Executive Functions and Long-Term Metabolic Control in Adults with Phenylketonuria (PKU)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Executive Function Testing
2.1.1. Test Battery for Attentional Performance (TAP)
2.1.2. Tower of London (TL-D—Turm Von London—German Version)
2.2. Metabolic Data
2.3. Sociodemographic Data
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Metabolic Control
3.3. Executive Functions
3.4. Relation Between Executive Functions and Metabolic Control (Long Term/Concurrent)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muntau, A.C.; Beblo, S.; Koletzko, B. Phenylketonurie und Hyperphenylalaninämie. In Pädiatrie Upgrade 2002; Koletzko, B., Reinhardt, D., Stöckler-Ipsiroglu, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Scriver, C.R.; Kaufman, S. Hyperphenylalaninemia: Phenylalanine Hydroxylase Deficiency. In The Metabolic and Molecular Bases of Inherited Disease; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Eds.; McGraw-Hill Health Professions Division: New York, NY, USA, 1995; pp. 1667–1724. ISBN 0-07-913035-6. [Google Scholar]
- Van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Woolf, L.I.; Adams, J. The Early History of PKU. Int. J. Neonatal Screen. 2020, 6, 59. [Google Scholar] [CrossRef]
- Pietz, J.; Dunckelmann, R.; Rupp, A.; Rating, D.; Meinck, H.M.; Schmidt, H.; Bremer, H.J. Neurological outcome in adult patients with early-treated phenylketonuria. Eur. J. Pediatr. 1998, 157, 824–830. [Google Scholar] [CrossRef]
- Blau, N.; Thöny, B.; Cotton, R.; Hyland, K. Disorders of Tetrahydrobiopterin and related Biogenic Amines. In The Metabolic and Molecular Bases of Inherited Disease; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Eds.; McGraw-Hill Health Professions Division: New York, NY, USA, 1995; pp. 1725–1776. ISBN 0-07-913035-6. [Google Scholar]
- Krämer, J.; Baerwald, C.; Heimbold, C.; Kamrath, C.; Parhofer, K.G.; Reichert, A.; Rutsch, F.; Stolz, S.; Weinhold, N.; Muntau, A.C. Two years of pegvaliase in Germany: Exsperiences and best practice recommendations. Mol. Genet. Metab. 2023, 139, 107564. [Google Scholar] [CrossRef]
- Muntau, A.C.; Longo, N.; Ezgu, F.; Schwartz, I.V.D.; Lah, M.; Bratkovic, D.; Margvelashvili, L.; Kiykim, E.; Zori, R.; Campistol Plana, J.; et al. Effects of oral sepiapterin on blood Phe concentration in a broad range of patients with phenylketonuria (APHENITY): Results of an international, phase 3, randomised, double-blind, placebo-controlled trial. Lancet 2024, 404, 1333–1345. [Google Scholar] [CrossRef]
- Burgard, P.; Bremer, H.J.; Bührdel, P.; Clemens, P.C.; Mönch, E.; Przyrembel, H.; Trefz, F.K.; Ullrich, K. Rationale for the German recommendations for phenylalanine level control in phenylketonuria 1997. Eur. J. Pediatr. 1999, 158, 46–54. [Google Scholar] [CrossRef]
- Christ, S.E.; Abbene, E.E.; Clocksin, H.E.; Wegrzyn, A.K. Motor control and learning in individuals with early-treated phenylketonuria. Neuropsychology 2021, 35, 731–741. [Google Scholar] [CrossRef]
- Feldmann, R.; Osterloh, J.; Onon, S.; Fromm, J.; Rutsch, F.; Weglage, J. Neurocognitive functioning in adults with phenylketonuria: Report of a 10-year follow-up. Mol. Genet. Metab. 2019, 126, 246–249. [Google Scholar] [CrossRef]
- Bartus, A.; Palasti, F.; Juhasz, E.; Kiss, E.; Simonova, E.; Sumanszki, C.; Reismann, P. The influence of blood phenylalanine levels on neurocognitive function in adult PKU patients. Metab. Brain Dis. 2018, 33, 1609–1615. [Google Scholar] [CrossRef]
- Palermo, L.; Geberhiwot, T.; MacDonald, A.; Limback, E.; Hall, S.K.; Romani, C. Cognitive outcomes in early-treated adults with phenylketonuria (PKU): A comprehensive picture across domains. Neuropsychology 2017, 31, 255–267. [Google Scholar] [CrossRef]
- Schoen, M.S.; Boland, K.M.; Christ, S.E.; Cui, X.; Ramakrishnan, U.; Ziegler, T.R.; Alvarez, J.A.; Singh, R.H. Total choline intake and working memory performance in adults with phenylketonuria. Orphanet J. Rare Dis. 2023, 18, 222. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, A.; Zipser, C.M.; Leks, E.; Haas, D.; Gramer, G.; Freisinger, P.; Schaeffer, E.; Liepelt-Scarfone, I.; Brockmann, K.; Maetzler, W.; et al. Phenylalanine Effects on Brain Function in Adult Phenylketonuria. Neurology 2021, 96, e399–e411. [Google Scholar] [CrossRef] [PubMed]
- Romani, C.; Olson, A.; Aitkenhead, L.; Baker, L.; Patel, D.; van Spronsen, F.; MacDonald, A.; van Wegberg, A.; Huijbregts, S. Meta-analyses of cognitive functions in early-treated adults with phenylketonuria. Neurosci. Biobehav. Rev. 2022, 143, 104925. [Google Scholar] [CrossRef]
- Luna, P.M.; López-Paz, J.F.; García, M.; Amayra, I.; Martínez, O.; Pérez, M.; Rodríguez, A.A.; Pérez-Núñez, P.; Ceberio, I.; Mansilla, N.; et al. Cognitive Functioning in Adults with Phenylketonuria in a Cohort of Spanish Patients. Behav. Neurol. 2023, 2023, 9681740. [Google Scholar] [CrossRef]
- Clocksin, H.E.; Hawks, Z.W.; White, D.A.; Christ, S.E. Inter- and intra-tract analysis of white matter abnormalities in individuals with early-treated phenylketonuria (PKU). Mol. Genet. Metab. 2021, 132, 11–18. [Google Scholar] [CrossRef]
- Zimmermann, P.; Fimm, B. Testbatterie zur Aufmerksamkeitsprüfung (TAP); Psytest: Herzogenrath, Germany, 2002. [Google Scholar]
- Tucha, O.; Lange, K.W. TD-L—Turm von London—Deutsche Version; Hogrefe: Göttingen, Germany, 2004. [Google Scholar]
- Ceglarek, U.; Müller, P.; Stach, B.; Bührdel, P.; Thiery, J.; Kiess, W. Validation of the phenylalanine/tyrosine ratio determined by tandem mass spectrometry: Sensitive newborn screening for phenylketonuria. Clin. Chem. Lab. Med. 2002, 40, 693–697. [Google Scholar] [CrossRef]
- Cummins, P.M.; Rochfort, K.D.; O’Connor, B.F. Ion-Exchange Chromatography: Basic Principles and Application. Methods Mol. Biol. 2017, 1485, 209–223. [Google Scholar] [CrossRef]
- Gerasimova, N.S.; Steklova, I.V.; Tuuminen, T. Fluorometric method for phenylalanine microplate assay adapted for phenylketonuria screening. Clin. Chem. 1989, 35, 2112–2115. [Google Scholar] [CrossRef]
- Guthrie, R.; Susi, A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963, 32, 338–343. [Google Scholar] [CrossRef]
- Romani, C.; Manti, F.; Nardecchia, F.; Valentini, F.; Fallarino, N.; Carducci, C.; de Leo, S.; MacDonald, A.; Palermo, L.; Leuzzi, V. Adult cognitive outcomes in phenylketonuria: Explaining causes of variability beyond average Phe levels. Orphanet J. Rare Dis. 2019, 14, 273. [Google Scholar] [CrossRef]
- Statistisches Bundesamt. Bevölkerung ab 15 Jahren in Hauptwohnsitzhaushalten: Deutschland, Jahre, Geschlecht, Altersgruppen, Allgemeine Schulausbildung. Available online: https://www-genesis.destatis.de/datenbank/beta/statistic/12211/table/12211-0100 (accessed on 20 February 2025).
- Statistisches Bundesamt. Eckzahlen zum Arbeitsmarkt, Deutschland. Available online: https://www.destatis.de/DE/Themen/Arbeit/Arbeitsmarkt/Erwerbstaetigkeit/Tabellen/eckwerttabelle.html (accessed on 28 November 2024).
- Statistisches Bundesamt. Kernerwerbstätige in Unterschiedlichen Erwerbsformen—Atypische Beschäftigung. Available online: https://www.destatis.de/DE/Themen/Arbeit/Arbeitsmarkt/Erwerbstaetigkeit/Tabellen/atyp-kernerwerb-erwerbsform-zr.html (accessed on 28 November 2024).
- Statistisches Bundesamt. Studierende nach Bundesländern. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Hochschulen/Tabellen/studierende-insgesamt-bundeslaender.html (accessed on 28 November 2024).
- Statistisches Bundesamt. Zahl der Auszubildenden. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Bildungsindikatoren/auszubildende-tabelle.html?nn=621104 (accessed on 28 November 2024).
- Statistisches Bundesamt. Bevölkerung nach Familienstand 2011 bis 2023 Deutschland. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/Tabellen/familienstand-jahre-5.html (accessed on 28 November 2024).
- Statistisches Bundesamt. Zusammengefasste Geburtenziffern (je Frau): Deutschland, Jahre, Altersgruppen. Available online: https://www-genesis.destatis.de/datenbank/online/statistic/12612/table/12612-0009 (accessed on 28 November 2024).
- Statistisches Bundesamt. Durchschnittliche Kinderanzahl nach Lebensformen in Deutschland (2020). Available online: https://www.bib.bund.de/DE/Fakten/Fakt/L42-Lebensformen-Kinderzahl.html (accessed on 20 February 2025).
- Statistisches Bundesamt. Körpermaße nach Altersgruppen und Geschlecht. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Gesundheitszustand-Relevantes-Verhalten/Tabellen/liste-koerpermasse.html (accessed on 20 February 2025).
- Bundeszentrale für Politische Bildung. Lebensformen und Haushalte. Available online: https://www.bpb.de/kurz-knapp/zahlen-und-fakten/soziale-situation-in-deutschland/61568/lebensformen-und-haushalte/ (accessed on 28 November 2024).
- Deutsche Rentenversicherung. Anzahl der Renten Wegen Verminderter Erwerbsfähigkeit in Deutschland in den Jahren von 1992 bis 2023 (in 1.000). Available online: https://de.statista.com/statistik/daten/studie/616655/umfrage/anzahl-der-renten-wegen-verminderter-erwerbsfaehigkeit-in-deutschland/#:~:text=Anzahl%20der%20Renten%20wegen%20verminderter%20Erwerbsf%C3%A4higkeit%20in%20Deutschland%20bis%202023&text=Zum%20Ende%20des%20Jahres%202023,auf%20rund%201%2C76%20Millionen (accessed on 28 November 2024).
- Wickham, H.; Bryan, J. readxl: Read Excel Files (R package version 1.4.0). 2023. Available online: https://cran.r-project.org/package=readxl (accessed on 20 February 2025).
- Wei, T.; Simko, V. R package ‘Corrplot’: Visualizing Correlation Matrices. 2021. Available online: https://cran.r-project.org/package=corrplot (accessed on 20 February 2025).
- Revelle, W. psych: Procedures for Personality and Psychological Research, (R Package Version 2.2.9); Northwestern University: Evanston, IL, USA, 2024; Available online: https://cran.r-project.org/package=psych (accessed on 20 February 2025).
- Schauberger, P.; Walker, A. openxlsx: Read, Write and Edit Excel Files (R Package Version 4.2.5). 2023. Available online: https://cran.r-project.org/package=openxlsx (accessed on 20 February 2025).
- Mangiafico, S.S. rcompanion: Functions to Support Extension Education Programming, (R package version 2.3.2); New Brunswick, NY, USA. 2024. Available online: https://cran.r-project.org/package=rcompanion (accessed on 20 February 2025).
- Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests (R Package Version 0.7.0). 2023. Available online: https://cran.r-project.org/package=rstatix (accessed on 20 February 2025).
- Hothorn, T.; Hornik, K.; van de Wiel, M.A.; Zeileis, A. A Lego system for conditional inference. Am. Stat. 2006, 60, 257–263. [Google Scholar] [CrossRef]
- Bik-Multanowski, M.; Pietrzyk, J.J.; Mozrzymas, R. Routine use of CANTAB system for detection of neuropsychological deficits in patients with PKU. Mol. Genet. Metab. 2011, 102, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Costa-Lathan, C.; Vazquez-Agra, N.; Marques-Afonso, A.-T.; Cruces-Sande, A.; Martinez-Olmos, M.-A.; Araujo-Vilar, D.; Hermida-Ameijeiras, A. The role of phenylalanine levels in the neuropsychological and neuroanatomical status of adult patients with phenylketonuria: The impact of fluctuations. J. Investig. Med. 2023, 71, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, R.; Och, U.; Beckmann, L.S.; Weglage, J.; Rutsch, F. Children and Adolescents with Early Treated Phenylketonuria: Cognitive Development and Fluctuations of Blood Phenylalanine Levels. Int. J. Environ. Res. Public Health 2024, 21, 431. [Google Scholar] [CrossRef]
- Fonnesbeck, C.J.; McPheeters, M.L.; Krishnaswami, S.; Lindegren, M.L.; Reimschisel, T. Estimating the probability of IQ impairment from blood phenylalanine for phenylketonuria patients: A hierarchical meta-analysis. J. Inherit. Metab. Dis. 2013, 36, 757–766. [Google Scholar] [CrossRef]
- Sundermann, B.; Garde, S.; Dehghan Nayyeri, M.; Weglage, J.; Rau, J.; Pfleiderer, B.; Feldmann, R. Approaching altered inhibitory control in phenylketonuria: A functional MRI study with a Go-NoGo task in young female adults. Eur. J. Neurosci. 2020, 52, 3951–3962. [Google Scholar] [CrossRef]
- Pardo, J.; Capdevila-Lacasa, C.; Segura, B.; Pané, A.; Montserrat, C.; de Talló Forga-Visa, M.; Moreno, P.J.; Garrabou, G.; Grau-Junyent, J.M.; Junqué, C. Volumetric brain reductions in adult patients with phenylketonuria and their relationship with blood phenylalanine levels. J. Neurodev. Disord. 2024, 16, 33. [Google Scholar] [CrossRef]
- Steiner, L.; Muri, R.; Wijesinghe, D.; Jann, K.; Maissen-Abgottspon, S.; Radojewski, P.; Pospieszny, K.; Kreis, R.; Kiefer, C.; Hochuli, M.; et al. Cerebral blood flow and white matter alterations in adults with phenylketonuria. Neuroimage Clin. 2024, 41, 103550. [Google Scholar] [CrossRef]
- Thomas, L.; Aitkenhead, L.; Stepien, K.M.; Woodall, A.; MacDonald, A.; Romani, C. Cognition and wellbeing in middle-aged early treated people with phenylketonuria: Preliminary results and methodological lessons. Mol. Genet. Metab. Rep. 2024, 41, 101160. [Google Scholar] [CrossRef]
- Tomm, A.; Thiele, A.G.; Rohde, C.; Kirmse, S.; Kiess, W.; Beblo, S. Executive functions & metabolic control in phenylketonuria (PKU) and mild hyperphenylalaninemia (mHPA). Mol. Genet. Metab. 2024, 143, 108544. [Google Scholar] [CrossRef]
- Ahring, K.; Bélanger-Quintana, A.; Burlina, A.; Giżewska, M.; Maillot, F.; Muntau, A.; Roscher, A.; MacDonald, A. Management of phenylketonuria in European PKU centres remains heterogeneous. Mol. Genet. Metab. 2024, 141, 108120. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Schwarz, M.; Roos, J.; Dragano, N.; Geraedts, M.; Siegrist, J.; Kamp, G.; Wendel, U. Evaluation of quality of life and description of the sociodemographic state in adolescent and young adult patients with phenylketonuria (PKU). Health Qual. Life Outcomes 2008, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Mütze, U.; Roth, A.; Weigel, J.F.W.; Beblo, S.; Baerwald, C.G.; Bührdel, P.; Kiess, W. Transition of young adults with phenylketonuria from pediatric to adult care. J. Inherit. Metab. Dis. 2011, 34, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Mütze, U.; Thiele, A.G.; Baerwald, C.; Ceglarek, U.; Kiess, W.; Beblo, S. Ten years of specialized adult care for phenylketonuria—A single-centre experience. Orphanet J. Rare Dis. 2016, 11, 27. [Google Scholar] [CrossRef]
- Klimek, A.; Baerwald, C.; Schwarz, M.; Rutsch, F.; Parhofer, K.G.; Plöckinger, U.; Heddrich-Ellerbrok, M.; Vom Dahl, S.; Schöne, K.; Ott, M.; et al. Everyday Life, Dietary Practices, and Health Conditions of Adult PKU Patients: A Multicenter, Cross-Sectional Study. Ann. Nutr. Metab. 2020, 76, 251–258. [Google Scholar] [CrossRef]
- Das, A.M.; Goedecke, K.; Meyer, U.; Kanzelmeyer, N.; Koch, S.; Illsinger, S.; Lücke, T.; Hartmann, H.; Lange, K.; Lanfermann, H.; et al. Dietary habits and metabolic control in adolescents and young adults with phenylketonuria: Self-imposed protein restriction may be harmful. JIMD Rep. 2014, 13, 149–158. [Google Scholar] [CrossRef]
- Delbreil, P.; Dhondt, S.; Kenaan El Rahbani, R.M.; Banquy, X.; Mitchell, J.J.; Brambilla, D. Current Advances and Material Innovations in the Search for Novel Treatments of Phenylketonuria. Adv. Healthc. Mater. 2024, 13, 2401353. [Google Scholar] [CrossRef]
- Silveira, A.M.; Lima, P.L.; Alves, M.R.A.; Del Soares, R.L.; Kanufre, V.d.C.; Rodrigues, V.d.M.; Starling, A.L.P.; Norton, R.d.C.; de Aguiar, M.J.B. Overweight/obesity in adolescents with phenylketonuria: Protective and predisposing factors. J. Pediatr. 2021, 98, 104–110. [Google Scholar] [CrossRef]
- Balci, M.C.; Karaca, M.; Gunes, D.; Korbeyli, H.K.; Selamioglu, A.; Gokcay, G. Evaluation of Body Composition and Biochemical Parameters in Adult Phenylketonuria. Nutrients 2024, 16, 3355. [Google Scholar] [CrossRef]
- Mezzomo, T.R.; Dias, M.R.M.G.; Pereira, R.M. Adults with early diagnosis of phenylketonuria have higher resting energy expenditure than adults with late diagnosis. Clin. Nutr. ESPEN 2023, 56, 166–172. [Google Scholar] [CrossRef]
- Thiele, A.G.; Gausche, R.; Lindenberg, C.; Beger, C.; Arelin, M.; Rohde, C.; Mütze, U.; Weigel, J.F.; Mohnike, K.; Baerwald, C.; et al. Growth and Final Height Among Children with Phenylketonuria. Pediatrics 2017, 140, e20170015. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.V.; McStravick, N.; Ripley, S.; Weetch, E.; Donald, S.; Adam, S.; Micciche, A.; Boocock, S.; MacDonald, A. Body mass index in adult patients with diet-treated phenylketonuria. J. Hum. Nutr. Diet. 2013, 26 (Suppl. S1), 1–6. [Google Scholar] [CrossRef] [PubMed]
- Giofrè, D.; Toffalini, E.; Esposito, L.; Cornoldi, C. Sex/gender differences in general cognitive abilities: An investigation using the Leiter-3. Cogn. Process. 2024, 25, 663–672. [Google Scholar] [CrossRef]
- Lui, K.F.; Yip, K.H.; Wong, A.C.-N. Gender differences in multitasking experience and performance. Q. J. Exp. Psychol. 2021, 74, 344–362. [Google Scholar] [CrossRef]
- Palmer, M.A.; Brewer, N.; Horry, R. Understanding gender bias in face recognition: Effects of divided attention at encoding. Acta Psychol. 2013, 142, 362–369. [Google Scholar] [CrossRef]
- Hauri, L.; Muri, R.; Everts, R.; Trepp, R. Do early-treated adults with phenylketonuria sense high phenylalanine levels? JIMD Rep. 2024, 65, 354–358. [Google Scholar] [CrossRef]
n | Total (36) | Female (20) | Male (16) | |
---|---|---|---|---|
Mean age in years (SD) | 34.8 (10.9) | 37.4 (11.0) | 31.6 (9.8) | |
Age at diagnosis in days (SD) | 17.9 (11.5) | 19.3 (14.7) | 16.4 (8.9) | |
Amino acid mixture supply | 27 | 14 | 13 | |
Therapy | ||||
Diet alone | 27 | 15 | 12 | |
BH4 | 5 | 3 | 2 | |
Pegvaliase | 4 | 2 | 2 |
Mean (SD) | ||||||
---|---|---|---|---|---|---|
All Patients | Reference Group a | Female Patients | Reference Group a | Male Patients | Reference Group a | |
BMI (kg/m2) | 26.9 (6.4) | 26.0 | 28.8 (6.8) | 25.2 | 24.6 (4.9) | 26.8 |
Height (cm) | 170.0 (9.6) | 172.5 | 164.7 (6.8) | 165.8 | 176.7 (8.2) | 178.9 |
Weight (kg) | 77.8 (19.2) | 77.7 | 78.1 (19.5) | 69.2 | 77.4 (18.8) | 85.8 |
Sociodemographic Data (n) | Study Participants in % (n) | Mean Age per Subgroup (in Years) | Reference Population in % | Chi-Square Test Statistic | p-Value | |
---|---|---|---|---|---|---|
School-leaving certificate (36) a | 11.99 | 0.007 * | ||||
None | 0 (0) | - | 5.3 | |||
Lower secondary school | 19.4 (7) | 45.9 | 24.4 | |||
Intermediate secondary school | 44.4 (16) | 33.5 | 31.4 | |||
Higher secondary school | 36.1 (13) | 30.5 | 40.0 | |||
Employment (36) b | 21.819 | <0.001 * | ||||
Unemployed | 2.78 (1) | 38.0 | 5.46 | |||
Early retirement | 2.78 (1) | 48.0 | 3.52 | |||
Student | 11.11 (4) | 26.0 | 6.11 | |||
Trainee | 8.33 (3) | 19.7 | 2.54 | |||
Part-time employment | 16.67 (6) | 35.5 | 25.44 | |||
Full-time employment | 58.33 (21) | 37.7 | 56.93 | |||
Form of relationship (33) c | 10.455 | <0.005 * | ||||
Single | 30.30 (10) | 29.6 | 31.79 | |||
In a relationship or married | 63.64 (21) | 37.3 | 50.98 | |||
Other (widowed/divorced) | 6.06 (2) | 45.5 | 17.23 | |||
Living arrangement (35) d | 1.5075 | 0.6805 | ||||
Alone | 17.14 (6) | 34.0 | 20.80 | |||
Shared living | 5.71 (2) | 30.0 | 5.00 | |||
With family/partner | 60.00 (21) | 38.3 | 60.70 | |||
With parents | 17.14 (6) | 24.0 | 13.50 | |||
Mean number of children (35) e | 0.46 | 1.46 | ||||
Number of children f | 50.431 | <0.001 * | ||||
0 | 65.71 (23) | 30.6 | 33 | |||
1 | 22.86 (8) | 39.6 | 35 | |||
2 | 11.11 (4) | 48.0 | 21 | |||
3+ | 0 | - | 11 |
No. of Patients: | No. of Measurements per Patient: Median (min–max) | Median Phe Concentration in µmol/L (IQR) | |
---|---|---|---|
Newborn screening | 31 | 1 | 1755 (1074) |
Phe 0–6 years | 32 | 6 (3–6) | 332 (217) |
Phe 6–10 years | 32 | 4 (2–4) | 321 (436) |
Phe 10–18 years | 31 | 8 (3–8) | 546 (414) |
Phe childhood | 32 | 18 (9–18) | 431 (308) |
Phe adulthood | 36 | 12 (2–31) | 725 (214) |
Phe variation 0–6 years | 32 | 6 (3–6) | 179 (72) |
Phe variation 6–10 years | 32 | 4 (2–4) | 161 (67) |
Phe variation 10–18 years | 30 | 8 (3–8) | 104 (50) |
Phe variation childhood | 32 | 18 (8–18) | 154 (62) |
Phe variation adulthood | 36 | 11 (1–31) | 112 (57) |
Recent median | 36 | 8.5 (3–10) | 768 (442) |
Recent SD | 36 | 8.5 (3–10) | 163 (82) |
Current Phe | 36 | 1 | 845 (646) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomm, A.; Thiele, A.G.; Rohde, C.; Schlögl, H.; Kiess, W.; Beblo, S. Executive Functions and Long-Term Metabolic Control in Adults with Phenylketonuria (PKU). Metabolites 2025, 15, 197. https://doi.org/10.3390/metabo15030197
Tomm A, Thiele AG, Rohde C, Schlögl H, Kiess W, Beblo S. Executive Functions and Long-Term Metabolic Control in Adults with Phenylketonuria (PKU). Metabolites. 2025; 15(3):197. https://doi.org/10.3390/metabo15030197
Chicago/Turabian StyleTomm, Anne, Alena G. Thiele, Carmen Rohde, Haiko Schlögl, Wieland Kiess, and Skadi Beblo. 2025. "Executive Functions and Long-Term Metabolic Control in Adults with Phenylketonuria (PKU)" Metabolites 15, no. 3: 197. https://doi.org/10.3390/metabo15030197
APA StyleTomm, A., Thiele, A. G., Rohde, C., Schlögl, H., Kiess, W., & Beblo, S. (2025). Executive Functions and Long-Term Metabolic Control in Adults with Phenylketonuria (PKU). Metabolites, 15(3), 197. https://doi.org/10.3390/metabo15030197