Autoimmune Processes and Chronic Inflammation as Independent Risk Factors for Metabolic Complications in Women with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population
- -
- Group 1—women diagnosed with PCOS (230 women) [PCOS],
- -
- Group 2—women diagnosed with PCOS and euthyroid AITD (194 women) [PCOS-AITD].
2.2.1. PCOS Assessment
2.2.2. AITD Assessment
2.3. Statistical Analysis
2.4. Mini-Review of the Literature
3. Results
3.1. Intergroup Comparison
3.2. Link Between Thyroid Autoimmunity and Metabolic Parameters
- -
- fasting glucose—for TG-Ab Rho = 0.159 with p-value = 0.002,
- -
- fasting insulin—for TPO-Ab Rho = 0.171 with p-value ≤ 0.001; for TG-Ab Rho = 0.110 with p-value = 0.023,
- -
- insulin serum level after 120 min in oral glucose tolerance test—for TPO-Ab Rho = 0.180 with p-value ≤ 0.001,
- -
- HOMA-IR—for TPO-Ab Rho = 0.170 with p-value ≤ 0.001; for TG-Ab Rho = 0.134 with p-value = 0.006.
- -
- total cholesterol—for TG-Ab Rho = 0.141 with p-value = 0.004,
- -
- LDL cholesterol—for TG-Ab Rho = 0.143 with p-value = 0.003,
- -
- TG (triglycerides)—for TG-Ab Rho = 0.119 with p-value = 0.015.
4. Discussion
4.1. Co-Occurrence of PCOS and AITD
4.2. AITD as a Chronic Inflammation Disease That Involve Immune System
4.3. Potential Common Mechanisms of PCOS and AITD—Autoimmune Processes and Chronic Inflammation
4.4. Metabolic Effects of Co-Occurrence of PCOS and AITD
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azziz, R.; Carmina, E.; Chen, Z.; Dunaif, A.; Laven, J.S.; Legro, R.S.; Lizneva, D.; Natterson-Horowizt, B.; Teede, H.J.; Yildiz, B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2016, 11, 16057. [Google Scholar] [CrossRef]
- Myers, S.H.; Russo, M.; Dinicola, S.; Forte, G.; Unfer, V. Questioning PCOS phenotypes for reclassification and tailored therapy. Trends Endocrinol. Metab. 2023, 34, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Tarlatzis, B.C.; Kauffman, R.P. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences. Metabolism 2018, 86, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Brutocao, C.; Zaiem, F.; Alsawas, M.; Morrow, A.S.; Murad, M.H.; Javed, A. Psychiatric disorders in women with polycystic ovary syndrome: A systematic review and meta-analysis. Endocrine 2018, 62, 318–325. [Google Scholar] [CrossRef]
- Palomba, S.; de Wilde, M.A.; Falbo, A.; Koster, M.P.; La Sala, G.B.; Fauser, B.C. Pregnancy complications in women with polycystic ovary syndrome. Hum. Reprod. Update 2015, 21, 575–592. [Google Scholar] [CrossRef] [PubMed]
- Romitti, M.; Fabris, V.C.; Ziegelmann, P.K.; Maia, A.L.; Spritzer, P.M. Association between PCOS and autoimmune thyroid disease: A systematic review and meta-analysis. Endocr. Connect. 2018, 7, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Artini, P.G.; Uccelli, A.; Papini, F.; Simi, G.; Di Berardino, O.M.; Ruggiero, M.; Cela, V. Infertility and pregnancy loss in euthyroid women with thyroid autoimmunity. Gynecol. Endocrinol. 2013, 29, 36–41. [Google Scholar] [CrossRef]
- Golden, S.H.; Robinson, K.A.; Saldanha, I.; Anton, B.; Ladenson, P.W. Clinical review: Prevalence and incidence of endocrine and metabolic disorders in the United States: A comprehensive review. J. Clin. Endocrinol. Metab. 2009, 94, 1853–1878. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, R.; Mukherjee, K.; Das, A.; Biswas, M.R.; Basunia, S.R.; Mukherjee, A. Anti-thyroid peroxidase antibody positivity during early pregnancy is associated with pregnancy complications and maternal morbidity in later life. J. Nat. Sci. Biol. Med. 2015, 6, 402–405. [Google Scholar]
- Deng, T.; Lyon, C.J.; Minze, L.J.; Lin, J.; Zou, J.; Liu, J.Z.; Ren, Y.; Yin, Z.; Hamilton, D.J.; Reardon, P.R.; et al. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab. 2013, 17, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Patrizio, A.; Ferrari, S.M.; Elia, G.; Ragusa, F.; Balestri, E.; Botrini, C.; Rugani, L.; Mazzi, V.; Antonelli, A.; Fallahi, P.; et al. Hypothyroidism and metabolic cardiovascular disease. Front. Endocrinol. 2024, 15, 1408684. [Google Scholar] [CrossRef] [PubMed]
- Pinto, S.; Croce, L.; Carlier, L.; Cosson, E.; Rotondi, M. Thyroid dysfunction during gestation and gestational diabetes mellitus: A complex relationship. J. Endocrinol. Investig. 2023, 46, 1737–1759. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, B.R.; Nácul, A.P.; Benetti-Pinto, C.L.; Rosa-E-Silva, A.C.J.S.; Soares Júnior, J.M.; Maciel, G.A.R.; Baracat, E.C. Reproductive Outcomes in Cases of Subclinical Hypothyroidism and Thyroid Autoimmunity: A Narrative Review. Rev. Bras. Ginecol. Obstet. 2020, 42, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, Y.; Ye, J.; Wei, H.; Huang, Z.; Ning, X.; Fu, X. A Comparative Study on Insulin Secretion, Insulin Resistance and Thyroid Function in Patients with Polycystic Ovary Syndrome with and without Hashimoto’s Thyroiditis. Diabetes Metab. Syndr. Obes. 2021, 14, 1817–1821. [Google Scholar] [CrossRef]
- Cenlin, J.; Lin, Z.; Wenhua, L.; Xiangyan, Z.; Hongyan, W. Assessment of glucose and lipid metabolism in patients with polycystic ovary syndrome with and without Hashimoto’s thyroiditis. Medicine 2023, 102, e33205. [Google Scholar]
- Kim, N.Y.; Cho, H.J.; Kim, H.Y.; Yang, K.M.; Ahn, H.K.; Thornton, S.; Kwak-Kim, J. Thyroid autoimmunity and its association with cellular and humoral immunity in women with reproductive failures. Am. J. Reprod. Immunol. 2011, 65, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, J.; Goerges, J.; Keck, C.; Müller-Wieland, D.; Diederich, S.; Janssen, O.E. Impact of Autoimmune Thyroiditis on Reproductive and Metabolic Parameters in Patients with Polycystic Ovary Syndrome. Exp. Clin. Endocrinol. Diabetes 2018, 126, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.; Thien Tay, C.; Laven, J.; Dokras, A.; Moran, L.; Piltonen, T.; Costello, M.; Boivin, J.; Redman, L.; Boyle, J.; et al. International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome; Monash University: Melbourne, Australia, 2023. [Google Scholar]
- Du, D.; Li, X. The relationship between thyroiditis and polycystic ovary syndrome: A meta-analysis. Int. J. Clin. Exp. Med. 2013, 6, 880–889. [Google Scholar]
- Ho, C.W.; Chen, H.H.; Hsieh, M.C.; Chen, C.C.; Hsu, S.P.; Yip, H.T.; Kao, C.H. Increased risk of polycystic ovary syndrome and it’s comorbidities in women with autoimmune thyroid disease. Int. J. Environ. Res. Public Health 2020, 17, 2422. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Yoon, J.W.; Kim, M.J.; Kim, S.M.; Hwang, K.R.; Choi, Y.M. Thyroid autoimmunity markers in women with polycystic ovary syndrome and controls. Hum. Fertil. 2022, 25, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Modi, A.; Goyal, M.; Sharma, P.; Purohit, P. Anti-thyroid antibodies and the gonadotrophins profile (LH/FSH) in euthyroid polycystic ovarian syndrome women. Acta Endocrinol. 2022, 18, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Karaköse, M.; Hepsen, S.; Çakal, E.; Saykı Arslan, M.; Tutal, E.; Akın, Ş.; Ünsal, İ.; Özbek, M. Frequency of nodular goiter and autoimmune thyroid disease and association of these disorders with insulin resistance in polycystic ovary syndrome. J. Turk.-Ger. Gynecol. Assoc. 2017, 18, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Duran, C.; Basaran, M.; Kutlu, O.; Kucukaydin, Z.; Bakdik, S.; Burnik, F.S.; Aslan, U.; Erdem, S.S.; Ecirli, S. Frequency of nodular goiter and autoimmune thyroid disease in patients with polycystic ovary syndrome. Endocrine 2015, 49, 464–469. [Google Scholar] [CrossRef]
- Ruggeri, R.M.; Vicchio, T.M.; Cristani, M.; Certo, R.; Caccamo, D.; Alibrandi, A.; Trimarchi, F.; Gangemi, S. Oxidative stress and advanced glycation end products in Hashimoto’s thyroiditis. Thyroid 2016, 26, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E.; Wahl, R. Thyroid autoimmunity: Role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases. Front. Immunol. 2017, 8, 521. [Google Scholar] [CrossRef] [PubMed]
- Pyzik, A.; Grywalska, E.; Matyjaszek-Matuszek, B.; Roliński, J. Immune disorders in Hashimoto’s thyroiditis: What do we know so far? J. Immunol. Res. 2015, 2015, 979167. [Google Scholar] [CrossRef]
- Zha, B.; Huang, X.; Lin, J.; Liu, J.; Hou, Y.; Wu, G. Distribution of lymphocyte subpopulations in thyroid glands of human autoimmune thyroid disease. J. Clin. Lab. Anal. 2014, 28, 249–254. [Google Scholar] [CrossRef]
- Wang, S.; Baidoo, S.; Liu, Y.; Zhu, C.; Tian, J.; Ma, J.; Xu, H.; Lu, L. T cell-derived leptin contributes to increased frequency of T helper type 17 cells in female patients with Hashimoto’s thyroiditis. Clin. Exp. Immunol. 2013, 171, 63–68. [Google Scholar] [CrossRef]
- Konova, E. The role of NK cells in the autoimmune thyroid disease-associated pregnancy loss. Clin. Rev. Allergy Immunol. 2010, 39, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Qi, Y.; Wang, H.; Jiang, J.; Sun, L.; Zhou, Q. Dysfunction of CD24+ CD38+ B cells in patients with Hashimoto’s thyroiditis is associated with a lack of interleukin 10. Int. J. Biochem. Cell Biol. 2017, 90, 114–120. [Google Scholar] [CrossRef]
- Santaguida, M.G.; Gatto, I.; Mangino, G.; Virili, C.; Stramazzo, I.; Fallahi, P.; Centanni, M. BREG cells in Hashimoto’s thyroiditis isolated or associated to further organ-specific autoimmune diseases. Clin. Immunol. 2017, 184, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.C.; Ilieva, K.M.; Visconti, A.; Beaumont, M.; Kiddle, S.J.; Dobson, R.J.B.; Mangino, M.; Lim, E.M.; Pezer, M.; Steves, C.J.; et al. Dysregulated Antibody, Natural Killer Cell and Immune Mediator Profiles in Autoimmune Thyroid Diseases. Cells 2020, 9, 665. [Google Scholar] [CrossRef]
- Kang, S.; Kang, J.; Shen, H.; Wu, N. Advances in regulatory B cells in autoimmune thyroid diseases. Int. Immunopharmacol. 2021, 96, 107770. [Google Scholar] [CrossRef]
- Szyper-Kravitz, M.; Marai, I.; Shoenfeld, Y. Coexistence of thyroid autoimmunity with other autoimmune diseases: Friend or foe? Additional aspects on the mosaic of autoimmunity. Autoimmunity 2005, 38, 247–255. [Google Scholar] [CrossRef]
- Sherer, Y.; Gorstein, A.; Fritzler, M.J.; Shoenfeld, Y. Autoantibody explosion in systemic lupus erythematosus: More than 100 different antibodies found in SLE patients. Semin Arthritis Rheum. 2004, 34, 501–537. [Google Scholar] [CrossRef] [PubMed]
- Mannerås-Holm, L.; Leonhardt, H.; Kullberg, J.; Jennische, E.; Odén, A.; Holm, G.; Hellström, M.; Lönn, L.; Olivecrona, G.; Stener-Victorin, E.; et al. Adipose tissue has aberrant morphology and function in PCOS: Enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J. Clin. Endocrinol. Metab. 2011, 96, E304–E311. [Google Scholar] [CrossRef] [PubMed]
- Herlihy, A.C.; Kelly, R.E.; Hogan, J.L.; O’Connor, N.; Farah, N.; Turner, M.J. Polycystic ovary syndrome and the peripheral blood white cell count. J. Obstet. Gynaecol. 2011, 31, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Tian, F.; Huo, R.; Tang, A.; Zeng, Y.; Duan, Y.G. Detection of dendritic cells and related cytokines in follicular fluid of patients with polycystic ovary syndrome. Am. J. Reprod. Immunol. 2017, 78, e12717. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Fredarow, A.; Tadmor, A.; Raz, T.; Meterani, N.; Addadi, Y.; Nevo, N.; Solomonov, I.; Sagi, I.; Mor, G.; Neeman, M.; et al. Ovarian dendritic cells act as a double-edged pro-ovulatory and anti-inflammatory sword. Mol. Endocrinol. 2014, 28, 1039–1054. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Saltzman, E.; Page, M.; Reece, J.; Mojtahed, T.; Wu, D.; Meydani, S.N. Lack of differences in inflammation and T cell-mediated function between young and older women with obesity. Nutrients 2020, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Trim, W.V.; Lynch, L. Immune and non-immune functions of adipose tissue leukocytes. Nat. Rev Immunol. 2022, 22, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Wong, H.; Ahluwalia, N.; Go, R.M.; Guerrero-Go, M.A. Metabolic, hormonal, immunologic, and genetic factors associated with the incidence of thyroid disorders in polycystic ovarian syndrome patients. Cureus 2020, 12, e11681. [Google Scholar] [CrossRef]
- Al-Saab, R.; Haddad, S. Detection of thyroid autoimmunity markers in euthyroid women with polycystic ovary syndrome: A case-control study from Syria. Int. J. Endocrinol. Metab. 2014, 12, e17954. [Google Scholar] [CrossRef] [PubMed]
- Cobin, R.H. Cardiovascular and metabolic risks associated with PCOS. Intern. Emerg. Med. 2013, 8 (Suppl. S1), 61–64. [Google Scholar] [CrossRef]
- Collet, T.H.; Bauer, D.C.; Cappola, A.R.; Asvold, B.O.; Weiler, S.; Vittinghoff, E.; Gussekloo, J.; Bremner, A.; den Elzen, W.P.; Maciel, R.M.; et al. Thyroid antibody status, subclinical hypothyroidism, and the risk of coronary heart disease: An individual participant data analysis. J. Clin. Endocrinol. Metab. 2014, 99, 3353–3362. [Google Scholar] [CrossRef]
- Gawron, I.M.; Baran, R.; Derbisz, K.; Jach, R. Association of subclinical hypothyroidism with present and absent anti-thyroid antibodies with PCOS phenotypes and metabolic profile. J. Clin. Med. 2022, 11, 1547. [Google Scholar] [CrossRef]
- Brenta, G.; Caballero, A.S.; Nunes, M.T. Case finding for hypothyroidism should include type 2 diabetes and metabolic syndrome patients: A Latin American thyroid society (Lats) position statement. Endocr. Pract. 2019, 25, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Glintborg, D.; Hass Rubin, K.; Nybo, M.; Abrahamsen, B.; Andersen, M. Morbidity and medicine prescriptions in a nationwide Danish population of patients diagnosed with polycystic ovary syndrome. Eur. J. Endocrinol. 2015, 172, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Trummer, C.; Schwetz, V.; Giuliani, A.; Obermayer-Pietsch, B.; Lerchbaum, E. Impact of elevated thyroid-stimulating hormone levels in polycystic ovary syndrome. Gynecol. Endocrinol. 2015, 31, 819–823. [Google Scholar] [CrossRef]
- Asvold, B.O.; Vatten, L.J.; Nilsen, T.I.; Bjoro, T. The association between TSH within the reference range and serum lipid concentrations in a population-based study. HUNT Study. Eur. J. Endocrinol. 2007, 156, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Park, H.T.; Cho, G.J.; Ahn, K.H.; Shin, J.H.; Hong, S.C.; Kim, T.; Hur, J.Y.; Kim, Y.T.; Lee, K.W.; Kim, S.H. Thyroid stimulating hormone is associated with metabolic syndrome in euthyroid postmenopausal women. Maturitas 2009, 62, 301–305. [Google Scholar] [CrossRef]
- Bonakdaran, S.; Milani, N.; Khorasani, Z.M.; Hosseinzadeh, M.; Kabiri, M. Is There a Relation between Hypothyroidism and Polycystic Ovary Syndrome and its Metabolic Components? Curr. Diabetes Rev. 2023, 19, e260422204034. [Google Scholar] [PubMed]
Parameter | PCOS Group (n = 230) | PCOS-AITD Group (n = 194) | p-Values | Effect Size (d Cohen’s) |
---|---|---|---|---|
Age (years) | 25.22 (SD = 4.83) | 28.02 (SD = 6.26) | <0.001 * | −0.714 |
BMI (kg/m2) | 25.46 (SD = 5.54) | 27.55 (SD = 7.71) | 0.003 * | −0.319 |
TSH (µIU/mL) | 1.62 (SD = 0.66) | 2.12 (SD = 2.62) | 0.010 * | −0.272 |
FT4 (pmol/mL) | 12.37 (SD = 1.51) | 12.68 (SD = 1.83) | 0.054 | - |
TPO-Ab (IU/mL) | 0.48 (SD = 0.51) | 289.19 (SD = 510.18) | <0.001 * | −0.837 |
TG-Ab (IU/mL) | 1.7 (SD = 1.29) | 140.73 (SD = 643.7) | 0.003 * | −0.319 |
Glucose 0′ (OGTT) (mg/dL) | 91.98 (SD = 53.18) | 89.49 (SD = 8.05) | 0.519 | - |
Glucose 120′ (OGTT) (mg/dL) | 116.97 (SD = 32.79) | 116.28 (SD = 37.99) | 0.844 | - |
Insulin 0′ (OGTT) (µU/L) | 7.71 (SD = 4.86) | 8.16 (SD = 4.55) | 0.332 | - |
Insulin 60′ (OGTT) (µU/L) | 61.96 (SD = 38.82) | 69.55 (SD = 48.34) | 0.085 | - |
Insulin 120′ (OGTT) (µU/L) | 62.06 (SD = 60.57) | 66.42 (SD = 52.44) | 0.442 | - |
HOMA-IR | 1.7 (SD = 1.21) | 1.82 (SD = 1.09) | 0.259 | - |
Total cholesterol (mg/dL) | 180.16 (SD = 33.05) | 189.57 (SD = 34.85) | 0.005 * | −0.278 |
LDL cholesterol (mg/dL) | 102.01 (SD = 31.03) | 109.8 (SD = 29.9) | 0.009 * | −0.256 |
HDL cholesterol (mg/dL) | 58.2 (SD = 13.9) | 59.51 (SD = 19.89) | 0.440 | - |
TG (mg/dL) | 96.82 (SD = 46.35) | 107.77 (SD = 54.00) | 0.027 * | −0.219 |
BMI (kg/m2) | PCOS Group (n = 230) | PCOS-AITD Group (n = 194) | Chi-square = 7.956 p = 0.047 * |
<18.5 | 4.5% | 4.7% | |
18.5–24.9 | 51.8% | 40.2% | |
25–29.9 | 23% | 22.5% | |
>30 | 20.7% | 32.5% |
Parameter | TPO-Ab | TG-Ab | ||
---|---|---|---|---|
Rho | p-Value | Rho | p-Value | |
BMI | 0.122 | 0.016 * | 0.159 | 0.002 * |
Glucose 0′ (OGTT) | 0.058 | 0.232 | 0.137 | 0.005 * |
Glucose 120′ (OGTT) | 0.085 | 0.084 | 0.001 | 0.984 |
Insulin 0′ (OGTT) | 0.171 | <0.001 * | 0.110 | 0.023 * |
Insulin 60′ (OGTT) | 0.088 | 0.074 | 0.078 | 0.116 |
Insulin 120′ (OGTT) | 0.180 | <0.001 * | 0.082 | 0.099 |
HOMA-IR | 0.170 | <0.001 * | 0.134 | 0.006 * |
Total cholesterol | 0.031 | 0.521 | 0.141 | 0.004 * |
LDL cholesterol | 0.058 | 0.237 | 0.143 | 0.003 * |
HDL cholesterol | −0.089 | 0.067 | −0.023 | 0.634 |
TG | 0.092 | 0.059 | 0.119 | 0.015 * |
Publication | Study Group | Aim of the Study | Conclusions |
---|---|---|---|
Du D. and Li X. 2013 [19] (Meta-analysis) | 726 PCOS women vs. 879 non-PCOS women | To investigate the relationship between PCOS and AITD. |
|
Duran C. et al. 2015 [24] (Case–control) | 73 PCOS women vs. 60 controls | To investigate frequency of AITD and nodular goiter in patients with PCOS. |
|
Karaköse M. et al. 2017 [23] (Case–control) | 97 PCOS women vs. 71 controls | To detect the prevalence of AITD and nodular goiter in patients with PCOS. |
|
Romitti M. et al. 2018 [6] (Systematic review and meta-analysis) | 1210 PCOS women vs. 987 non-PCOS women | To evaluate the risk of AITD co-occurrence in PCOS women. |
|
Ho CW. et al. 2020 [20] (Cohort) | 6731 women with AITD vs. 26924 controls | To assess the prevalence of PCOS and it’s comorbidities in women with AITD. |
|
Kim JJ. et al. 2022 [21] (Case–control) | 210 PCOS women vs. 343 non-PCOS women | To assess the prevalence of AITD (TPO-Ab presence and specific thyroid USG signs) in PCOS women in comparison to healthy controls. |
|
Sharma M. et al. 2022 [22] (Case–control) | 33 PCOS women vs. 32 controls | To estimate association of anti-TPO with LH/FSH in PCOS women. |
|
Publication | Study Group | Conclusions |
---|---|---|
Romitti M. et al. 2018 [6] (Systematic review and meta-analysis) | 1210 PCOS women vs. 987 non-PCOS women |
|
Ulrich J. et al. 2018 [17] (Retrospective cohort) | 827 PCOS women |
|
Ho CW. et al. 2020 [20] (Cohort) | 6731 women with AITD vs. 26924 controls |
|
Zhao H. et al. 2021 [14] (Comparative) | 52 PCOS-AITD women vs. 112 PCOS women |
|
Kim JJ. et al. 2022 [21] (Case–control) | 210 PCOS women vs. 343 non-PCOS women |
|
Cenlin J. et al. 2023 [15] (Cross-sectional) | 164 PCOS women vs. 49 PCOS-AITD women |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchta, K.; Zeber-Lubecka, N.; Grymowicz, M.; Smolarczyk, R.; Kulecka, M.; Hennig, E.E. Autoimmune Processes and Chronic Inflammation as Independent Risk Factors for Metabolic Complications in Women with Polycystic Ovary Syndrome. Metabolites 2025, 15, 141. https://doi.org/10.3390/metabo15030141
Suchta K, Zeber-Lubecka N, Grymowicz M, Smolarczyk R, Kulecka M, Hennig EE. Autoimmune Processes and Chronic Inflammation as Independent Risk Factors for Metabolic Complications in Women with Polycystic Ovary Syndrome. Metabolites. 2025; 15(3):141. https://doi.org/10.3390/metabo15030141
Chicago/Turabian StyleSuchta, Katarzyna, Natalia Zeber-Lubecka, Monika Grymowicz, Roman Smolarczyk, Maria Kulecka, and Ewa E. Hennig. 2025. "Autoimmune Processes and Chronic Inflammation as Independent Risk Factors for Metabolic Complications in Women with Polycystic Ovary Syndrome" Metabolites 15, no. 3: 141. https://doi.org/10.3390/metabo15030141
APA StyleSuchta, K., Zeber-Lubecka, N., Grymowicz, M., Smolarczyk, R., Kulecka, M., & Hennig, E. E. (2025). Autoimmune Processes and Chronic Inflammation as Independent Risk Factors for Metabolic Complications in Women with Polycystic Ovary Syndrome. Metabolites, 15(3), 141. https://doi.org/10.3390/metabo15030141