Adiponectin and All-Cause Mortality in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Study Selection
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Results of Literature Search
3.2. Characteristics of Included Studies
3.3. Association Between Adiponectin Levels and All-Cause Mortality
3.4. Publication Bias Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CKD | Chronic Kidney Disease |
HD | Hemodialysis |
PD | Peritoneal Dialysis |
BMI | Body Mass Index |
HR | Hazard Ratio |
CI | Confidence Interval |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
MOOSE | Meta-analysis of Observational Studies in Epidemiology |
KDIGO | Kidney Disease Improving Global Outcomes |
NOS | The Newcastle–Ottawa Scale |
References
- Yamauchi, T.; Kadowaki, T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int. J. Obes. 2008, 32 (Suppl. S7), S13–S18. [Google Scholar] [CrossRef] [PubMed]
- Straub, L.G.; Scherer, P.E. Metabolic Messengers: Adiponectin. Nat. Metab. 2019, 1, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Sun, Q.; Chen, W.; Gao, Y.; Ye, J.; Chen, Y.; Wang, T.; Gao, L.; Liu, Y.; Yang, Y. New advances of adiponectin in regulating obesity and related metabolic syndromes. J. Pharm. Anal. 2024, 14, 100913. [Google Scholar] [CrossRef] [PubMed]
- Gianopoulos, I.; Mantzoros, C.S.; Daskalopoulou, S.S. Adiponectin and Adiponectin Receptors in Atherosclerosis. Endocr. Rev. 2025, 46, 1–25. [Google Scholar] [CrossRef]
- Tishinsky, J.M.; Robinson, L.E.; Dyck, D.J. Insulin-sensitizing properties of adiponectin. Biochimie 2012, 94, 2131–2136. [Google Scholar] [CrossRef]
- Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef]
- Tam, E.; Ouimet, M.; Sweeney, G. Cardioprotective Effects of Adiponectin-Stimulated Autophagy. J. Lipid Atheroscler. 2025, 14, 40–53. [Google Scholar] [CrossRef]
- Yue, H.; Zhang, Q.; Chang, S.; Zhao, X.; Wang, M.; Li, W. Adiponectin protects against myocardial ischemia-reperfusion injury: A systematic review and meta-analysis of preclinical animal studies. Lipids Health Dis. 2024, 23, 51. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.L.; Lau, W.B. Cardiovascular Adiponectin Resistance: The Critical Role of Adiponectin Receptor Modification. Trends Endocrinol. Metab. 2017, 28, 519–530. [Google Scholar] [CrossRef]
- Song, S.H.; Oh, T.R.; Choi, H.S.; Kim, C.S.; Ma, S.K.; Oh, K.H.; Ahn, C.; Kim, S.W.; Bae, E.H. High serum adiponectin as a biomarker of renal dysfunction: Results from the KNOW-CKD study. Sci. Rep. 2020, 10, 5598. [Google Scholar] [CrossRef]
- Abo El Fotoh, W.M.; El Mashad, G.M. Elevated baseline adiponectin level predicting an increased risk of disease activity in idiopathic nephrotic syndrome and chronic kidney disease in children. Minerva Pediatr. 2023, 75, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Menzaghi, C.; Trischitta, V. The Adiponectin Paradox for All-Cause and Cardiovascular Mortality. Diabetes 2018, 67, 12–22. [Google Scholar] [CrossRef]
- Jang, A.Y.; Scherer, P.E.; Kim, J.Y.; Lim, S.; Koh, K.K. Adiponectin and cardiometabolic trait and mortality: Where do we go? Cardiovasc. Res. 2022, 118, 2074–2084. [Google Scholar] [CrossRef]
- Ohashi, N.; Kato, A.; Misaki, T.; Sakakima, M.; Fujigaki, Y.; Yamamoto, T.; Hishida, A. Association of serum adiponectin levels with all-cause mortality in hemodialysis patients. Intern. Med. 2008, 47, 485–491. [Google Scholar] [CrossRef]
- Markaki, A.; Kyriazis, J.; Stylianou, K.; Fragkiadakis, G.A.; Perakis, K.; Margioris, A.N.; Ganotakis, E.S.; Daphnis, E. The role of serum magnesium and calcium on the association between adiponectin levels and all-cause mortality in end-stage renal disease patients. PLoS ONE 2012, 7, e52350. [Google Scholar] [CrossRef]
- Park, J.T.; Yoo, T.H.; Kim, J.K.; Oh, H.J.; Kim, S.J.; Yoo, D.E.; Lee, M.J.; Shin, D.H.; Han, S.H.; Han, D.S.; et al. Leptin/adiponectin ratio is an independent predictor of mortality in nondiabetic peritoneal dialysis patients. Perit. Dial. Int. 2013, 33, 67–74. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F.; Tripepi, G.; Benedetto, F.A.; Cutrupi, S.; Parlongo, S.; Malatino, L.S.; Bonanno, G.; Seminara, G.; Rapisarda, F.; et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J. Am. Soc. Nephrol. 2002, 13, 134–141. [Google Scholar] [CrossRef]
- Park, S.H.; Carrero, J.J.; Lindholm, B.; Stenvinkel, P. Adiponectin in chronic kidney disease has an opposite impact on protein-energy wasting and cardiovascular risk: Two sides of the same coin. Clin. Nephrol. 2009, 72, 87–96. [Google Scholar] [CrossRef]
- Barazzoni, R.; Biolo, G.; Zanetti, M.; Bernardi, A.; Guarnieri, G. Inflammation and adipose tissue in uremia. J. Ren. Nutr. 2006, 16, 204–207. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, S. Risk factors for mortality in patients undergoing hemodialysis: A systematic review and meta-analysis. Int. J. Cardiol. 2017, 238, 151–158. [Google Scholar] [CrossRef]
- Rhee, C.M.; Nguyen, D.V.; Moradi, H.; Brunelli, S.M.; Dukkipati, R.; Jing, J.; Nakata, T.; Kovesdy, C.P.; Brent, G.A.; Kalantar-Zadeh, K. Association of Adiponectin With Body Composition and Mortality in Hemodialysis Patients. Am. J. Kidney Dis. 2015, 66, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022). Cochrane. 2022. Available online: www.training.cochrane.org/handbook (accessed on 1 January 2025).
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef] [PubMed]
- KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2000. [Google Scholar]
- Rothman, K.J.; Greenland, S.; Lash, T.L. Modern Epidemiology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Takemoto, F.; Katori, H.; Sawa, N.; Hoshino, J.; Suwabe, T.; Nakanishi, S.; Arai, S.; Fukuda, S.; Kodaka, K.; Shimada, M.; et al. Plasma adiponectin: A predictor of coronary heart disease in hemodialysis patients—A Japanese prospective eight-year study. Nephron Clin. Pract. 2009, 111, c12–c20. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.E.; Higgins, J.P.T.; Rothstein, H.R. Comprehensive Meta-Analysis Version 4; Biostat Inc.: Englewood, NJ, USA, 2022. [Google Scholar]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Menon, V.; Li, L.; Wang, X.; Greene, T.; Balakrishnan, V.; Madero, M.; Pereira, A.A.; Beck, G.J.; Kusek, J.W.; Collins, A.J.; et al. Adiponectin and mortality in patients with chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17, 2599–2606. [Google Scholar] [CrossRef]
- Abdallah, E.; Waked, E.; Nabil, M.; El-Bendary, O. Adiponectin and cardiovascular outcomes among hemodialysis patients. Kidney Blood Press. Res. 2012, 35, 247–253. [Google Scholar] [CrossRef]
- Deger, S.M.; Ellis, C.D.; Bian, A.; Shintani, A.; Ikizler, T.A.; Hung, A.M. Obesity, diabetes and survival in maintenance hemodialysis patients. Ren. Fail. 2014, 36, 546–551. [Google Scholar] [CrossRef]
- Tung, C.W.; Hsu, Y.C.; Shih, Y.H.; Lin, C.L. Association of Adiponectin with High-Sensitivity C-Reactive Protein and Clinical Outcomes in Peritoneal Dialysis Patients: A 3.5-Year Follow-Up Study. PLoS ONE 2015, 10, e0141058. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Zhang, W.; Ni, Z. Association of adiponectin with peripheral arterial disease and mortality in nondiabetic hemodialysis patients: Long-term follow-up data of 7 years. J. Res. Med. Sci. 2016, 21, 50. [Google Scholar] [CrossRef]
- Collado, S.; Coll, E.; Nicolau, C.; Azqueta, M.; Pons, M.; Cruzado, J.M.; de la Torre, B.; Deulofeu, R.; Mojal, S.; Pascual, J.; et al. Serum osteoprotegerin in prevalent hemodialysis patients: Associations with mortality, atherosclerosis and cardiac function. BMC Nephrol. 2017, 18, 290. [Google Scholar] [CrossRef]
- Iwamura, N.; Kidoguchi, S.; Asahi, N.; Takeda, I.; Matsuta, K.; Miyagi, K.; Iwano, M.; Miyazaki, R.; Kimura, H. Superiority of high sensitivity cardiac troponin I over NT-proBNP and adiponectin for 7-year mortality in stable patients receiving haemodialysis. Sci. Rep. 2024, 14, 11488. [Google Scholar] [CrossRef]
- Yaghootkar, H.; Lamina, C.; Scott, R.A.; Dastani, Z.; Hivert, M.F.; Warren, L.L.; Stancáková, A.; Buxbaum, S.G.; Lyytikäinen, L.P.; Henneman, P.; et al. Mendelian randomization studies do not support a causal role for reduced circulating adiponectin levels in insulin resistance and type 2 diabetes. Diabetes 2013, 62, 3589–3598. [Google Scholar] [CrossRef]
- Borges, M.C.; Lawlor, D.A.; de Oliveira, C.; White, J.; Horta, B.L.; Barros, A.J. Role of Adiponectin in Coronary Heart Disease Risk: A Mendelian Randomization Study. Circ. Res. 2016, 119, 491–499. [Google Scholar] [CrossRef]
- Kizer, J.R.; Benkeser, D.; Arnold, A.M.; Mukamal, K.J.; Ix, J.H.; Zieman, S.J.; Siscovick, D.S.; Tracy, R.P.; Mantzoros, C.S.; Defilippi, C.R.; et al. Associations of total and high-molecular-weight adiponectin with all-cause and cardiovascular mortality in older persons: The Cardiovascular Health Study. Circulation 2012, 126, 2951–2961. [Google Scholar] [CrossRef]
- Guebre-Egziabher, F.; Bernhard, J.; Funahashi, T.; Hadj-Aissa, A.; Fouque, D. Adiponectin in chronic kidney disease is related more to metabolic disturbances than to decline in renal function. Nephrol. Dial. Transplant. 2005, 20, 129–134. [Google Scholar] [CrossRef]
- Axelsson, J.; Heimbürger, O.; Stenvinkel, P. Adipose tissue and inflammation in chronic kidney disease. Contrib. Nephrol. 2006, 151, 165–174. [Google Scholar] [CrossRef]
- Castillo-Rodríguez, E.; Pizarro-Sánchez, S.; Sanz, A.B.; Ramos, A.M.; Sanchez-Niño, M.D.; Martin-Cleary, C.; Fernandez-Fernandez, B.; Ortiz, A. Inflammatory Cytokines as Uremic Toxins: “Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son”. Toxins 2017, 9, 114. [Google Scholar] [CrossRef]
- van Andel, M.; Heijboer, A.C.; Drent, M.L. Adiponectin and Its Isoforms in Pathophysiology. Adv. Clin. Chem. 2018, 85, 115–147. [Google Scholar] [CrossRef] [PubMed]
- Spoto, B.; Mattace-Raso, F.; Sijbrands, E.; Pizzini, P.; Cutrupi, S.; D’Arrigo, G.; Tripepi, G.; Zoccali, C.; Mallamaci, F. Resistin and all-cause and cardiovascular mortality: Effect modification by adiponectin in end-stage kidney disease patients. Nephrol. Dial. Transplant. 2013, 28 (Suppl. S4), iv181–iv187. [Google Scholar] [CrossRef]
- Rao, M.; Li, L.; Tighiouart, H.; Jaber, B.L.; Pereira, B.J.; Balakrishnan, V.S. Plasma adiponectin levels and clinical outcomes among haemodialysis patients. Nephrol. Dial. Transplant. 2008, 23, 2619–2628. [Google Scholar] [CrossRef]
- Chuasuwan, A.; Pooripussarakul, S.; Thakkinstian, A.; Ingsathit, A.; Pattanaprateep, O. Comparisons of quality of life between patients underwent peritoneal dialysis and hemodialysis: A systematic review and meta-analysis. Health Qual. Life Outcomes 2020, 18, 191. [Google Scholar] [CrossRef]
- Albakr, R.B.; Bargman, J.M. A Comparison of Hemodialysis and Peritoneal Dialysis in Patients with Cardiovascular Disease. Cardiol. Clin. 2021, 39, 447–453. [Google Scholar] [CrossRef]
- Huang, J.W.; Yen, C.J.; Chiang, H.W.; Hung, K.Y.; Tsai, T.J.; Wu, K.D. Adiponectin in peritoneal dialysis patients: A comparison with hemodialysis patients and subjects with normal renal function. Am. J. Kidney Dis. 2004, 43, 1047–1055. [Google Scholar] [CrossRef]
- Díez, J.J.; Iglesias, P.; Fernández-Reyes, M.J.; Aguilera, A.; Bajo, M.A.; Alvarez-Fidalgo, P.; Codoceo, R.; Selgas, R. Serum concentrations of leptin, adiponectin and resistin, and their relationship with cardiovascular disease in patients with end-stage renal disease. Clin. Endocrinol. 2005, 62, 242–249. [Google Scholar] [CrossRef]
- Teta, D.; Maillard, M.; Halabi, G.; Burnier, M. The leptin/adiponectin ratio: Potential implications for peritoneal dialysis. Kidney Int. Suppl. 2008, 73, S112–S118. [Google Scholar] [CrossRef]
- Ishii, J.; Takahashi, H.; Kitagawa, F.; Kuno, A.; Okuyama, R.; Kawai, H.; Muramatsu, T.; Naruse, H.; Motoyama, S.; Matsui, S.; et al. Multimarker approach to risk stratification for long-term mortality in patients on chronic hemodialysis. Circ. J. 2015, 79, 656–663. [Google Scholar] [CrossRef]
- Zoccali, C.; Postorino, M.; Marino, C.; Pizzini, P.; Cutrupi, S.; Tripepi, G. Waist circumference modifies the relationship between the adipose tissue cytokines leptin and adiponectin and all-cause and cardiovascular mortality in haemodialysis patients. J. Intern. Med. 2011, 269, 172–181. [Google Scholar] [CrossRef]
- El-Shafey, E.M.; Shalan, M. Plasma adiponectin levels for prediction of cardiovascular risk among hemodialysis patients. Ther. Apher. Dial. 2014, 18, 185–192. [Google Scholar] [CrossRef]
- Kacso, I.M.; Potra, A.R.; Bondor, C.I.; Moldovan, D.; Rusu, C.; Patiu, I.M.; Racasan, S.; Orasan, R.; Vladutiu, D.; Spanu, C.; et al. Adiponectin predicts cardiovascular events in diabetes dialysis patients. Clin. Biochem. 2015, 48, 860–865. [Google Scholar] [CrossRef]
Study Name | Site | CKD * | Subjects (n) | Age (Years) | Female (%) | BMI (kg/m2) | Adiponectin Method | Adiponectin (µg/mL) | Follow-Up (Years) | Death (n) | NOS Score |
---|---|---|---|---|---|---|---|---|---|---|---|
Menon, 2006 [32] | USA | Stage 3–4 | 820 | 52 ± 12 | 40.0 | 27.1 | ELISA | 12.8 ± 8.0 | 10 | 201 | 9 |
Ohashi, 2008 [14] | Japan | HD | 74 | 64 ±2 | 39.2 | alive 20.3 ± 0.4, death 20.7 ± 0.8 | ELISA | alive 14.2 [9.7–21.3], death 20.5 [14.0–23.5] | 3 | 15 | 8 |
Takemoto, 2009 [28] | Japan | HD | 68 | M 59 ± 14 F 61 ± 8 | 44.1 | M 20.0 ± 2.6 F 18.6 ± 2.4 | ELISA | M 9.3 ± 4.3 F 15.7 ± 7.1 | 8 | 27 | 9 |
Abdallah, 2012 [33] | Egypt | HD | 133 | 55 ± 17 | 40.6 | 23.8 ± 3.6 | ELISA | 18.1 ± 6.8 | 2 | 36 | 9 |
Markaki, 2012 [15] | Greece | HD | 47 | 63 ± 14 | 40.4 | NR | ELISA | 21 ± 12 | 4.2 | 18 | 9 |
PD | 27 | 58 ± 16 | 51.9 | NR | ELISA | 28 ± 16 | |||||
Park, 2013 [16] | Korea | PD | 131 | 51 ± 12 | 58.0 | 24.6 ± 3.1 | ELISA | alive 19.6 ± 7.4, death 16.7 ± 7.5 | 5 | 22 | 8 |
Deger, 2014 [34] | USA | HD | 98 | 49 ± 13 | 33.7 | 29 [24.2–36.3] | NR | DM−, Ob+ 12 [8.3–23.3] DM−, Ob− 37.7 [23.7–57.4] DM+, Ob+ 40.2 [18.8–61.6] DM+, Ob− 16.6 [9.8–90.3] | 6.5 | 31 | 8 |
Rhee, 2015 [21] | USA | HD | 501 | 55 ± 15 | 43.9 | 26.4 | ELISA | 22.6 [13.8–36.3] | 1.5 | 50 | 8 |
Tung, 2015 [35] | Taiwan | PD | 78 | 52 ± 13 | 50.0 | 23.0 ± 3.4 | ELISA | 29.5 ± 18.0 | 3.5 | 18 | 9 |
Zhou, 2016 [36] | China | HD | 105 | 57 ± 14 | 47.6 | 21.90 ± 3.98 | ELISA | 11.1 ± 2.3 | 5.3 | 34 | 9 |
Collado, 2017 [37] | Spain | HD | 220 | 61 ± 6 | 30.0 | 24.3 ± 4.4 | RIA | NR | 3.2 | 74 | 8 |
Iwamura, 2024 [38] | Japan | HD | 221 | 67 ± 13 | 37.6 | 21.8 ± 3.9 | HA | 20.0 ± 10.8 | 7 | 84 | 9 |
Study Name | Unadjusted HR (95% CI) | Adjusted HR (95% CI) | Adjustment Variables |
---|---|---|---|
Menon, 2006 [32] | 1.01 (0.99–1.03) | 1.03 (1.01–1.05) | model 1: age, sex, race, BP, protein diet |
1.04 (1.02–1.04) | model 2: model 1+ BMI, systolic BP, CVD, DM, smoking, HDL-C, triglycerides, HbA1c, CRP | ||
1.03 (1.01–1.05) | model 3: model 2+ proteinuria, GFR | ||
Ohashi, 2008 [14] | 1.077 (1.002–1.157) | 1.1.03 (1.010–1.194) | age, sex |
Takemoto, 2009a [28] | M 1.03 (0.91–1.17) | ||
Takemoto, 2009b [28] | F 0.98 (0.91–1.06) | ||
Abdallah, 2012 [33] | 1.10 (0.996–1.215) | 1.030 (1.010–1.050) | Age, hemodialysis duration, CVD, LVH, smoking, CRP |
Markaki, 2012 [15] | 1.04 (1.10–1.07) | 1.08 (1.30–1.12) | model 1: dialysis mode, magnesium, calcium |
1.07 (1.02–1.12) | model 2: model 1+ age, albumin, CRP | ||
Park, 2013 [16] | 0.94 (0.89–0.99) | 0.94 (0.89–0.99) | Age |
0.93 (0.87–0.99) | Age, albumin | ||
0.95 (0.89–1.02) | Age, BMI | ||
0.95 (0.90–1.01) | Age, CRP | ||
Deger, 2014 [34] | 1.63 (0.82–3.24) | 1.37 (0.66–2.84) | BMI, DM |
Rhee, 2015 [21] | 1.024 (1.012–1.036) | 1.023 (1.011–1.035) | model 1: age, sex, race, ethnicity, dialysis vintage |
1.022 (1.010–1.035) | model 2: model 1+ DM, albumin, TIBC, creatinine, WBC, phosphate, hemoglobin, nPCR | ||
Tung, 2015 [35] | 0.96 (0.94–1.00) | ||
Zhou, 2016 [36] | 0.756 (0.660–0.865) | 0.832 (0.696–0.995) | age, diastolic BP, ABI, albumin, CRP |
Collado, 2017 [37] | 1.003 (0.973–1.033) | ||
Iwamura, 2024 [38] | 1.013 (0.993–1.033) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.S.; Kim, S.-N.; Ro, J.-H.; Hur, M. Adiponectin and All-Cause Mortality in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Metabolites 2025, 15, 230. https://doi.org/10.3390/metabo15040230
Yang HS, Kim S-N, Ro J-H, Hur M. Adiponectin and All-Cause Mortality in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Metabolites. 2025; 15(4):230. https://doi.org/10.3390/metabo15040230
Chicago/Turabian StyleYang, Hyun Suk, Soo-Nyung Kim, Jung-Hoon Ro, and Mina Hur. 2025. "Adiponectin and All-Cause Mortality in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis" Metabolites 15, no. 4: 230. https://doi.org/10.3390/metabo15040230
APA StyleYang, H. S., Kim, S.-N., Ro, J.-H., & Hur, M. (2025). Adiponectin and All-Cause Mortality in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Metabolites, 15(4), 230. https://doi.org/10.3390/metabo15040230