]
- De Jonge, L.; DeLany, J.P.; Nguyen, T.; Howard, J.; Hadley, E.C.; Redman, L.M.; Ravussin, E. Validation study of energy expenditure and intake during calorie restriction using doubly labeled water and changes in body composition. Am. J. Clin. Nutr. 2007, 85, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, L.A.; Ravussin, E.; Bray, G.A.; Han, H.; Redman, L.M. An objective estimate of energy intake during weight gain using the intake-balance method. Am. J. Clin. Nutr. 2014, 100, 806–812. [Google Scholar] [CrossRef]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, M.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using intake biomarkers to evaluate the extent of dietary underreporting in a large sample of adults: The OPEN Study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.K.; Soultanakis, R.P.; Matthers, D.E. Literacy and body fatness are associated with underreporting of energy in low-income women using the multiple-pass 24-hour recall: A doubly labeled water experiment. J. Am. Diet. Assoc. 1998, 98, 1136–1140. [Google Scholar] [CrossRef]
- Heerstrass, D.; Ocke, M.; Bueno-de-Mesquita, H.; Peeters, P.H.; Seidell, J.C. Underreporting of energy, protein, and potassium intake in relation to body mass index. Int. J. Epidemiol. 1998, 27, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Neuhouser, M.L.; Tinker, L.; Shaw, P.A.; Schoeller, D.; Bingham, S.A.; Van Horn, L.; Beresford, S.A.A.; Caan, B.; Thompson, C.; Satterfield, S.; et al. Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women’s Health Initiative. Am. J. Epidemiol. 2008, 167, 1247–1259. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Mossavar-Rahmani, Y.; Huang, Y.; Van Horn, L.; Beresford, S.A.; Caan, B.; Tinker, L.; Schoeller, D.; Bingham, S.; Eaton, C.B.; et al. Evaluation and comparison of food records, recalls and frequencies for energy and protein assessment using recovery biomarkers. Am. J. Epidemiol. 2011, 174, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Shaw, P.A.; Bingham, S.A.; Beresford, S.A.; Caan, B.; Neuhouser, M.L.; Patterson, R.E.; Stefanick, M.L.; Satterfield, S.; Thomson, C.A.; et al. Biomarker-calibrated energy and protein consumption and increased cancer risk among postmenopausal women. Am. J. Epidemiol. 2009, 169, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Huang, Y.; Kuller, L.H.; Tinker, L.F.; Van Horn, L.; Stefanick, M.L.; Sarto, G.; Ockene, J.; Johnson, K.J. Biomarker-calibrated energy and protein consumption and cardiovascular disease risk among postmenopausal women. Epidemiology 2011, 22, 170–179. [Google Scholar] [CrossRef]
- Tinker, L.F.; Sarto, G.E.; Howard, B.V.; Huang, Y.; Neuhouser, M.L.; Mossavar-Rahmani, Y.; Beasley, J.M.; Margolis, K.L.; Eaton, C.B.; Phillips, L.S.; et al. Biomarker-calibrated dietary energy and protein intake association with diabetes risk among postmenopausal women from the Women’s Health Initiative. Am. J. Clin. Nutr. 2011, 94, 1600–1606. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Aragaki, A.K.; Manson, J.E.; Schoeller, D.A.; Tinker, L.F.; Mossavar-Rahmani, Y.; Wallace, R.B.; LaMonte, M.J.; Tooze, J.A.; Johnson, K.C.; et al. Total energy expenditure as assessed by doubly labeled water and all-cause mortality in a cohort of postmenopausal women. Am. J. Clin. Nutr. 2023, 117, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Aragaki, A.K.; Zheng, C.; Manson, J.E.; Tinker, L.F.; Ravelli, M.N.; Mossavar-Rahmani, Y.; Wallace, R.B.; Tooze, J.A.; Johnson, K.C.; et al. Biomarker-assessed total energy intake and its association with all-cause mortality in postmenopausal women. Am. J. Clin. Nutr. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Zheng, C.; Nagana Gowda, G.A.; Raftery, D.; Neuhouser, M.L.; Tinker, L.F.; Prentice, R.L.; Beresford, S.A.A.; Zhang, Y.; Djukovic, D.; Gu, H.; et al. Development of potential metabolomics-based biomarkers of protein, carbohydrate and fat intakes using a controlled feeding study. Eur. J. Nutr. 2021, 60, 4207–4218. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Smith, S.M.; Graubard, B.I.; Kahle, L.L.; Subar, A.F.; Cleveland, L.E.; Ballard-Barbash, R. Low energy reporters vs others: A comparison of reported food intakes. Eur. J. Clin. Nutr. 2000, 54, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Johansson, G.; Wikman, A.; Ahren, A.M.; Hallmans, G.; Johansson, I. Underreporting of energy intake in repeated 24-hour recalls related to gender, age, weight status, day of interview, educational level, reported food intake, smoking habits and area of living. Public Health Nutr. 2001, 4, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Lafay, L.; Mennen, L.; Basdevant, A.; Charles, M.A.; Borys, J.M.; Eschwege, E.; Romon, M. Does energy intake underreporting involve all kinds of food or only specific food items? Results from the Fleurbaix Laventie Ville Sante (FLVS) study. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Pryer, J.A.; Vrijheid, M.; Nichols, R.; Kiggins, M.; Elliott, P. Who are the ‘low energy reporters’ in the dietary and nutritional survey of British adults? Int. J. Epidemiol. 1997, 26, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.A.; Wynter, S.; Wilks, R.; Forrester, T. Under- and overreporting of energy is related to obesity, lifestyle factors and food group intakes in Jamaican adults. Public Health Nutr. 2004, 7, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Scagliusi, F.B.; Polacow, V.O.; Artioli, G.G.; Benatti, F.B.; Lancha, A.H., Jr. Selective underreporting of energy intake in women: Magnitude, determinants, and effect of training. J. Am. Diet. Assoc. 2003, 103, 1306–1313. [Google Scholar] [CrossRef]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [PubMed]
- Freedman, L.S.; Schatzkin, A.; Midthune, D.; Kipnis, V. Dealing with dietary measurement error in nutritional cohort studies. J. Natl. Cancer Inst. 2011, 103, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Brouwer-Brolsma, E.M.; Brennan, L.; Drevon, C.A.; van Kranen, H.; Manach, C.; Dragsted, L.O.; Roche, H.M.; Andres-Lacueva, C.; Bakker, S.J.L.; Bouwman, J.; et al. Combining traditional dietary assessment methods with novel metabolomics techniques: Present efforts by the Food Biomarker Alliance. Proc. Nutr. Soc. 2017, 76, 619–627. [Google Scholar] [CrossRef]
- Guenther, P.M.; Casavale, K.O.; Kirkpatrick, S.I.; Reedy, J.; Hiza, H.A.B.; Kuczynski, K.J.; Kahle, L.L.; Krebs-Smith, S.M. Update on the healthy eating index: HEI-2010. J. Acad. Nutr. Diet. 2017, 113, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Pallister, T.; Jennings, A.; Mohney, R.P.; Yarand, D.; Mangino, M.; Cassidy, A.; MacGregor, A.; Spector, T.D.; Menni, C. Characterizing Blood Metabolomics Profiles Associated with Self-Reported Food Intakes in Female Twins. PLoS ONE 2016, 11, e0158568. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gapstur, S.M.; Carter, B.D.; Hartman, T.J.; Stevens, V.L.; Gaudet, M.M.; McCullough, M.L. Untargeted metabolomics identifies novel potential biomarkers of habitual food intake in a cross-sectional study of postmenopausal women. J. Nutr. 2018, 148, 932–943. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hodge, R.A.; Stevens, V.L.; Hartman, T.J.; McCullough, M.L. Identification and reproducibility of urinary metabolomic biomarkers of habitual food intake in a cross-sectional analysis of the Cancer Prevention Study-3 diet assessment sub-study. Metabolites 2021, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Sampson, J.N.; Cross, A.J.; Sinha, R.; Guertin, K.A.; Moy, K.A.; Rothman, N.; Irwin, M.L.; Mayne, S.T.; Stolzenberg-Solomon, R.; et al. Comparing metabolite profiles of habitual diet in serum and urine. Am. J. Clin. Nutr. 2016, 104, 776–789. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Pratico, G.; Scalbert, A.; Vergeres, G.; Kolehmainen, M.; Manach, C.; Brennan, L.; Afman, L.A.; Wishart, D.S.; Andres-Lacueva, C.; et al. A scheme for a flexible classification of dietary and health biomarkers. Genes Nutr. 2017, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Pratico, G.; Gao, Q.; Scalbert, A.; Vergeres, G.; Kolehmainen, M.; Manach, C.; Brennan, L.; Pedapati, S.H.; Afman, L.A.; Wishart, D.S.; et al. Guidelines for biomarkers of food intake reviews (BFIRev): How to conduct an extensive literature search for biomarker of food intake discovery. Genes Nutr. 2018, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Dragsted, L.O.; Gao, O.; Scalbert, A.; Vergeres, G.; Kolehmainen, M.; Manach, C.; Brennan, L.; Afman, L.A.; Wishart, D.S.; Andres Lacueva, C.; et al. Validation of biomarkers of food intake—Critical assessment of candidate biomarkers. Genes. Nutr. 2018, 13, 14. [Google Scholar] [CrossRef]
- Lampe, J.W.; Huang, Y.; Neuhouser, M.L.; Tinker, L.F.; Song, X.; Schoeller, D.A.; Kim, S.; Raftery, D.; Di, C.; Zheng, C.; et al. Dietary biomarker evaluation in a controlled feeding study in women from the Women’s Health Initiative cohort. Am. J. Clin. Nutr. 2017, 105, 466–475. [Google Scholar] [CrossRef]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Cox, D.R. Regression analysis and life tables (with discussion). J. Royal Stat. Soc. B 1972, 34, 187–220. [Google Scholar] [CrossRef]
- Prentice, R.L. Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika 1982, 69, 331–342. [Google Scholar] [CrossRef]
- Wang, C.Y.; Hsu, L.; Feng, Z.D.; Prentice, R.L. Regression calibration in failure time regression. Biometrics 1997, 53, 131–145. [Google Scholar] [CrossRef]
- Carroll, R.J.; Ruppert, D.; Stefanski, L.A.; Crainiceanu, C.M. Measurement Error in Nonlinear Models, a Modern Perspective, 2nd ed.; Chapman and Hall: New York, NY, USA; CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
- Prentice, R.L.; Pettinger, M.; Neuhouser, M.L.; Raftery, D.; Zheng, C.; Gowda, N.; Huang, Y.; Tinker, L.F.; Howard, B.V.; Manson, J.E.; et al. Biomarker-calibrated macronutrient intake and chronic disease risk among postmenopausal women. J. Nutr. 2021, 151, 2330–2341. [Google Scholar] [CrossRef] [PubMed]
- TibshiranI, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Prentice, R.L.; Pettinger, M.; Zheng, C.; Neuhouser, M.L.; Raftery, D.; Nagana Gowda, G.A.; Huang, Y.; Tinker, L.F.; Howard, B.V.; Manson, J.E.; et al. Biomarkers for components of dietary protein and carbohydrate with application to chronic disease risk among postmenopausal women. J. Nutr. 2022, 152, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Vassan, S.; Tinker, L.F.; Neuhouser, M.L.; Navarro, S.L.; Raftery, D.; Gowda, G.A.N.; Pettinger, M.; Aragaki, A.K.; Lampe, J.W.; et al. Metabolomics-based biomarker for dietary fat and associations with chronic disease risk in postmenopausal women. J. Nutr. 2023, 153, 2651–2662. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Vassan, S.; Tinker, L.F.; Neuhouser, M.L.; Navarro, S.L.; Raftery, D.; Gowda, G.A.N.; Pettinger, M.; Aragaki, A.K.; Lampe, J.W.; et al. Metabolomics biomarkers for fatty acid intake and biomarker-calibrated fatty acid associations with chronic disease risk in postmenopausal women. J. Nutr. 2023, 153, 2663–2677. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Moore, S.C.; Derkach, A.; Reedy, J.; Subar, A.F.; Sampson, J.N.; Albanes, D.; Gu, F.; Kontto, J.; Lassale, C.; et al. Identifying biomarkers of dietary patterns by using metabolomics. Am. J. Clin. Nutr. 2017, 105, 450–465. [Google Scholar] [CrossRef]
- García-Pérez, I.; Posma, J.M.; Gibson, R.; Chambers, E.S.; Hansen, T.H.; Vestergaard, H.; Hansen, T.; Beckmann, M.; Pedersen, O.; Elliott, P.; et al. Objective assessment of dietary patterns by use of metabolic phenotyping: A randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 2017, 5, 184–195. [Google Scholar] [CrossRef]
- Esko, T.; Hirschhorn, J.N.; Feldman, H.A.; Hsu, Y.H.; Deik, A.A.; Clish, C.B.; Ebbeling, C.B.; Ludwig, D.S. Metabolomic profiles as reliable biomarkers of dietary composition. Am. J. Clin. Nutr. 2017, 105, 547–554. [Google Scholar] [CrossRef]
- Prentice, R.L.; Pettinger, M.; Neuhouser, M.L.; Tinker, L.F.; Huang, Y.; Manson, J.E.; Mossavar-Rahmani, Y.; Anderson, G.L.; Lampe, J.W. Application of blood concentration biomarkers in nutritional epidemiology: Example of carotenoid and tocopherol intake in relation to chronic disease risk. Am. J. Clin. Nutr. 2019, 109, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Ziegler, R.G.; Sampson, J.N.; Stolzenberg-Solomon, R.; Thompson, H.J.; Irwin, M.L.; Mayne, S.T.; Hoover, R.N.; Moore, S.C. Nutritional metabolomics and breast cancer risk in a prospective study. Am. J. Clin. Nutr. 2017, 106, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L.; Pettinger, M.; Neuhouser, M.L.; Tinker, L.F.; Huang, Y.; Zheng, C.; Manson, J.E.; Mossavar-Rahmani, Y.; Anderson, G.L.; Lampe, J.W. Can dietary self-reports usefully complement blood concentrations for estimation of micronutrient intake and chronic disease associations? Am. J. Clin Nutr. 2020, 112, 168–179. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.; Gormley, I.C.; McNulty, B.A.; Nugent, A.P.; Walton, J.; Flynn, A.; Brennan, L. Combining biomarker and food intake data: Calibration equations for citrus intake. Am. J. Clin. Nutr. 2019, 110, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Pettinger, M.; Nagana Gowda, G.A.; Lampe, J.W.; Raftery, D.; Tinker, L.F.; Huang, Y.; Navarro, S.L.; O’Brien, D.O.; Snetselaar, L.; et al. Biomarker-calibrated red and combined red and processed meat intakes with chronic disease risk in a cohort of postmenopausal women. J. Nutr. 2022, 152, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Pietzner, M.; Stewart, I.D.; Raffler, J.; Khaw, K.T.; Michelotti, G.A.; Kastenmuller, G.; Wareham, N.J.; Langenberg, C. Plasma metabolites to profile pathways in noncommunicable disease multimorbidity. Nat. Med. 2021, 27, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Jaeger, M.; Beumer, J.; Bakker, O.B.; Aguirre-Gamboa, R.; Oosting, M.; Smeekens, S.P.; Moorlag, S.; Mourits, V.P.; Koeken, V.; et al. Integration of metabolomics, genomics, and immune phenotypes reveals the causal roles of metabolites in disease. Genome Biol. 2021, 22, 198. [Google Scholar] [CrossRef] [PubMed]
- Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites, and host immunity. Nat. Rev. Immunol. 2016, 16, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferre, M.; Hruby, A.; Toledo, E.; Clish, C.B.; Martinez-Gonzalez, M.A.; Salas-Salvado, J.; Hu, F.B. Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis. Diabetes Care 2016, 39, 833–846. [Google Scholar] [CrossRef]
Candidate Biomarker Criterion | Ability to Satisfy Criterion Study Design | |
---|---|---|
Cohort subsample, self-reported dietary data | Cohort subsample, feeding study, habitual diet | |
Correlation > 0.6 with comparator | Modest | Good |
Dragsted et al. [38] validation criteria: | ||
Plausibility (specificity) | Good potential | Good potential |
Dose–response (sensitivity) | Good potential | Good potential |
Time–response (dietary data time period) | Good (weeks/months) | Good (days/weeks) |
Robustness (relevance to target population) | Good | Good |
Reliability (quality of comparator) | Uncertain | Good |
Acceptable study cost | Good | Uncertain |
Acceptable study efficiency | Uncertain | Good |
Biomarker Validation Criterion | Ability to Satisfy Criterion Study Design | |
---|---|---|
Randomized feeding trial, convenience sample | Cohort subsample, feeding study, habitual diet | |
Correlation > 0.6 with provided intake | Uncertain | Good |
Dragsted et al. [38] validation criteria: | ||
Plausibility (specificity) | Good | Good potential |
Dose–response (sensitivity) | Good | Good potential |
Time–response (time period for provided diet) | Good (days/weeks) | Good (days/weeks) |
Robustness (relevance to target population) | Poor | Good |
Reliability (quality of comparator) | Good | Good |
Acceptable study cost | Uncertain | Uncertain |
Acceptable study efficiency | Uncertain | Good |
Disease Association Requirements | Ability to Satisfy Requirements of Study Design | |
---|---|---|
Cohort study using biomarker-calibrated dietary self-reports | Cohort study with direct use of biomarker intakes | |
Satisfy associated measurement error modeling assumptions | Uncertain | Good |
Acceptable study cost | Good | Uncertain |
Acceptable study efficiency | Good | Good |
Reliable disease association estimates assuming adequate confounding control | Uncertain | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prentice, R.L. Intake Biomarkers for Nutrition and Health: Review and Discussion of Methodology Issues. Metabolites 2024, 14, 276. https://doi.org/10.3390/metabo14050276
Prentice RL. Intake Biomarkers for Nutrition and Health: Review and Discussion of Methodology Issues. Metabolites. 2024; 14(5):276. https://doi.org/10.3390/metabo14050276
Chicago/Turabian StylePrentice, Ross L. 2024. "Intake Biomarkers for Nutrition and Health: Review and Discussion of Methodology Issues" Metabolites 14, no. 5: 276. https://doi.org/10.3390/metabo14050276
APA StylePrentice, R. L. (2024). Intake Biomarkers for Nutrition and Health: Review and Discussion of Methodology Issues. Metabolites, 14(5), 276. https://doi.org/10.3390/metabo14050276