Exploring the Metabolism of Flubrotizolam, a Potent Thieno-Triazolo Diazepine, Using Human Hepatocytes and High-Resolution Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. In Silico Metabolite Prediction
2.3. Incubation with Pooled Human Hepatocytes
2.4. Sample Preparation
2.4.1. Human Hepatocyte Incubates
2.4.2. β-Glucuronidase Hydrolysis
2.5. Instrumental Conditions
2.5.1. Liquid Chromatography
2.5.2. Mass Spectrometry
2.6. Identification of Metabolites
3. Results
3.1. In Silico Prediction
3.2. Flubrotizolam HRMS/MS Fragmentation
3.3. Metabolite Identification
3.3.1. Phase I Metabolites
3.3.2. Phase II Metabolites
4. Discussion
4.1. In Silico Prediction
4.2. Incubation with Pooled Human Hepatocytes
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohnenberger, K.; Liu, M.T. Flubromazolam Overdose: A Review of a New Designer Benzodiazepine and the Role of Flumazenil. Ment. Health Clin. 2019, 9, 133–140. [Google Scholar] [CrossRef] [PubMed]
- UNODC. Early Warning Advisory on New Psychoactive Substances. Available online: https://www.unodc.org/LSS/Page/NPS (accessed on 6 May 2024).
- Auwärter, V.; de Morais, J.; Gallegos, A.; Evans, B.; Christie, R.; Jorge, R.; Sedefov, R. New Benzodiazepines in Europe: A Review; Publications Office of the European Union, Ed.; European Monitoring Centre for Drugs and Drug Addiction: Luxembourg, 2021; ISBN 9789294976413. [Google Scholar]
- Rohrig, T.P.; Osawa, K.A.; Baird, T.R.; Youso, K.B. Driving Impairment Cases Involving Etizolam and Flubromazolam. J. Anal. Toxicol. 2020, 45, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Aja, M.P.; Mitaki, N.B.; Morya, S.; Amagwula, I.O.; Echeta, C.K.; Igwe, V.S. New Psychoactive Substances: Major Groups, Laboratory Testing Challenges, Public Health Concerns, and Community-Based Solutions. J. Chem. 2023, 2023, 1–36. [Google Scholar] [CrossRef]
- ChemSpider. Available online: https://www.chemspider.com/Chemical-Structure.2307727.html?rid=04d8ed39-4169-4d11-bcfc-b8c8d8a6c8f7 (accessed on 7 May 2024).
- Weber, K.H.; Sirrenberg, W.; Spohn, O.; Daniel, H. Chemistry of Brotizolam and Its Metabolites. Arzneimittelforschung 1986, 36, 518–521. [Google Scholar]
- Reddit, r/Researchchemicals. First Experience(s) with Flubrotizolam (FANAX Bars), Hypnotic Effects, Potency, etc. Available online: https://www.reddit.com/r/researchchemicals/comments/ob8c0z/first_experiences_with_flubrotizolam_fanax_bars/ (accessed on 6 May 2024).
- National Drug Early Warning System (NDEWS) Alert from the NDEWS Web Monitoring Team: Online Mentions of Alpha-D2PV. Available online: https://ndews.org/wordpress/files/2022/06/3.4.22.pdf (accessed on 7 May 2024).
- Catalani, V.; Floresta, G.; Botha, M.; Corkery, J.M.; Guirguis, A.; Vento, A.; Abbate, V.; Schifano, F. In Silico Studies on Recreational Drugs: 3D-QSAR Prediction of Classified and de Novo Designer Benzodiazepines. Chem. Biol. Drug Des. 2023, 101, 40–51. [Google Scholar] [CrossRef]
- UNODC. Early Warning Advisory on New Psychoactive Substances. Available online: https://www.unodc.org/LSS/NPSFinding/List (accessed on 6 May 2024).
- EMCDDA. European Database on New Drugs. Available online: https://ednd2.emcdda.europa.eu/ednd/freeTextSearch/?query=flubrotizolam (accessed on 7 May 2024).
- Chatterton, C.N.; Handy, R.P. Fentanyl Concentrations in Ligated Femoral Blood in the Presence and Absence of NPS Benzodiazepine Drugs. A Review of over 1250 Benzo-Dope/Fentanyl Toxicity Cases in Alberta, Canada. Forensic Sci. Int. 2023, 350, 111777. [Google Scholar] [CrossRef]
- Moosmann, B.; King, L.A.; Auwärter, V. Designer Benzodiazepines: A New Challenge. World Psychiatry 2015, 14, 248. [Google Scholar] [CrossRef]
- Bechtel, W.D.; Van Wayjen, R.G.A.; Van Den Ende, A. Blood Level, Excretion, and Metabolite Pattern of [14C]-Brotizolam in Humans. Arzneim.-Forsch. Drug Res. 1986, 36, 575–578. [Google Scholar]
- Åstrand, A.; Vikingsson, S.; Lindstedt, D.; Thelander, G.; Gréen, H.; Kronstrand, R.; Wohlfarth, A. Metabolism Study for CUMYL-4CN-BINACA in Human Hepatocytes and Authentic Urine Specimens: Free Cyanide is Formed During the Main Metabolic Pathway. Drug Test. Anal. 2018, 10, 1270–1279. [Google Scholar] [CrossRef]
- Vikingsson, S.; Rautio, T.; Wallgren, J.; Åstrand, A.; Watanabe, S.; Dahlén, J.; Wohlfarth, A.; Konradsson, P.; Wu, X.; Kronstrand, R.; et al. LC-QTOF-MS Identification of Major Urinary Cyclopropylfentanyl Metabolites Using Synthesized Standards. J. Anal. Toxicol. 2019, 43, 607–614. [Google Scholar] [CrossRef]
- Watanabe, S.; Baginski, S.; Iwai, T.; Matsushita, R.; Takatsu, M.; Nakanishi, T.; Lindbom, K.; Mckenzie, C.; Vikingsson, S.; Kronstrand, R.; et al. Systematic In Vitro Metabolic Profiling of the OXIZID Synthetic Cannabinoids BZO-4en-POXIZID, BZO-POXIZID, 5F-BZO-POXIZID, BZO-HEXOXIZID and BZO-CHMOXIZID. J. Anal. Toxicol. 2023, 47, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Gameli, P.S.; Taoussi, O.; Basile, G.; Carlier, J.; Busardò, F.P. Metabolism Study of Anamorelin, a GHSR1a Receptor Agonist Potentially Misused in Sport, with Human Hepatocytes and LC-HRMS/MS. Metabolites 2023, 13, 949. [Google Scholar] [CrossRef]
- Weston, D.J.; Dave, M.; Colizza, K.; Thomas, S.; Tomlinson, L.; Gregory, R.; Beaumont, C.; Pirhalla, J.; Dear, G.J. A Discovery Biotransformation Strategy: Combining in Silico Tools with High-Resolution Mass Spectrometry and Software-Assisted Data Analysis for High-Throughput Metabolism. Xenobiotica 2022, 52, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Pulver, B.; Fischmann, S.; Westphal, F.; Schönberger, T.; Schäper, J.; Budach, D.; Jacobsen-Bauer, A.; Dreiseitel, W.; Zagermann, J.; Damm, A.; et al. The ADEBAR Project: European and International Provision of Analytical Data from Structure Elucidation and Analytical Characterization of NPS. Drug Test. Anal. 2022, 14, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Stork, C.; Embruch, G.; Šícho, M.; De Bruyn Kops, C.; Chen, Y.; Svozil, D.; Kirchmair, J. NERDD: A Web Portal Providing Access to in Silico Tools for Drug Discovery. Bioinformatics 2020, 36, 1291–1292. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn Kops, C.; Šícho, M.; Mazzolari, A.; Kirchmair, J. GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics. Chem. Res. Toxicol. 2021, 34, 286–299. [Google Scholar] [CrossRef]
- Carlier, J.; Diao, X.; Huestis, M.A. Synthetic Cannabinoid BB-22 (QUCHIC): Human Hepatocytes Metabolism with Liquid Chromatography-High Resolution Mass Spectrometry Detection. J. Pharm. Biomed. Anal. 2018, 157, 27–35. [Google Scholar] [CrossRef]
- Di Trana, A.; Brunetti, P.; Giorgetti, R.; Marinelli, E.; Zaami, S.; Busardò, F.P.; Carlier, J. In Silico Prediction, LC-HRMS/MS Analysis, and Targeted/Untargeted Data-Mining Workflow for the Profiling of Phenylfentanyl in Vitro Metabolites. Talanta 2021, 235, 122740. [Google Scholar] [CrossRef]
- Siuzdak, G. Activity Metabolomics and Mass Spectrometry, 1st ed.; MCC Press: San Diego, CA, USA, 2024; pp. 25–60. [Google Scholar]
- Wohlfarth, A.; Vikingsson, S.; Roman, M.; Andersson, M.; Kugelberg, F.C.; Green, H.; Kronstrand, R. Looking at Flubromazolam Metabolism from Four Different Angles: Metabolite Profiling in Human Liver Microsomes, Human Hepatocytes, Mice and Authentic Human Urine Samples with Liquid Chromatography High-Resolution Mass Spectrometry. Forensic Sci. Int. 2017, 274, 55–63. [Google Scholar] [CrossRef]
- HighResNPS. Available online: https://highresnps.com/default.asp (accessed on 31 July 2024).
- Hyland, R.; Osborne, T.; Payne, A.; Kempshall, S.; Logan, Y.R.; Ezzeddine, K.; Jones, B. In Vitro and in Vivo Glucuronidation of Midazolam in Humans. Br. J. Clin. Pharmacol. 2009, 67, 445–454. [Google Scholar] [CrossRef]
- Yuan, R.; Flockhart, D.A.; Balian, J.D. Pharmacokinetic and Pharmacodynamic Consequences of Metabolism-Based Drug Interactions with Alprazolam, Midazolam, and Triazolam. J. Clin. Pharmacol. 1999, 39, 1109–1125. [Google Scholar] [CrossRef] [PubMed]
- Wandel, C.; Böcker, R.; Böhrer, H.; Browne, A.; Rügheimer, E.; Martin, E. Midazolam Is Metabolized by at Least Three Different Cytochrome P450 Enzymes. Br. J. Anaesth. 1994, 73, 658–661. [Google Scholar] [CrossRef]
- Bechtel, W. Pharmacokinetics and Metabolism of Brotizolam in Humans. Br. J. Clin. Pharmacol. 1983, 16, 279S–283S. [Google Scholar] [CrossRef] [PubMed]
- Wagmann, L.; Frankenfeld, F.; Park, Y.M.; Herrmann, J.; Fischmann, S.; Westphal, F.; Müller, R.; Flockerzi, V.; Meyer, M.R. How to Study the Metabolism of New Psychoactive Substances for the Purpose of Toxicological Screenings—A Follow-Up Study Comparing Pooled Human Liver S9, HepaRG Cells, and Zebrafish Larvae. Front. Chem. 2020, 8, 539. [Google Scholar] [CrossRef] [PubMed]
- Boyce, M.; Favela, K.A.; Bonzo, J.A.; Chao, A.; Lizarraga, L.E.; Moody, L.R.; Owens, E.O.; Patlewicz, G.; Shah, I.; Sobus, J.R.; et al. Identifying Xenobiotic Metabolites with In Silico Prediction Tools and LCMS Suspect Screening Analysis. Front. Toxicol. 2023, 5, 1051483. [Google Scholar] [CrossRef]
- Bechtel, W.D.; Mierau, J.; Brandt, K. Metabolic Fate of [14C]-Brotizolam in the Rat, Dog, Monkey and Man. Arzneim.-Forsch./Drug Res. 1986, 36, 578–586. [Google Scholar]
- Diao, X.; Huestis, M.A. Approaches, Challenges, and Advances in Metabolism of New Synthetic Cannabinoids and Identification of Optimal Urinary Marker Metabolites. Clin. Pharmacol. Ther. 2017, 101, 239–253. [Google Scholar] [CrossRef]
- Taoussi, O.; Berardinelli, D.; Zaami, S.; Tavoletta, F.; Basile, G.; Kronstrand, R.; Auwärter, V.; Busardò, F.P.; Carlier, J. Human metabolism of four synthetic benzimidazole opioids: Isotonitazene, metonitazene, etodesnitazene, and metodesnitazene. Arch. Toxicol. 2024, 98, 2101–2116. [Google Scholar] [CrossRef]
- Berardinelli, D.; Taoussi, O.; Daziani, G.; Tavoletta, F.; Ricci, G.; Tronconi, L.P.; Adamowicz, P.; Busardò, F.P.; Carlier, J. 3-CMC, 4-CMC, and 4-BMC Human Metabolic Profiling: New Major Pathways to Document Consumption of Methcathinone Analogues? AAPS J. 2024, 26, 70. [Google Scholar] [CrossRef]
ID | RT (min) | Biotransformation | Elemental Composition | [M + H]+ (m/z) [M − H]− (m/z) | Mass Error, ∆ppm | Peak Area at T3h |
---|---|---|---|---|---|---|
M1 | 10.24 | N-Glucuronidation (pyrazole) | C21H19BrFN4O6S | 553.0195 | 0.42 | 8.5 × 105 |
M2 | 11.21 | Hydroxylation (pyrazole) + Reduction (pyrazole) + Glucuronidation | C21H20BrFN4O7S | 571.0294 569.0165 | 0.20 3.10 | 4.1 × 106 2.4 × 106 |
M3 | 12.15 | Hydroxylation (diazepine) + O-Glucuronidation | C21H18BrFN4O7S | 569.0138 567.0010 | 0.29 3.38 | 4.9 × 106 4.1 × 106 |
M4 | 12.28 | Hydroxylation (diazepine) + O-Glucuronidation | C21H18BrFN4O7S | 569.0138 567.0010 | 0.29 3.38 | 1.9 × 106 1.8 × 106 |
M5 | 13.43 | Hydroxylation (pyrazole) | C15H10BrFN4OS | 392.9816 | 0.13 | 2.8 × 107 |
M6 | 13.70 | Hydroxylation (diazepine) | C15H10BrFN4OS | 392.9816 | 0.13 | 2.0 × 107 |
Flubrotizolam | 15.08 | Parent | C15H10BrFN4S | 376.9862 | −1.15 | 1.3 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gameli, P.S.; Kutzler, J.; Berardinelli, D.; Carlier, J.; Auwärter, V.; Busardò, F.P. Exploring the Metabolism of Flubrotizolam, a Potent Thieno-Triazolo Diazepine, Using Human Hepatocytes and High-Resolution Mass Spectrometry. Metabolites 2024, 14, 506. https://doi.org/10.3390/metabo14090506
Gameli PS, Kutzler J, Berardinelli D, Carlier J, Auwärter V, Busardò FP. Exploring the Metabolism of Flubrotizolam, a Potent Thieno-Triazolo Diazepine, Using Human Hepatocytes and High-Resolution Mass Spectrometry. Metabolites. 2024; 14(9):506. https://doi.org/10.3390/metabo14090506
Chicago/Turabian StyleGameli, Prince Sellase, Johannes Kutzler, Diletta Berardinelli, Jeremy Carlier, Volker Auwärter, and Francesco Paolo Busardò. 2024. "Exploring the Metabolism of Flubrotizolam, a Potent Thieno-Triazolo Diazepine, Using Human Hepatocytes and High-Resolution Mass Spectrometry" Metabolites 14, no. 9: 506. https://doi.org/10.3390/metabo14090506
APA StyleGameli, P. S., Kutzler, J., Berardinelli, D., Carlier, J., Auwärter, V., & Busardò, F. P. (2024). Exploring the Metabolism of Flubrotizolam, a Potent Thieno-Triazolo Diazepine, Using Human Hepatocytes and High-Resolution Mass Spectrometry. Metabolites, 14(9), 506. https://doi.org/10.3390/metabo14090506