Mycotoxins in Feed: Hazards, Toxicology, and Plant Extract-Based Remedies
Abstract
:1. Types of Mycotoxins and Current Status of Feed Contamination
1.1. Types and Chemical Stability of Mycotoxins
Mycotoxin Types | Sources | Toxicity Characteristics | Mechanisms | Reference |
---|---|---|---|---|
AFs | Aspergillus flavus and Aspergillus parasiticus | Highly toxic, hepatotoxic and carcinogenic | Inhibits protein synthesis, causes cell apoptosis, and increases the risk of hepatic carcinogenesis | [5] |
DON | Fusarium graminearum | Food refusal, vomiting, growth retardation, and immunosuppression | Activates the intracellular stress response, leading to apoptosis | [6] |
ZEA | Fusarium graminearum and Fusarium rhubarb | Simulating estrogen, pseudopregnancy, vaginitis, and infertility | Activates estrogen receptors and affects the development of reproductive organs | [7] |
FBs | Fusarium sp. | Neurotoxicity, liver and kidney injuries, immunosuppression, and reproductive disorders | Inhibits sphingolipid biosynthesis and disrupts cell membrane structure | [8] |
OTA | Aspergillus spp. and Penicillium spp. | Kidney injury, immunosuppression, and growth retardation | Inhibits protein synthesis and causes cell death | [9] |
1.2. Widespread Occurrence of Mycotoxin Contamination
Mycotoxin Type | Country/Region | Study Period/Year | Sample Size/Scope | Contamination Levels | Detection Rate (%) | Exceedance of Limits |
---|---|---|---|---|---|---|
Multiple mycotoxins | Europe | 2021 | ~1200 feed samples | 98.5% with ≥1 mycotoxin; 86.1% with ≥2 mycotoxins; 77% cereals with novel mycotoxins | 98.5 (any) | - |
AFs | India | - | Dairy cattle feed | AF detected in 59% of concentrated feeds | 59 | 44% exceeded US limit (20 μg/kg); 58% exceeded EU limit (5 μg/kg) |
AFB1 | China | 2018–2020 | Various feeds | Average content: 1.2–27.4 μg/kg; incidence: 81.9–100% | 81.9–100 | 0.9% of materials exceeded the Chinese safety standard |
Trichothecene B and FBs | China | 2017–2021 | 9392 feed samples | Most common in new season maize | 84.04 (trichothecene B); 87.16 (FBs) | - |
AFB1, ZEN, and DON | China | 2021 | 1025 feed samples | Co-contamination prevalence | 95.99 (AFB1); 98.54 (ZEN); 100 (DON) | 89.85% of samples contained all three mycotoxins |
DON, FBs, and ZEN | Global (Cargill data) | 2023 | >145,000 samples from 150+ sites | Top 3 prevalent mycotoxins by risk level | - | Global contamination patterns observed |
1.3. Effects and Toxicology of Five Common Mycotoxin Contaminants on Livestock and Poultry
Mycotoxin Types | Effects on Monogastric Animal | Effects on Poultry | Effects on Ruminants | Effects on Aquatic Livestock |
---|---|---|---|---|
AFs | Growth retardation, decreased feed utilization, depression, anorexia, acute liver disease, and immunosuppression | Subcutaneous hemorrhage, smaller eggs, reduced yolk weight, and reduced fertilization and hatching rate | Reduced resistance of cows to viruses and parasites | Liver necrosis, decreased feed intake, and weight loss were observed |
ZEA | Pseudoestrus, vaginitis, abortion, stillbirth in gilts, testicular atrophy in boars, and decreased semen quality in gilts | The ovaries were atrophic, the egg production rate was decreased, and the fertilization rate of breeding eggs was decreased | The rumen degrades 90% of ZEA and generates the more toxic zearalenol | Decreased fecundity, ovulation disorders, and infertility |
DON | Decreased feed intake, intestinal damage, vomiting, and food refusal | Invasion of the digestive tract, decreased feed intake, food refusal, and reduced egg production rate | Under stress, the risk of poisoning is increased | Destroying the integrity of the gill structure |
FBs | Growth arrest, liver tissue damage, reproductive impairment, and immunosuppression | Reduced egg production, poor feather growth, oral ulcers, and neurological disorders | Weight loss, immunosuppression, and liver toxicity | Inhibit growth and cause pathological damage |
OTA | Weight loss, growth retardation, and liver and kidney lesions | Incomplete eggshell calcification, high rate of egg breaking, and subcutaneous hemorrhage | Anorexia, diarrhea, difficulty gaining weight, and decreased milk production | Nervous system and respiratory toxicities |
2. Mechanisms and Targets of Feed Mycotoxins That Harm the Health and Growth of Livestock and Poultry
2.1. AFs
2.2. ZEA
2.3. DON
2.4. FBs
2.5. OTA
3. Study on the Application of Plant Extracts in Mycotoxin Poisoning
3.1. The Development Potential of Plant Extracts
3.2. Source and Composition of Plant Extracts
3.3. Application of Plant Extracts
Plant Extract | Classification | Experimental Subject | Mechanism | References |
---|---|---|---|---|
Curcumin | Polyphenol | DucksMice | Increased jejunal tight junction protein mRNA and protein levels to protect the intestinal barrier and mitochondria from OTA-induced damageRegulation of Nrf2/p53-mediated apoptosis pathway and NF-kB/MLCK-mediated TJ pathway alleviates intestinal epithelial barrier damage induced by DON in mice | [114,115] |
Resveratrol | Polyphenol | Intestinal cells | Activation of the protein kinase-dependent pathway regulates IL-6 and IL-8 secretion to promote the assembly of claudin-4 in tight junction complexes to prevent DON-induced barrier dysfunction | [116] |
Dihydromyricetin | Flavone | IPEC-J2 | Alleviates cell damage caused by DON through its antioxidant activity, anti-inflammatory activity, or regulation of metabolic pathways | [117] |
Grape seed proanthocyanidin extract | Glycoside | Rats | GSPE can alleviate the oxidative stress induced by AFB1 and significantly improve the immune damage induced by AFB1 in mice | [118] |
Red orange and lemon extract | Glycoside | Rats | RLE attenuates OTA kidney injury caused by oxidative stress | [119] |
Flavonoid-rich fractions from Chromolena odorata | Flavone | Rats | Afb1-induced liver and intestinal injuries were ameliorated by changing the levels of pro-inflammatory cytokines, TNF-α, and IL-1β | [120] |
Ferulic acid | Organic acid | Rats | Upregulation of tight junction proteins, downregulation of ROCK, competition for CYP450 enzyme, and activation of GST attenuate AFB1-induced duodenal barrier injury in rats | [121] |
Quercetin | Polyphenol | Mice | Quercetin alleviates intestinal injury induced by DON in mice by inhibiting the TLR4/NF-κB signaling pathway and ferroptosis | [122] |
Hericium mushroom polysaccharide | Polysaccharide | IPEC-J2 | It can significantly protect IPEC-J2 cells from DON-induced oxidative stress, inhibit DON-induced apoptosis, and reduce the production of reactive oxygen species (ROS) | [123] |
Theophylline | Alkaloid | Piglets | To improve the intestinal barrier function and reduce inflammation, immunosuppression, and oxidative stress in piglets challenged with DON by regulating NF-κB/MAPK signaling pathway | [124] |
Melaleuca alternifolia | Essential oil | Silver catfish | Elevated levels of ROS, LOOH, and PC in plasma and liver were avoided; in addition, TTO treatment attenuated aflatoxin-related liver injury | [125] |
4. Limitations and Prospects
- (1)
- Most studies focus on superficial effects, such as antioxidation and anti-inflammation, but there is insufficient analysis of the molecular targets for detoxification, such as key enzyme inhibition and signaling pathway regulation, as well as the toxin metabolism pathways. There is a lack of systematic validation at the multi-omics level.
- (2)
- Active components (such as polyphenols and flavonoids) are prone to degradation under the influence of light, heat, and pH, and some extracts may cause unknown toxicities or interact with feed components. A long-term toxicological evaluation system needs to be established.
- (3)
- The extracts have low absorption rates and rapid metabolisms in animals, making it difficult to target the sites of toxin action (such as the intestines and liver). There is an urgent need to develop encapsulation technologies (such as nanocarriers) to improve delivery efficiency.
- (4)
- Existing research mostly focuses on single toxins, whereas actual contamination often involves multiple mycotoxins coexisting. The synergistic detoxification effects and mechanisms of plant extracts on complex contamination have not yet been clarified.
- (5)
- The extraction process of high-purity active components is complex and costly, and it is limited by the regional and seasonal availability of plant resources. There is a need to optimize low-cost, sustainable industrial production schemes.
- (6)
- There are no uniform quality control standards for the active components of different extracts, and there is a lack of research on the dose-effect relationship between active ingredients and detoxification effects, which affects the reliability of practical applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, R. Mycotoxins in food: Occurrence, health implications, and control strategies-A comprehensive review. Toxicon 2024, 248, 108038. [Google Scholar] [CrossRef]
- Makhuvele, R.; Naidu, K.; Gbashi, S.; Thipe, V.C.; Adebo, O.A.; Njobeh, P.B. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 2020, 6, e05291. [Google Scholar] [CrossRef] [PubMed]
- Raters, M.; Matissek, R. Thermal stability of aflatoxin B1 and ochratoxin A. Mycotoxin Res. 2008, 24, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, H.; Wang, R.; Xu, Q. Deoxynivalenol in food and feed: Recent advances in decontamination strategies. Front. Microbiol. 2023, 14, 1141378. [Google Scholar] [CrossRef]
- Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ Toxicological Mechanisms Involving Humans, Livestock and Their Associated Health Concerns: A Review. Toxins 2022, 14, 167. [Google Scholar] [CrossRef]
- Murtaza, B.; Wang, L.; Li, X.; Nawaz, M.Y.; Saleemi, M.K.; Khatoon, A.; Yongping, X. Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: Comprehensive review. Chem.-Biol. Interact. 2024, 387, 110799. [Google Scholar] [CrossRef]
- Lv, Q.; Xu, W.; Yang, F.; Wei, W.; Chen, X.; Zhang, Z.; Liu, Y. Reproductive Toxicity of Zearalenone and Its Molecular Mechanisms: A Review. Molecules 2025, 30, 505. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Devi, S.; Lee, K.E.; Kang, S.G.; Kumar, P. Fumonisins: Impact on Agriculture, Food, and Human Health and their Management Strategies. Toxins 2019, 11, 328. [Google Scholar] [CrossRef]
- Banahene, J.C.M.; Ofosu, I.W.; Odai, B.T.; Lutterodt, H.E.; Agyemang, P.A.; Ellis, W.O. Ochratoxin A in food commodities: A review of occurrence, toxicity, and management strategies. Heliyon 2024, 10, e39313. [Google Scholar] [CrossRef]
- Zhang, Z.; McCullough, C. Survey on the Content of Mycotoxins in Newly Harvested Feeds and Forages in Europe, 2021. Today Pig Ind. 2022, 1, 66–68. [Google Scholar]
- Patyal, A.; Gill, J.P.S.; Bedi, J.S.; Aulakh, R.S. Assessment of aflatoxin contamination in dairy animal concentrate feed from Punjab, India. Environ. Sci. Pollut. Res. Int. 2021, 28, 37705–37715. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, L.; Xu, Z.; Liu, X.; Chen, L.; Dai, J.; Karrow, N.A.; Sun, L. Occurrence of Aflatoxin B(1), deoxynivalenol and zearalenone in feeds in China during 2018–2020. J. Anim. Sci. Biotechnol. 2021, 12, 74. [Google Scholar] [CrossRef]
- Hao, W.; Guan, S.; Li, A.; Wang, J.; An, G.; Hofstetter, U.; Schatzmayr, G. Mycotoxin Occurrence in Feeds and Raw Materials in China: A Five-Year Investigation. Toxins 2023, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Y.; Qi, S.; Zhou, J.; Wang, C.; Zheng, W.; Lei, Y.; Ji, C. Survey on the Mycotoxin Contamination in Domestic Feed. and Feed. Ingredients in 2021. Feed. Ind. 2022, 43, 55–58. [Google Scholar] [CrossRef]
- Cargill’s 2023 Global Mycotoxin Report. Available online: https://mycotoxins.com/home (accessed on 6 February 2024).
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef]
- van der Fels-Klerx, H.J.; Goedhart, P.W.; Elen, O.; Börjesson, T.; Hietaniemi, V.; Booij, C.J. Modeling deoxynivalenol contamination of wheat in northwestern Europe for climate change assessments. J. Food Prot. 2012, 75, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Feng, Y.; He, X.; Zhang, D.; Wang, W.; Liu, D. Mycotoxins in livestock feed in China—Current status and future challenges. Toxicon 2022, 214, 112–120. [Google Scholar] [CrossRef]
- Yang, C.; Song, G.; Lim, W. Effects of mycotoxin-contaminated feed on farm animals. J. Hazard. Mater. 2020, 389, 122087. [Google Scholar] [CrossRef]
- Ivanovics, B.; Gazsi, G.; Reining, M.; Berta, I.; Poliska, S.; Toth, M.; Domokos, A.; Nagy, B., Jr.; Staszny, A.; Cserhati, M.; et al. Embryonic exposure to low concentrations of aflatoxin B1 triggers global transcriptomic changes, defective yolk lipid mobilization, abnormal gastrointestinal tract development and inflammation in zebrafish. J. Hazard. Mater. 2021, 416, 125788. [Google Scholar] [CrossRef]
- Mahato, D.K.; Lee, K.E.; Kamle, M.; Devi, S.; Dewangan, K.N.; Kumar, P.; Kang, S.G. Aflatoxins in Food and Feed: An Overview on Prevalence, Detection and Control Strategies. Front. Microbiol. 2019, 10, 2266. [Google Scholar] [CrossRef]
- Liu, X.; Kumar Mishra, S.; Wang, T.; Xu, Z.; Zhao, X.; Wang, Y.; Yin, H.; Fan, X.; Zeng, B.; Yang, M.; et al. AFB1 Induced Transcriptional Regulation Related to Apoptosis and Lipid Metabolism in Liver of Chicken. Toxins 2020, 12, 290. [Google Scholar] [CrossRef] [PubMed]
- Loi, M.; Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Mulè, G. Mycotoxin Biotransformation by Native and Commercial Enzymes: Present and Future Perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Groopman, J.D.; Pestka, J.J. Public health impacts of foodborne mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372. [Google Scholar] [CrossRef]
- Benkerroum, N. Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef] [PubMed]
- Rawal, S.; Kim, J.E.; Coulombe, R., Jr. Aflatoxin B1 in poultry: Toxicology, metabolism and prevention. Res. Vet. Sci. 2010, 89, 325–331. [Google Scholar] [CrossRef]
- Silvotti, L.; Petterino, C.; Bonomi, A.; Cabassi, E. Immunotoxicological effects on piglets of feeding sows diets containing aflatoxins. Vet. Rec. 1997, 141, 469–472. [Google Scholar] [CrossRef]
- Jiang, Y.; Ogunade, I.M.; Vyas, D.; Adesogan, A.T. Aflatoxin in Dairy Cows: Toxicity, Occurrence in Feedstuffs and Milk and Dietary Mitigation Strategies. Toxins 2021, 13, 283. [Google Scholar] [CrossRef] [PubMed]
- Tassis, P.D.; Reisinger, N.; Nagl, V.; Tzika, E.; Schatzmayr, D.; Mittas, N.; Basioura, A.; Michos, I.; Tsakmakidis, I.A. Comparative Effects of Deoxynivalenol, Zearalenone and Its Modified Forms De-Epoxy-Deoxynivalenol and Hydrolyzed Zearalenone on Boar Semen In Vitro. Toxins 2022, 14, 497. [Google Scholar] [CrossRef]
- Wu, K.; Ren, C.; Gong, Y.; Gao, X.; Rajput, S.A.; Qi, D.; Wang, S. The insensitive mechanism of poultry to zearalenone: A review. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2021, 7, 587–594. [Google Scholar] [CrossRef]
- Hooft, J.M.; Bureau, D.P. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2021, 157, 112616. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Verstegen, M.W.; Gerrits, W.J. The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry. Nutr. Res. Rev. 2003, 16, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Holanda, D.M.; Yiannikouris, A.; Kim, S.W. Investigation of the Efficacy of a Postbiotic Yeast Cell Wall-Based Blend on Newly-Weaned Pigs under a Dietary Challenge of Multiple Mycotoxins with Emphasis on Deoxynivalenol. Toxins 2020, 12, 504. [Google Scholar] [CrossRef]
- Metayer, J.P.; Travel, A.; Mika, A.; Bailly, J.D.; Cleva, D.; Boissieu, C.; Guennec, J.L.; Froment, P.; Albaric, O.; Labrut, S.; et al. Lack of Toxic Interaction Between Fusariotoxins in Broiler Chickens Fed throughout Their Life at the Highest Level Tolerated in the European Union. Toxins 2019, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Park, G.H.; Han, G.P.; Kil, D.Y. Effect of feeding corn distillers dried grains with solubles naturally contaminated with deoxynivalenol on growth performance, meat quality, intestinal permeability, and utilization of energy and nutrients in broiler chickens. Poult. Sci. 2021, 100, 101215. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.N.; Zhao, Z.K.; Wang, Z.Q.; Li, S.Z.; Zhang, Y.P.; Sun, Z.; Qin, G.X.; Zhang, X.F.; Zhao, W.; Aschalew, N.D.; et al. Impact of deoxynivalenol on rumen function, production, and health of dairy cows: Insights from metabolomics and microbiota analysis. J. Hazard. Mater. 2024, 465, 133376. [Google Scholar] [CrossRef]
- Loh, Z.H.; Ouwerkerk, D.; Klieve, A.V.; Hungerford, N.L.; Fletcher, M.T. Toxin Degradation by Rumen Microorganisms: A Review. Toxins 2020, 12, 664. [Google Scholar] [CrossRef]
- Wang, G.; Du, Y. The Impact of Vomitoxin on Ruminant Animals. Feed. Ind. 2016, 37, 58–61. [Google Scholar] [CrossRef]
- Li, W.; He, Y.; Zhao, H.; Peng, L.; Li, J.; Rui, R.; Ju, S. Grape Seed Proanthocyanidin Ameliorates FB(1)-Induced Meiotic Defects in Porcine Oocytes. Toxins 2021, 13, 841. [Google Scholar] [CrossRef] [PubMed]
- Gbore, F.A. Reproductive organ weights and semen quality of pubertal boars fed dietary fumonisin B1. Anim. Int. J. Anim. Biosci. 2009, 3, 1133–1137. [Google Scholar] [CrossRef]
- Wang, Y.; Quan, H.; Li, X.; Li, Q.; Haque, M.A.; Shi, Q.; Fu, Q.; He, C. Contamination With Fumonisin B and Deoxynivalenol Is a Threat to Egg Safety and Contributes to Gizzard Ulcerations of Newborn Chickens. Front. Microbiol. 2021, 12, 676671. [Google Scholar] [CrossRef]
- Singh, M.P.; Kang, S.C. Endoplasmic reticulum stress-mediated autophagy activation attenuates fumonisin B1 induced hepatotoxicity in vitro and in vivo. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 110, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.H.; Wyatt, R.D. The toxicity of fumonisin B1, B2, and B3, individually and in combination, in chicken embryos. Poult. Sci. 2001, 80, 401–407. [Google Scholar] [CrossRef]
- Zacharias, C.; van Echten-Deckert, G.; Wang, E.; Merrill, A.H., Jr.; Sandhoff, K. The effect of fumonisin B1 on developing chick embryos: Correlation between de novo sphingolipid biosynthesis and gross morphological changes. Glycoconj. J. 1996, 13, 167–175. [Google Scholar] [CrossRef]
- Denli, M.; Perez, J.F. Ochratoxins in feed, a risk for animal and human health: Control strategies. Toxins 2010, 2, 1065–1077. [Google Scholar] [CrossRef]
- Tao, Y.; Xie, S.; Xu, F.; Liu, A.; Wang, Y.; Chen, D.; Pan, Y.; Huang, L.; Peng, D.; Wang, X.; et al. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2018, 112, 320–331. [Google Scholar] [CrossRef]
- Stoev, S.D.; Paskalev, M.; MacDonald, S.; Mantle, P.G. Experimental one year ochratoxin A toxicosis in pigs. Exp. Toxicol. Pathol. Off. J. Ges. Fur Toxikol. Pathol. 2002, 53, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.C.; Pushparaj, K.; Meyyazhagan, A.; Arumugam, V.A.; Pappuswamy, M.; Bhotla, H.K.; Baskaran, R.; Issara, U.; Balasubramanian, B.; Mousavi Khaneghah, A. Ochratoxin A as an alarming health threat for livestock and human: A review on molecular interactions, mechanism of toxicity, detection, detoxification, and dietary prophylaxis. Toxicon 2022, 213, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, G.R.; Ledoux, D.R.; Naehrer, K.; Berthiller, F.; Applegate, T.J.; Grenier, B.; Phillips, T.D.; Schatzmayr, G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult. Sci. 2015, 94, 1298–1315. [Google Scholar] [CrossRef]
- Mobashar, M.; Hummel, J.; Blank, R.; Südekum, K.H. Ochratoxin A in ruminants—A review on its degradation by gut microbes and effects on animals. Toxins 2010, 2, 809–839. [Google Scholar] [CrossRef]
- Kumar, V.; Bahuguna, A.; Ramalingam, S.; Dhakal, G.; Shim, J.J.; Kim, M. Recent technological advances in mechanism, toxicity, and food perspectives of enzyme-mediated aflatoxin degradation. Crit. Rev. Food Sci. Nutr. 2022, 62, 5395–5412. [Google Scholar] [CrossRef]
- Jaćević, V.; Dumanović, J.; Alomar, S.Y.; Resanović, R.; Milovanović, Z.; Nepovimova, E.; Wu, Q.; Franca, T.C.C.; Wu, W.; Kuča, K. Research update on aflatoxins toxicity, metabolism, distribution, and detection: A concise overview. Toxicology 2023, 492, 153549. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, S. Intestinal absorption and excretion of aflatoxin in rats. Toxicol. Appl. Pharmacol. 1989, 97, 88–97. [Google Scholar] [CrossRef]
- Min, L.; Fink-Gremmels, J.; Li, D.; Tong, X.; Tang, J.; Nan, X.; Yu, Z.; Chen, W.; Wang, G. An overview of aflatoxin B1 biotransformation and aflatoxin M1 secretion in lactating dairy cows. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2021, 7, 42–48. [Google Scholar] [CrossRef]
- Deng, J.; Zhao, L.; Zhang, N.Y.; Karrow, N.A.; Krumm, C.S.; Qi, D.S.; Sun, L.H. Aflatoxin B(1) metabolism: Regulation by phase I and II metabolizing enzymes and chemoprotective agents. Mutat. Res. Rev. Mutat. Res. 2018, 778, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, Q.; Wu, J.; Wu, W.; Jiang, J.; Yan, H.; Huang, J.; Sun, Y.; Deng, Y. The metabolism and biotransformation of AFB(1): Key enzymes and pathways. Biochem. Pharmacol. 2022, 199, 115005. [Google Scholar] [CrossRef]
- Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2019, 124, 81–100. [Google Scholar] [CrossRef]
- Eaton, D.L.; Williams, D.E.; Coulombe, R.A. Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species. Toxins 2025, 17, 30. [Google Scholar] [CrossRef]
- Su, J.J.; Ban, K.C.; Li, Y.; Qin, L.L.; Wang, H.Y.; Yang, C.; Ou, C.; Duan, X.X.; Lee, Y.L.; Yang, R.Q. Alteration of p53 and p21 during hepatocarcinogenesis in tree shrews. World J. Gastroenterol. 2004, 10, 3559–3563. [Google Scholar] [CrossRef] [PubMed]
- Saha Turna, N.; Comstock, S.S.; Gangur, V.; Wu, F. Effects of aflatoxin on the immune system: Evidence from human and mammalian animal research. Crit. Rev. Food Sci. Nutr. 2024, 64, 9955–9973. [Google Scholar] [CrossRef]
- He, X.N.; Zeng, Z.Z.; Wu, P.; Jiang, W.D.; Liu, Y.; Jiang, J.; Kuang, S.Y.; Tang, L.; Feng, L.; Zhou, X.Q. Dietary Aflatoxin B1 attenuates immune function of immune organs in grass carp (Ctenopharyngodon idella) by modulating NF-κB and the TOR signaling pathway. Front. Immunol. 2022, 13, 1027064. [Google Scholar] [CrossRef]
- Lyman, B.A.; Erki, L.; Biedrzycka, D.W.; Devlin, T.M.; Ch’ih, J.J. Modification of protein synthetic components by aflatoxin B1. Biochem. Pharmacol. 1988, 37, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.R.; Bai, N.J.; Venkitasubramanian, T.A. Aflatoxin induced inhibition of protein synthesis. Toxicon 1978, 16, 283–287. [Google Scholar] [CrossRef]
- Han, S.H.; Jeon, Y.J.; Yea, S.S.; Yang, K.H. Suppression of the interleukin-2 gene expression by aflatoxin B1 is mediated through the down-regulation of the NF-AT and AP-1 transcription factors. Toxicol. Lett. 1999, 108, 1–10. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, H.; Sun, F.; De Ruyck, K.; Zhang, J.; Jin, Y.; Li, Y.; Wang, Z.; Zhang, S.; De Saeger, S.; et al. Metabolic Profile of Zearalenone in Liver Microsomes from Different Species and Its in Vivo Metabolism in Rats and Chickens Using Ultra High-Pressure Liquid Chromatography-Quadrupole/Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 11292–11303. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, E.; Kommer, A.; Dempe, J.S.; Hildebrand, A.A.; Metzler, M. Absorption and metabolism of the mycotoxin zearalenone and the growth promotor zeranol in Caco-2 cells in vitro. Mol. Nutr. Food Res. 2011, 55, 560–567. [Google Scholar] [CrossRef]
- Ropejko, K.; Twarużek, M. Zearalenone and Its Metabolites-General Overview, Occurrence, and Toxicity. Toxins 2021, 13, 35. [Google Scholar] [CrossRef]
- Tatay, E.; Espín, S.; García-Fernández, A.J.; Ruiz, M.J. Estrogenic activity of zearalenone, α-zearalenol and β-zearalenol assessed using the E-screen assay in MCF-7 cells. Toxicol. Mech. Methods 2018, 28, 239–242. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, L.; Huang, S.; Liu, Q.; Ao, X.; Lei, Y.; Ji, C.; Ma, Q. Zearalenone toxicosis on reproduction as estrogen receptor selective modulator and alleviation of zearalenone biodegradative agent in pregnant sows. J. Anim. Sci. Biotechnol. 2022, 13, 36. [Google Scholar] [CrossRef]
- Takemura, H.; Shim, J.Y.; Sayama, K.; Tsubura, A.; Zhu, B.T.; Shimoi, K. Characterization of the estrogenic activities of zearalenone and zeranol in vivo and in vitro. J. Steroid Biochem. Mol. Biol. 2007, 103, 170–177. [Google Scholar] [CrossRef]
- Fan, W.; Shen, T.; Ding, Q.; Lv, Y.; Li, L.; Huang, K.; Yan, L.; Song, S. Zearalenone induces ROS-mediated mitochondrial damage in porcine IPEC-J2 cells. J. Biochem. Mol. Toxicol. 2017, 31, e21944. [Google Scholar] [CrossRef]
- Feng, Y.Q.; Zhao, A.H.; Wang, J.J.; Tian, Y.; Yan, Z.H.; Dri, M.; Shen, W.; De Felici, M.; Li, L. Oxidative stress as a plausible mechanism for zearalenone to induce genome toxicity. Gene 2022, 829, 146511. [Google Scholar] [CrossRef] [PubMed]
- Gershon, M.D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 14–21. [Google Scholar] [CrossRef]
- Li, E.; Horn, N.; Ajuwon, K.M. Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Arch. Toxicol. 2021, 95, 2065–2079. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Dong, B.; Friesen, M.; Liu, S.; Zhu, C.; Yang, C. Capsaicin Attenuates Lipopolysaccharide-Induced Inflammation and Barrier Dysfunction in Intestinal Porcine Epithelial Cell Line-J2. Front. Physiol. 2021, 12, 715469. [Google Scholar] [CrossRef]
- Gao, H.; Liu, L.; Zhao, Y.; Hara, H.; Chen, P.; Xu, J.; Tang, J.; Wei, L.; Li, Z.; Cooper, D.K.C.; et al. Human IL-6, IL-17, IL-1β, and TNF-α differently regulate the expression of pro-inflammatory related genes, tissue factor, and swine leukocyte antigen class I in porcine aortic endothelial cells. Xenotransplantation 2017, 24, e12291. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Geuking, M.B.; Slack, E.; Hapfelmeier, S.; McCoy, K.D. The habitat, double life, citizenship, and forgetfulness of IgA. Immunol. Rev. 2012, 245, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Fodor, J.; Balogh, K.; Weber, M.; Miklós, M.; Kametler, L.; Pósa, R.; Mamet, R.; Bauer, J.; Horn, P.; Kovács, F.; et al. Absorption, distribution and elimination of fumonisin B(1) metabolites in weaned piglets. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Szabó, A.; Szabó-Fodor, J.; Kachlek, M.; Mézes, M.; Balogh, K.; Glávits, R.; Ali, O.; Zeebone, Y.Y.; Kovács, M. Dose and Exposure Time-Dependent Renal and Hepatic Effects of Intraperitoneally Administered Fumonisin B1 in Rats. Toxins 2018, 10, 465. [Google Scholar] [CrossRef]
- Chen, J.; Wen, J.; Tang, Y.; Shi, J.; Mu, G.; Yan, R.; Cai, J.; Long, M. Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules 2021, 26, 5238. [Google Scholar] [CrossRef]
- Li, H.; Wang, M.; Kang, W.; Lin, Z.; Gan, F.; Huang, K. Non-cytotoxic dosage of fumonisin B1 aggravates ochratoxin A-induced nephrocytotoxicity and apoptosis via ROS-dependent JNK/MAPK signaling pathway. Toxicology 2021, 457, 152802. [Google Scholar] [CrossRef]
- Burgess, K.M.; Renaud, J.B.; McDowell, T.; Sumarah, M.W. Mechanistic Insight into the Biosynthesis and Detoxification of Fumonisin Mycotoxins. ACS Chem. Biol. 2016, 11, 2618–2625. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Singh, M.P.; Sharma, C.; Kang, S.C. Fumonisin B1 actuates oxidative stress-associated colonic damage via apoptosis and autophagy activation in murine model. J. Biochem. Mol. Toxicol. 2018, 32, e22161. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.C.; Nielsen, E.; et al. Risks for animal health related to the presence of ochratoxin A (OTA) in feed. EFSA J. Eur. Food Saf. Auth. 2023, 21, e08375. [Google Scholar] [CrossRef]
- Hagelberg, S.; Hult, K.; Fuchs, R. Toxicokinetics of ochratoxin A in several species and its plasma-binding properties. J. Appl. Toxicol. JAT 1989, 9, 91–96. [Google Scholar] [CrossRef]
- Creppy, E.E.; Størmer, F.C.; Kern, D.; Röschenthaler, R.; Dirheimer, G. Effects of ochratoxin A metabolites on yeast phenylalanyl-tRNA synthetase and on the growth and in vivo protein synthesis of hepatoma cells. Chem.-Biol. Interact. 1983, 47, 239–247. [Google Scholar] [CrossRef]
- Huang, X.; Gao, Y.; Li, S.; Wu, C.; Wang, J.; Zheng, N. Modulation of Mucin (MUC2, MUC5AC and MUC5B) mRNA Expression and Protein Production and Secretion in Caco-2/HT29-MTX Co-Cultures Following Exposure to Individual and Combined Aflatoxin M1 and Ochratoxin A. Toxins 2019, 11, 132. [Google Scholar] [CrossRef]
- Al-Anati, L.; Petzinger, E. Immunotoxic activity of ochratoxin A. J. Vet. Pharmacol. Ther. 2006, 29, 79–90. [Google Scholar] [CrossRef]
- Aleo, M.D.; Wyatt, R.D.; Schnellmann, R.G. Mitochondrial dysfunction is an early event in ochratoxin A but not oosporein toxicity to rat renal proximal tubules. Toxicol. Appl. Pharmacol. 1991, 107, 73–80. [Google Scholar] [CrossRef]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. AJTCAM 2013, 10, 210–229. [Google Scholar] [CrossRef]
- Mumtaz, A.; Ashfaq, U.A.; Ul Qamar, M.T.; Anwar, F.; Gulzar, F.; Ali, M.A.; Saari, N.; Pervez, M.T. MPD3: A useful medicinal plants database for drug designing. Nat. Prod. Res. 2017, 31, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Pandita, D.; Pandita, A.; Wani, S.H.; Abdelmohsen, S.A.M.; Alyousef, H.A.; Abdelbacki, A.M.M.; Al-Yafrasi, M.A.; Al-Mana, F.A.; Elansary, H.O. Crosstalk of Multi-Omics Platforms with Plants of Therapeutic Importance. Cells 2021, 10, 1296. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. An introduction to natural products isolation. Methods Mol. Biol. 2012, 864, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Gurfinkel, D.M. The bioactivity of saponins: Triterpenoid and steroidal glycosides. Drug Metab. Drug Interact. 2000, 17, 211–235. [Google Scholar] [CrossRef]
- Cao, Y.; Xie, L.; Liu, K.; Liang, Y.; Dai, X.; Wang, X.; Lu, J.; Zhang, X.; Li, X. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: A review. Pharmacol. Res. 2021, 174, 105919. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Shen, L.; Bi, S.; Zhang, X.; Guo, R.; Liu, H. The Preservation Effect of Composite Biopreservatives Combined with Ice Temperature Storage on Redfin Tetrodotoxin. J. Fish. Sci. 2019, 43, 688–696. [Google Scholar]
- Zhai, X.; Zhu, C.; Zhang, Y.; Sun, J.; Alim, A.; Yang, X. Chemical characteristics, antioxidant capacities and hepatoprotection of polysaccharides from pomegranate peel. Carbohydr. Polym. 2018, 202, 461–469. [Google Scholar] [CrossRef]
- Hu, A.; Li, Y.; Li, Z.; Wang, H.; Zhao, C.; Ma, L. Ultrasonic Extraction of Non-starch Polysaccharides from Chickpeas and Their Antioxidant Activities. China Food Addit. 2018, 6, 133–138. [Google Scholar]
- Bolat, E.; Sarıtaş, S.; Duman, H.; Eker, F.; Akdaşçi, E.; Karav, S.; Witkowska, A.M. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024, 16, 2550. [Google Scholar] [CrossRef]
- Paula, L.; Ana, J.G.; Hannu, P.; Carlos, M.J.; Eeva-Riikka, V.; Cristina, J. Role of red beetroot in bread for reducing mycotoxin risks: Bioavailability of beetroot polyphenols and betalains with ochratoxin a, aflatoxin B1 and zearalenone in Caco-2 cells. Food Chem. 2025, 465, 142036. [Google Scholar] [CrossRef]
- Frangiamone, M.; Alonso-Garrido, M.; Font, G.; Cimbalo, A.; Manyes, L. Pumpkin extract and fermented whey individually and in combination alleviated AFB1- and OTA-induced alterations on neuronal differentiation invitro. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2022, 164, 113011. [Google Scholar] [CrossRef]
- Marrez, D.A.; Badr, A.N.; El-Bahrawy, A.; Naeem, M.A. Algal extracts evaluation as an Antitoxicity sustainable solution against aflatoxin B(1) toxicity in rat tissues. Toxicon 2024, 250, 108098. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Nejhad, A.; Alizadeh Behbahani, B.; Hojjati, M.; Vasiee, A.; Mehrnia, M.A. Identification of phytochemical, antioxidant, anticancer and antimicrobial potential of Calotropis procera leaf aqueous extract. Sci. Rep. 2023, 13, 14716. [Google Scholar] [CrossRef] [PubMed]
- León-Cortés, D.; Arce-Villalobos, K.; Bogantes-Ledezma, D.; Irías-Mata, A.; Chaves-Barrantes, N.; Vinas, M. Anti-aflatoxin potential of phenolic compounds from common beans (Phaseolus vulgaris L.). Food Chem. 2025, 469, 142597. [Google Scholar] [CrossRef]
- Makhafola, T.J.; Elgorashi, E.E.; McGaw, L.J.; Verschaeve, L.; Eloff, J.N. The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity. BMC Complement. Altern. Med. 2016, 16, 490. [Google Scholar] [CrossRef]
- Zahin, M.; Bokhari, N.A.; Ahmad, I.; Husain, F.M.; Althubiani, A.S.; Alruways, M.W.; Perveen, K.; Shalawi, M. Antioxidant, antibacterial, and antimutagenic activity of Piper nigrum seeds extracts. Saudi J. Biol. Sci. 2021, 28, 5094–5105. [Google Scholar] [CrossRef]
- Manogaran, P.; Beeraka, N.M.; Paulraj, R.S.; Sathiyachandran, P.; Thammaiappa, M. Impediment of Cancer by Dietary Plant-derived Alkaloids Through Oxidative Stress: Implications of PI3K/AKT Pathway in Apoptosis, Autophagy, and Ferroptosis. Curr. Top. Med. Chem. 2023, 23, 860–877. [Google Scholar] [CrossRef]
- Maurya, A.; Kumar, S.; Singh, B.K.; Chaudhari, A.K.; Dwivedy, A.K.; Prakash, B.; Dubey, N.K. Mechanistic investigations on antifungal and antiaflatoxigenic activities of chemically characterised Carum carvi L. essential oil against fungal infestation and aflatoxin contamination of herbal raw materials. Nat. Prod. Res. 2022, 36, 4569–4574. [Google Scholar] [CrossRef]
- Abdel-Razek, A.G.; Badr, A.N.; Alharthi, S.S.; Selim, K.A. Efficacy of Bottle Gourd Seeds’ Extracts in Chemical Hazard Reduction Secreted as Toxigenic Fungi Metabolites. Toxins 2021, 13, 789. [Google Scholar] [CrossRef]
- Beekrum, S.; Govinden, R.; Padayachee, T.; Odhav, B. Naturally occurring phenols: A detoxification strategy for fumonisin B1. Food Addit. Contam. 2003, 20, 490–493. [Google Scholar] [CrossRef]
- Silva, B.; Souza, M.M.; Badiale-Furlong, E. Antioxidant and antifungal activity of phenolic compounds and their relation to aflatoxin B1 occurrence in soybeans (Glycine max L.). J. Sci. Food Agric. 2020, 100, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.; Khan, N.; Zahoor, M.; Ullah, R.; Bari, A.; Sohail. Phytochemical-mediated regulation of aflatoxigenic fungi contamination in a shifting climate and environment. Environ. Geochem. Health 2024, 46, 272. [Google Scholar] [CrossRef] [PubMed]
- Ruan, D.; Wang, W.C.; Lin, C.X.; Fouad, A.M.; Chen, W.; Xia, W.G.; Wang, S.; Luo, X.; Zhang, W.H.; Yan, S.J.; et al. Effects of curcumin on performance, antioxidation, intestinal barrier and mitochondrial function in ducks fed corn contaminated with ochratoxin A. Anim. Int. J. Anim. Biosci. 2019, 13, 42–52. [Google Scholar] [CrossRef]
- Cao, Z.; Gao, J.; Huang, W.; Yan, J.; Shan, A.; Gao, X. Curcumin mitigates deoxynivalenol-induced intestinal epithelial barrier disruption by regulating Nrf2/p53 and NF-κB/MLCK signaling in mice. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2022, 167, 113281. [Google Scholar] [CrossRef]
- Ling, K.H.; Wan, M.L.; El-Nezami, H.; Wang, M. Protective Capacity of Resveratrol, a Natural Polyphenolic Compound, against Deoxynivalenol-Induced Intestinal Barrier Dysfunction and Bacterial Translocation. Chem. Res. Toxicol. 2016, 29, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Xin, Z.; Zhang, F.; Zhai, Z.; Ni, X.; Chen, J.; Yang, K.; Liao, P.; Zhang, L.; Xiao, Z.; et al. The cytoprotective effects of dihydromyricetin and associated metabolic pathway changes on deoxynivalenol treated IPEC-J2 cells. Food Chem. 2021, 338, 128116. [Google Scholar] [CrossRef]
- Long, M.; Zhang, Y.; Li, P.; Yang, S.H.; Zhang, W.K.; Han, J.X.; Wang, Y.; He, J.B. Intervention of Grape Seed Proanthocyanidin Extract on the Subchronic Immune Injury in Mice Induced by Aflatoxin B1. Int. J. Mol. Sci. 2016, 17, 516. [Google Scholar] [CrossRef]
- Damiano, S.; Iovane, V.; Squillacioti, C.; Mirabella, N.; Prisco, F.; Ariano, A.; Amenta, M.; Giordano, A.; Florio, S.; Ciarcia, R. Red orange and lemon extract prevents the renal toxicity induced by ochratoxin A in rats. J. Cell. Physiol. 2020, 235, 5386–5393. [Google Scholar] [CrossRef]
- Akinrinmade, F.J.; Akinrinde, A.S.; Amid, A. Changes in serum cytokine levels, hepatic and intestinal morphology in aflatoxin B1-induced injury: Modulatory roles of melatonin and flavonoid-rich fractions from Chromolena odorata. Mycotoxin Res. 2016, 32, 53–60. [Google Scholar] [CrossRef]
- Wang, X.; Yang, F.; Na, L.; Jia, M.; Ishfaq, M.; Zhang, Y.; Liu, M.; Wu, C. Ferulic acid alleviates AFB1-induced duodenal barrier damage in rats via up-regulating tight junction proteins, down-regulating ROCK, competing CYP450 enzyme and activating GST. Ecotoxicol. Environ. Saf. 2022, 241, 113805. [Google Scholar] [CrossRef]
- Ye, Y.; Jiang, M.; Hong, X.; Fu, Y.; Chen, Y.; Wu, H.; Sun, Y.; Wang, X.; Zhou, E.; Wang, J.; et al. Quercetin Alleviates Deoxynivalenol-Induced Intestinal Damage by Suppressing Inflammation and Ferroptosis in Mice. J. Agric. Food Chem. 2023, 71, 10761–10772. [Google Scholar] [CrossRef]
- Qin, T.; Liu, X.; Luo, Y.; Yu, R.; Chen, S.; Zhang, J.; Xu, Y.; Meng, Z.; Huang, Y.; Ren, Z. Characterization of polysaccharides isolated from Hericium erinaceus and their protective effects on the DON-induced oxidative stress. Int. J. Biol. Macromol. 2020, 152, 1265–1273. [Google Scholar] [CrossRef]
- Tang, M.; Yuan, D.; Liao, P. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets. Environ. Pollut. 2021, 289, 117865. [Google Scholar] [CrossRef] [PubMed]
- de Freitas Souza, C.; Baldissera, M.D.; Descovi, S.; Zeppenfeld, C.; Eslava-Mocha, P.R.; Gloria, E.M.; Zanette, R.A.; Baldisserotto, B.; Schafer da Silva, A. Melaleuca alternifolia essential oil abrogates hepatic oxidative damage in silver catfish (Rhamdia quelen) fed with an aflatoxin-contaminated diet. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2019, 221, 10–20. [Google Scholar] [CrossRef]
- Vipin, A.V.; Rao, R.; Kurrey, N.K.; KA, A.A.; Venkateswaran, G. Protective effects of phenolics rich extract of ginger against Aflatoxin B(1)-induced oxidative stress and hepatotoxicity. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 91, 415–424. [Google Scholar] [CrossRef]
- Ben Salah-Abbès, J.; Abbès, S.; Houas, Z.; Abdel-Wahhab, M.A.; Oueslati, R. Zearalenone induces immunotoxicity in mice: Possible protective effects of radish extract (Raphanus sativus). J. Pharm. Pharmacol. 2008, 60, 761–770. [Google Scholar] [CrossRef]
- Bilgrami, K.S.; Sinha, K.K.; Sinha, A.K. Inhibition of aflatoxin production & growth of Aspergillus flavus by eugenol & onion & garlic extracts. Indian. J. Med. Res. 1992, 96, 171–175. [Google Scholar]
- Costa, S.; Utan, A.; Speroni, E.; Cervellati, R.; Piva, G.; Prandini, A.; Guerra, M.C. Carnosic acid from rosemary extracts: A potential chemoprotective agent against aflatoxin B1. An in vitro study. J. Appl. Toxicol. JAT 2007, 27, 152–159. [Google Scholar] [CrossRef]
- Gowda, N.K.; Ledoux, D.R.; Rottinghaus, G.E.; Bermudez, A.J.; Chen, Y.C. Antioxidant efficacy of curcuminoids from turmeric (Curcuma longa L.) powder in broiler chickens fed diets containing aflatoxin B1. Br. J. Nutr. 2009, 102, 1629–1634. [Google Scholar] [CrossRef]
- Kim, B.R.; Kim, D.H.; Park, R.; Kwon, K.B.; Ryu, D.G.; Kim, Y.C.; Kim, N.Y.; Jeong, S.; Kang, B.K.; Kim, K.S. Effect of an extract of the root of Scutellaria baicalensis and its flavonoids on aflatoxin B1 oxidizing cytochrome P450 enzymes. Planta Medica 2001, 67, 396–399. [Google Scholar] [CrossRef]
- Pomothy, J.M.; Pászti-Gere, E.; Barna, R.F.; Prokoly, D.; Jerzsele, Á. The Impact of Fermented Wheat Germ Extract on Porcine Epithelial Cell Line Exposed to Deoxynivalenol and T-2 Mycotoxins. Oxidative Med. Cell. Longev. 2020, 2020, 3854247. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.Z. Effects of green tea extract on the development of aflatoxin B1-induced precancerous enzyme-altered hepatocellular foci in rats. Zhonghua Yu Fang Yi Xue Za Zhi Chin. J. Prev. Med. 1991, 25, 332–334. [Google Scholar]
- Sánchez, E.; Heredia, N.; García, S. Inhibition of growth and mycotoxin production of Aspergillus flavus and Aspergillus parasiticus by extracts of Agave species. Int. J. Food Microbiol. 2005, 98, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.; Kasper, R.; Sardiñas, N.; Marín, S.; Sanchis, V.; Ramos, A.J. Effect of Capsicum carotenoids on growth and aflatoxins production by Aspergillus flavus isolated from paprika and chilli. Food Microbiol. 2010, 27, 1064–1070. [Google Scholar] [CrossRef]
- Tulayakul, P.; Dong, K.S.; Li, J.Y.; Manabe, N.; Kumagai, S. The effect of feeding piglets with the diet containing green tea extracts or coumarin on in vitro metabolism of aflatoxin B1 by their tissues. Toxicon 2007, 50, 339–348. [Google Scholar] [CrossRef]
- Vaičiulienė, G.; Bakutis, B.; Jovaišienė, J.; Falkauskas, R.; Gerulis, G.; Bartkienė, E.; Klupšaitė, D.; Klementavičiūtė, J.; Baliukonienė, V. Effects of Ethanol Extracts of Origanum vulgare and Thymus vulgaris on the Mycotoxin Concentrations and the Hygienic Quality of Maize (Zea mays L.). Silage. Toxins 2022, 14, 298. [Google Scholar] [CrossRef]
- Jin, L.; Yang, J. Research Progress on the Antioxidant Properties of Plant Extracts and Their Application in Antibiotic-Free Animal Feed. China Anim. Husb. Mag. 2020, 56, 29–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, J.; Ma, X.; Tang, X.; Tan, B.; Liao, P.; Yao, K.; Jiang, Q. Mycotoxins in Feed: Hazards, Toxicology, and Plant Extract-Based Remedies. Metabolites 2025, 15, 219. https://doi.org/10.3390/metabo15040219
Zhang X, Chen J, Ma X, Tang X, Tan B, Liao P, Yao K, Jiang Q. Mycotoxins in Feed: Hazards, Toxicology, and Plant Extract-Based Remedies. Metabolites. 2025; 15(4):219. https://doi.org/10.3390/metabo15040219
Chicago/Turabian StyleZhang, Xiangnan, Jiashun Chen, Xiaokang Ma, Xiongzhuo Tang, Bie Tan, Peng Liao, Kang Yao, and Qian Jiang. 2025. "Mycotoxins in Feed: Hazards, Toxicology, and Plant Extract-Based Remedies" Metabolites 15, no. 4: 219. https://doi.org/10.3390/metabo15040219
APA StyleZhang, X., Chen, J., Ma, X., Tang, X., Tan, B., Liao, P., Yao, K., & Jiang, Q. (2025). Mycotoxins in Feed: Hazards, Toxicology, and Plant Extract-Based Remedies. Metabolites, 15(4), 219. https://doi.org/10.3390/metabo15040219