Use of Saliva Analytes as a Predictive Model to Detect Diseases in the Pig: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
- (a)
- Pigs with meningitis due to S. suis infection (n = 118): Animals included in this group were between 6 and 11 weeks old (mean 7.78, SD 2.40). The pigs had clinical signs compatible with S. suis infection, such as ataxia, anorexia, lateral recumbency, and padding [27]. Infection was confirmed by the bacterial isolation and characterization [28] of S. suis serotype 9.
- (b)
- Pigs with diarrhea due to ETEC (n = 77): All animals were 6 weeks old. The animals included in this group showed moderate to severe clinical signs including diarrhea, lethargy, growth retardation, and dehydration. The diagnosis was confirmed by the detection of E. coli F4 and heat-labile toxin in fecal samples obtained with rectal swabs, as previously described [29].
- (c)
- Pigs with PRRS (n = 52): The pigs were between 8 and 9 weeks old (mean 8.40 and SD 0.50). These animals were from farms with a history of PRRSV infection, and all of them showed diverse clinical symptoms including loss of body condition; sunken flanks; a rough, hirsute coat; lethargy; and mild dyspnea. In this group, the rectal temperature was evaluated, and none of the pigs showed hyperthermia, which would be compatible with the absence of concomitant infections. The final diagnosis was confirmed by the detection of the European strain of PRRSV in the blood using a PCR kit (Roche, Mannheim, Germany) or specific antibodies with an ELISA kit (IDEXX Laboratories, Westbrook, ME, USA).
- (d)
- Healthy animals (n = 97): The pigs in this group were between 6 and 13 weeks old (mean 9.98 and– SD 2.54). This group included clinically healthy pigs with no symptoms of disease obtained from the Veterinary Teaching Farm of the University of Murcia, which is a PRRS-free farm.
2.2. Saliva Sampling
2.3. Laboratory Analyses
2.3.1. Inflammation and Immunity Biomarkers
2.3.2. Stress Biomarkers
2.3.3. Tissue Damage Biomarkers
2.3.4. Biomarkers of Redox Status
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bjustrom-Kraft, J.; Woodard, K.; Giménez-Lirola, L.; Rotolo, M.; Wang, C.; Sun, Y.; Lasley, P.; Zhang, J.; Baum, D.; Gauger, P.; et al. Porcine Epidemic Diarrhea Virus (PEDV) Detection and Antibody Response in Commercial Growing Pigs. BMC Vet. Res. 2016, 12, 99. [Google Scholar] [CrossRef] [PubMed]
- Munguía-Ramírez, B.; Armenta-Leyva, B.; Henao-Díaz, A.; Cheng, T.-Y.; Zhang, J.; Rawal, G.; Ye, F.; Giménez-Lirola, L.; Zimmerman, J.J. Effect of Extrinsic Factors on the Detection of PRRSV and a Porcine-Specific Internal Sample Control in Serum, Oral Fluid, and Fecal Specimens Tested by RT-RtPCR. J. Vet. Diagn. Investig. 2023, 35, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Croft, E.; Blackwell, T.; Zimmerman, J. Field Application of a Commercial Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Oral Fluid Antibody Enzyme-Linked Immunosorbent Assay (ELISA). Can. Vet. J. 2020, 61, 420–423. [Google Scholar]
- Cerón, J.J.; Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Miró, S.; López-Martínez, M.J.; Ortín-Bustillo, A.; Franco-Martínez, L.; Rubio, C.P.; Muñoz-Prieto, A.; Tvarijonaviciute, A.; et al. Basics for the Potential Use of Saliva to Evaluate Stress, Inflammation, Immune System, and Redox Homeostasis in Pigs. BMC Vet. Res. 2022, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Tarasiuk, G.; Remmenga, M.D.; O’Hara, K.C.; Talbert, M.K.; Mielke, S.; Rotolo, M.L.; Zaabel, P.; Zhang, D.; Zimmerman, J.J. Optimizing Swine Oral Fluid Sampling Procedures for Growing Pigs in Commercial Settings. Pathogens 2024, 13, 1097. [Google Scholar] [CrossRef]
- Madsen, L.W.; Svensmark, B.; Elvestad, K.; Aalbaek, B.; Jensen, H.E. Streptococcus Suis Serotype 2 Infection in Pigs: New Diagnostic and Pathogenetic Aspects. J. Comp. Pathol. 2002, 126, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Lv, Y.; Yang, J.; Bai, Y.; Ye, J.; Wang, Z.; Chen, Z.; Jiang, Z. Proteomic Alteration of Porcine Intestinal Epithelial Cells after Pretreatment with Lactobacillus Plantarum Followed by Infection with Enterotoxigenic Escherichia coli F4. Vet. Immunol. Immunopathol. 2020, 222, 109943. [Google Scholar] [CrossRef]
- Fittipaldi, N.; Segura, M.; Grenier, D.; Gottschalk, M. Virulence Factors Involved in the Pathogenesis of the Infection Caused by the Swine Pathogen and Zoonotic Agent Streptococcus suis. Future Microbiol. 2012, 7, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.; Grenier, D. Understanding the Virulence of Streptococcus suis: A Veterinary, Medical, and Economic Challenge. Med. Mal. Infect. 2018, 48, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Yin, J.; Chen, S.; Duan, J.; Liu, G.; Li, T.; Li, N.; Peng, Y.; Tan, B.; Yin, Y. Proteome Analysis for the Global Proteins in the Jejunum Tissues of Enterotoxigenic Escherichia coli-Infected Piglets. Sci. Rep. 2016, 6, 25640. [Google Scholar] [CrossRef] [PubMed]
- Hartadi, E.B.; Helmi Effendi, M.; Plumeriastuti, H.; Sofiana, E.D.; Wibisono, F.M.; Hidayatullah, A.R.; Helmi, M. A Review of Enterotoxigenic Escherichia coli Infection in Piglets: Public Health Importance. Syst. Rev. Pharm. 2020, 11, 687–698. [Google Scholar]
- Andreyev, V.G.; Wesley, R.D.; Mengeling, W.L.; Vorwald, A.C.; Lager, K.M. Genetic Variation and Phylogenetic Relationships of 22 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Field Strains Based on Sequence Analysis of Open Reading Frame 5. Arch. Virol. 1997, 142, 993–1001. [Google Scholar] [CrossRef]
- Rossow, K.D.; Collins, J.E.; Goyal, S.M.; Nelson, E.A.; Christopher-Hennings, J.; Benfield, D.A. Pathogenesis of Porcine Reproductive and Respiratory Syndrome Virus Infection in Gnotobiotic Pigs. Vet. Pathol. 1995, 32, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yang, B.; Yuan, X.; Shen, C.; Zhang, D.; Shi, X.; Zhang, T.; Cui, H.; Yang, J.; Chen, X.; et al. Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-Infection With Other Pathogens in Swine. Front. Vet. Sci. 2021, 8, 699561. [Google Scholar] [CrossRef]
- López-Martínez, M.J.; Cerón, J.J.; Ortín-Bustillo, A.; Escribano, D.; Kuleš, J.; Beletić, A.; Rubić, I.; González-Sánchez, J.C.; Mrljak, V.; Martínez-Subiela, S.; et al. A Proteomic Approach to Elucidate the Changes in Saliva and Serum Proteins of Pigs with Septic and Non-Septic Inflammation. Int. J. Mol. Sci. 2022, 23, 6738. [Google Scholar] [CrossRef] [PubMed]
- López-Martínez, M.J.; Ornelas, M.A.S.; Amarie, R.E.; Manzanilla, E.G.; Martínez-Subiela, S.; Tecles, F.; Tvarijonaviciute, A.; Escribano, D.; González-Bulnes, A.; Cerón, J.J.; et al. Changes in Salivary Biomarkers of Stress, Inflammation, Redox Status, and Muscle Damage Due to Streptococcus Suis Infection in Pigs. BMC Vet. Res. 2023, 19, 100. [Google Scholar] [CrossRef]
- Baştanlar, Y.; Özuysal, M. Introduction to Machine Learning. Methods Mol. Biol. 2014, 1107, 105–128. [Google Scholar] [CrossRef] [PubMed]
- Waljee, A.K.; Higgins, P.D.R. Machine Learning in Medicine: A Primer for Physicians. Am. J. Gastroenterol. 2010, 105, 1224–1226. [Google Scholar] [CrossRef] [PubMed]
- Bakoev, S.; Getmantseva, L.; Kolosova, M.; Kostyunina, O.; Chartier, D.R.; Tatarinova, T.V. PigLeg: Prediction of Swine Phenotype Using Machine Learning. PeerJ 2020, 2020, e8764. [Google Scholar] [CrossRef] [PubMed]
- Mollenhorst, H.; Ducro, B.J.; De Greef, K.H.; Hulsegge, I.; Kamphuis, C. Boosted Trees to Predict Pneumonia, Growth, and Meat Percentage of Growing-Finishing Pigs. J. Anim. Sci. 2019, 97, 4152–4159. [Google Scholar] [CrossRef]
- Ollagnier, C.; Kasper, C.; Wallenbeck, A.; Keeling, L.; Bee, G.; Bigdeli, S.A. Machine Learning Algorithms Can Predict Tail Biting Outbreaks in Pigs Using Feeding Behaviour Records. PLoS ONE 2023, 18, e0252002. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.M.; Davies, P.R.; Goodell, C.K.; Holtkamp, D.J.; Mondaca-Fernández, E.; Poljak, Z.; Tousignant, S.J.; Valdes-Donoso, P.; Zimmerman, J.J.; Morrison, R.B. Lessons Learned and Knowledge Gaps about the Epidemiology and Control of Porcine Reproductive and Respiratory Syndrome Virus in North America. J. Am. Vet. Med. Assoc. 2015, 246, 1304–1317. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.S.; Machado, G.; Baker, K.L.; Holtkamp, D.J.; Linhares, D.C.L. Machine-Learning Algorithms to Identify Key Biosecurity Practices and Factors Associated with Breeding Herds Reporting PRRS Outbreak. Prev. Vet. Med. 2019, 171, 104749. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Oh, S.; Lee, J.; Park, D.; Chang, H.-H.; Kim, S. Automatic Detection and Recognition of Pig Wasting Diseases Using Sound Data in Audio Surveillance Systems. Sensors 2013, 13, 12929–12942. [Google Scholar] [CrossRef]
- Reagan, K.L.; Reagan, B.A.; Gilor, C. Machine Learning Algorithm as a Diagnostic Tool for Hypoadrenocorticism in Dogs. Domest. Anim. Endocrinol. 2020, 72, 106396. [Google Scholar] [CrossRef]
- Schofield, I.; Brodbelt, D.C.; Kennedy, N.; Niessen, S.J.M.; Church, D.B.; Geddes, R.F.; O’Neill, D.G. Machine-Learning Based Prediction of Cushing’s Syndrome in Dogs Attending UK Primary-Care Veterinary Practice. Sci. Rep. 2021, 11, 9035. [Google Scholar] [CrossRef]
- Obradovic, M.R.; Segura, M.; Segalés, J.; Gottschalk, M. Review of the Speculative Role of Co-Infections in Streptococcus Suis-Associated Diseases in Pigs. Vet. Res. 2021, 52, 49. [Google Scholar] [CrossRef] [PubMed]
- Petrocchi-Rilo, M.; Martínez-Martínez, S.; Aguarón-Turrientes, Á.; Roca-Martínez, E.; García-Iglesias, M.-J.; Pérez-Fernández, E.; González-Fernández, A.; Herencia-Lagunar, E.; Gutiérrez-Martín, C.-B. Anatomical Site, Typing, Virulence Gene Profiling, Antimicrobial Susceptibility and Resistance Genes of Streptococcus Suis Isolates Recovered from Pigs in Spain. Antibiotics 2021, 10, 707. [Google Scholar] [CrossRef]
- Mesonero-Escuredo, S.; Strutzberg-Minder, K.; Casanovas, C.; Segalés, J. Viral and Bacterial Investigations on the Aetiology of Recurrent Pig Neonatal Diarrhoea Cases in Spain. Porc. Health Manag. 2018, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Friedlander, M.; Capeillère-Blandin, C.; Nguyen-Khoa, T.; Nguyen, A.; Zingraff, J.; Jungers, P.; Descamps-Latscha, B. Advanced Oxidation Protein Products as a Novel Marker of Oxidative Stress in Uremia. Kidney Int. 1996, 49, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Perkins, N.J.; Schisterman, E.F. The Inconsistency of “Optimal” Cutpoints Obtained Using Two Criteria Based on the Receiver Operating Characteristic Curve. Am. J. Epidemiol. 2006, 163, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Therneau, T.; Atkinson, B.; Ripley, B. Recursive Partitioning. Available online: https://cran.r-project.org/web/packages/rpart/index.html (accessed on 20 September 2024).
- Milborrow, S. Package ‘Rpartplot’ Plot Rpart Models. R Foundation for Statistical Computing Web Site. Available online: http://www.milbo.org/rpart-plot/index.html (accessed on 20 September 2024).
- Hopkins, D.; Poljak, Z.; Farzan, A.; Friendship, R. Factors Contributing to Mortality during a Streptoccocus Suis Outbreak in Nursery Pigs. Can. Vet. J. 2018, 59, 623–630. [Google Scholar] [PubMed]
- Feng, Y.; Zhang, H.; Wu, Z.; Wang, S.; Cao, M.; Hu, D.; Wang, C. Streptococcus suis Infection. Virulence 2014, 5, 477–497. [Google Scholar] [CrossRef]
- Palmieri, C.; Varaldo, P.E.; Facinelli, B. Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front. Microbiol. 2011, 2, 00235. [Google Scholar] [CrossRef]
- Grondman, I.; Pirvu, A.; Riza, A.; Ioana, M.; Netea, M.G. Biomarkers of Inflammation and the Etiology of Sepsis. Biochem. Soc. Trans. 2020, 48, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic Resistance Is the Quintessential One Health Issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Renken, C.; Nathues, C.; Swam, H.; Fiebig, K.; Weiss, C.; Eddicks, M.; Ritzmann, M.; Nathues, H. Application of an Economic Calculator to Determine the Cost of Porcine Reproductive and Respiratory Syndrome at Farm-Level in 21 Pig Herds in Germany. Porc. Health Manag. 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; López-Martinez, M.J.; Ortin-Bustillo, A.; Cerón, J.J.; Martinez-Subiela, S.; Muñoz-Prieto, A.; Lamy, E. Changes in the Saliva Proteome of Pigs with Diarrhoea Caused by Escherichia coli. Proteomes 2023, 11, 14. [Google Scholar] [CrossRef]
- Haem Rahimi, M.; Poussineau, C.; Cuerq, C.; Cour, M.; Lukaszewicz, A.-C.; Venet, F.; Monneret, G. Sustained Elevation of Calprotectin Associates with Delayed Appearance of Myeloid-Derived Suppressor Cells in Patients with Septic Shock. J. Crit. Care 2024, 84, 154899. [Google Scholar] [CrossRef] [PubMed]
- Bartáková, E.; Štefan, M.; Stráníková, A.; Pospíšilová, L.; Arientová, S.; Beran, O.; Blahutová, M.; Máca, J.; Holub, M. Calprotectin and Calgranulin C Serum Levels in Bacterial Sepsis. Diagn. Microbiol. Infect. Dis. 2019, 93, 219–226. [Google Scholar] [CrossRef]
- López-Martínez, M.J.; Martínez-Subiela, S.; Cerón, J.J.; Ortín-Bustillo, A.; Ramis, G.; López-Arjona, M.; Martínez-Miró, S.; Manzanilla, E.G.; Eckersall, P.D.; Tecles, F.; et al. Measurement of Calprotectin (S100A8/A9) in the Saliva of Pigs: Validation Data of A Commercially Available Automated Assay and Changes in Sepsis, Inflammation, and Stress. Animals 2023, 13, 1190. [Google Scholar] [CrossRef] [PubMed]
- Pruimboom, L.; Fox, T.; Muskiet, F.A.J. Lactase Persistence and Augmented Salivary Alpha-Amylase Gene Copy Numbers Might Have Been Selected by the Combined Toxic Effects of Gluten and (Food Born) Pathogens. Med. Hypotheses 2014, 82, 326–334. [Google Scholar] [CrossRef]
- López-Martínez, M.J.; Escribano, D.; Ortín-Bustillo, A.; Franco-Martínez, L.; González-Arostegui, L.G.; Cerón, J.J.; Rubio, C.P. Changes in Biomarkers of Redox Status in Saliva of Pigs after an Experimental Sepsis Induction. Antioxidants 2022, 11, 1380. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Laguna, J.; Gutiérrez, A.; Pallarés, F.J.; Salguero, F.J.; Cerón, J.J.; Carrasco, L. Haptoglobin and C-Reactive Protein as Biomarkers in the Serum, Saliva and Meat Juice of Pigs Experimentally Infected with Porcine Reproductive and Respiratory Syndrome Virus. Vet. J. 2010, 185, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Papatsiros, V.G.; Maragkakis, G.; Papakonstantinou, G.I. Stress Biomarkers in Pigs: Current Insights and Clinical Application. Vet. Sci. 2024, 11, 640. [Google Scholar] [CrossRef]
- Loving, C.L.; Brockmeier, S.L.; Sacco, R.E. Differential Type I Interferon Activation and Susceptibility of Dendritic Cell Populations to Porcine Arterivirus. Immunology 2007, 120, 217–229. [Google Scholar] [CrossRef]
- Duan, X.; Nauwynck, H.J.; Pensaert, M.B. Effects of Origin and State of Differentiation and Activation of Monocytes/Macrophages on Their Susceptibility to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). Arch. Virol. 1997, 142, 2483–2497. [Google Scholar] [CrossRef] [PubMed]
- Rowland, R.R.R.; Lawson, S.; Rossow, K.; Benfield, D.A. Lymphoid Tissue Tropism of Porcine Reproductive and Respiratory Syndrome Virus Replication during Persistent Infection of Pigs Originally Exposed to Virus in Utero. Vet. Microbiol. 2003, 96, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Allende, R.; Laegreid, W.W.; Kutish, G.F.; Galeota, J.A.; Wills, R.W.; Osorio, F.A. Porcine Reproductive and Respiratory Syndrome Virus: Description of Persistence in Individual Pigs upon Experimental Infection. J. Virol. 2000, 74, 10834–10837. [Google Scholar] [CrossRef] [PubMed]
- Wills, R.W.; Zimmerman, J.J.; Yoon, K.-J.; Swenson, S.L.; McGinley, M.J.; Hill, H.T.; Platt, K.B.; Christopher-Hennings, J.; Nelson, E.A. Porcine Reproductive and Respiratory Syndrome Virus: A Persistent Infection. Vet. Microbiol. 1997, 55, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Thacker, E.L.; Halbur, P.G.; Ross, R.F.; Thanawongnuwech, R.; Thacker, B.J. Mycoplasma hyopneumoniae Potentiation of Porcine Reproductive and Respiratory Syndrome Virus-Induced Pneumonia. J. Clin. Microbiol. 1999, 37, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Brockmeier, S.L.; Palmer, M.V.; Bolin, S.R. Effects of Intranasal Inoculation of Porcine Reproductive and Respiratory Syndrome Virus, Bordetella Bronchiseptica, or a Combination of Both Organisms in Pigs. Am. J. Vet. Res. 2000, 61, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Solano, G.I.; Segalés, J.; Collins, J.E.; Molitor, T.W.; Pijoan, C. Porcine Reproductive and Respiratory Syndrome Virus (PRRSv) Interaction with Haemophilus Parasuis. Vet. Microbiol. 1997, 55, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Allan, G.M.; McNeilly, F.; Kennedy, S.; Meehan, B.; Ellis, J.; Krakowka, S. Immunostimulation, PCV-2 and PMWS. Vet. Rec. 2000, 147, 170–171. [Google Scholar]
- Van Reeth, K.; Nauwynck, H.; Pensaert, M. Dual Infections of Feeder Pigs with Porcine Reproductive and Respiratory Syndrome Virus Followed by Porcine Respiratory Coronavirus or Swine Influenza Virus: A Clinical and Virological Study. Vet. Microbiol. 1996, 48, 325–335. [Google Scholar] [CrossRef]
- Neila-Ibáñez, C.; Napp, S.; Pailler-García, L.; Franco-Martínez, L.; Cerón, J.J.; Aragon, V.; Casal, J. Risk Factors Associated with Streptococcus Suis Cases on Pig Farms in Spain. Vet. Rec. 2023, 193, 3056. [Google Scholar] [CrossRef]
- Balka, G.; Podgórska, K.; Brar, M.S.; Bálint, Á.; Cadar, D.; Celer, V.; Dénes, L.; Dirbakova, Z.; Jedryczko, A.; Márton, L.; et al. Genetic Diversity of PRRSV 1 in Central Eastern Europe in 1994–2014: Origin and Evolution of the Virus in the Region. Sci. Rep. 2018, 8, 7811. [Google Scholar] [CrossRef] [PubMed]
AUC (ER) | 95% CI | p-Value | Cut-Off | Sens% | Spec% | Acc% | |||
---|---|---|---|---|---|---|---|---|---|
S. suis | BLR | Calp | 0.664 (0.050) | 0.566–0.762 | 0.001 | >0.40 mg/L | 54.8 | 71.5 | 48.9 |
TP | 0.664 (0.047) | 0.571–0.757 | 0.001 | >180.83 mg/dL | 70.2 | 60.3 | 65.3 | ||
Training model | 0.787 (0.048) | 0.692–0.882 | <0.001 | 67.9 | 81.9 | 74.9 | |||
Validation model | 0.676 (0.112) | 0.456–0.825 | 0.135 | 71.4 | 58.0 | 64.7 | |||
DT | Training model | 0.668 (0.033) | 0.603–0.734 | <0.001 | 45.8 | 85.5 | 71.9 | ||
Validation model | 0.603 (0.057) | 0.492–0.715 | 0.068 | 40.0 | 83.6 | 68.6 | |||
ETEC | BLR | ADA | 0.722 (0.037) | 0.649–0.796 | <0.001 | >4203.20 IU/L | 79.6 | 63.9 | 71.8 |
Hp | 0.780 (0.040) | 0.701–0.859 | <0.001 | >3426.69 ng/mL | 87.2 | 60.7 | 74.0 | ||
Training model | 0.852 (0.034) | 0.787–0.918 | <0.001 | 76.9 | 84.0 | 80.4 | |||
Validation model | 0.884 (0.045) | 0.795–0.972 | <0.001 | 75.0 | 88.6 | 81.8 | |||
DT | Training model | 0.788 (0.035) | 0.719–0.857 | <0.001 | 53.7 | 95.7 | 86.3 | ||
Validation model | 0.682 (0.056) | 0.571–0.792 | 0.001 | 39.1 | 90.0 | 78.6 | |||
PRRS | BLR | ADA | 0.689 (0.036) | 0.618–0.760 | 0.001 | <6332.13 IU/L | 100.0 | 48.0 | 60.5 |
LDH | 0.659 (0.049) | 0.564–0.754 | 0.005 | >273.60 IU/L | 61.8 | 63.5 | 62.6 | ||
Training model | 0.838 (0.036) | 0.767–0.908 | <0.001 | 60.6 | 90.4 | 75.5 | |||
Validation model | 0.910 (0.036) | 0.838–0.981 | <0.001 | 94.1 | 85.1 | 89.6 | |||
DT | Training model | 0.838 (0.032) | 0.776–0.900 | <0.001 | 43.2 | 98.1 | 89.7 | ||
Validation model | 0.803 (0.048) | 0.708–0.899 | <0.001 | 26.7 | 97.7 | 87.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llamas-Amor, E.; Ortín-Bustillo, A.; López-Martínez, M.J.; Muñoz-Prieto, A.; Manzanilla, E.G.; Arense, J.; Miralles-Chorro, A.; Fuentes, P.; Martínez-Subiela, S.; González-Bulnes, A.; et al. Use of Saliva Analytes as a Predictive Model to Detect Diseases in the Pig: A Pilot Study. Metabolites 2025, 15, 130. https://doi.org/10.3390/metabo15020130
Llamas-Amor E, Ortín-Bustillo A, López-Martínez MJ, Muñoz-Prieto A, Manzanilla EG, Arense J, Miralles-Chorro A, Fuentes P, Martínez-Subiela S, González-Bulnes A, et al. Use of Saliva Analytes as a Predictive Model to Detect Diseases in the Pig: A Pilot Study. Metabolites. 2025; 15(2):130. https://doi.org/10.3390/metabo15020130
Chicago/Turabian StyleLlamas-Amor, Eva, Alba Ortín-Bustillo, María José López-Martínez, Alberto Muñoz-Prieto, Edgar García Manzanilla, Julián Arense, Aida Miralles-Chorro, Pablo Fuentes, Silvia Martínez-Subiela, Antonio González-Bulnes, and et al. 2025. "Use of Saliva Analytes as a Predictive Model to Detect Diseases in the Pig: A Pilot Study" Metabolites 15, no. 2: 130. https://doi.org/10.3390/metabo15020130
APA StyleLlamas-Amor, E., Ortín-Bustillo, A., López-Martínez, M. J., Muñoz-Prieto, A., Manzanilla, E. G., Arense, J., Miralles-Chorro, A., Fuentes, P., Martínez-Subiela, S., González-Bulnes, A., Goyena, E., Martínez-Martínez, A., Cerón, J. J., & Tecles, F. (2025). Use of Saliva Analytes as a Predictive Model to Detect Diseases in the Pig: A Pilot Study. Metabolites, 15(2), 130. https://doi.org/10.3390/metabo15020130