Association of Serum Uric Acid Levels with Cardiometabolic Factors in Adolescents with Obesity: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Anthropometry
2.3. Cardiometabolic Profile Assessment and Uric Acid Level Measurements
2.4. Definitions
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. General Characteristics of the Adolescents
3.2. Comparison Between Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lobstein, T.; Baur, L.; Uauy, R. Obesity in children and young people: A crisis in public health. Obes. Rev. 2004, 5, 4–104. [Google Scholar] [CrossRef] [PubMed]
- Salama, M.; Balagopal, B.; Fennoy, I.; Kumar, S. Childhood Obesity, Diabetes and Cardiovascular Disease Risk. J. Clin. Endocrinol. Metab. 2023, 108, 3051–3066. [Google Scholar] [CrossRef]
- ENSANUT. ENSANUT Encuesta Nacional de Salud y Nutrición 2018; Instituto Nacional de Salud Pública: Cuernavaca, Mexico, 2019; Available online: https://ensanut.insp.mx/encuestas/ensanut2018/informes.php (accessed on 1 January 2020).
- Li, S.; Chen, W.; Srinivasan, S.R.; Xu, J.; Berenson, G.S. Relation of childhood obesity/cardiometabolic phenotypes to adult cardiometabolic profile. Am. J. Epidemiol. 2012, 176, S142–S149. [Google Scholar] [CrossRef]
- Jakše, B.; Jakše, B.; Pajek, M.; Pajek, J. Uric Acid and Plant-Based Nutrition. Nutrients 2019, 11, 1736. [Google Scholar] [CrossRef] [PubMed]
- Ragab, G.; Elshahaly, M.; Bardin, T. Gout: An old disease in new perspective—A review. J. Adv. Res. 2017, 8, 495–511. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Qorbani, M.; Heshmat, R.; Tajbakhsh, R.; Eslami, S.B.A.; Djalalinia, S.; Motlagh, M.E.; Tajadini, M.H.; Asayesh, H.; Safari, O.; et al. Association of Serum Uric Acid with Cardiometabolic Risk Factors and Metabolic Syndrome in Iranian Adolescents The CASPIAN-III Study. Iran. J. Kidney Dis. 2016, 10, 6–10. [Google Scholar]
- Seo, Y.J.; Shim, Y.S.; Lee, H.S.; Hwang, J.S. Association of serum uric acid Levels with metabolic syndromes in Korean adolescents. Front. Endocrinol. 2023, 19, 1159248. [Google Scholar] [CrossRef]
- Kubota, M. Hyperuricemia in Children and Adolescents: Present Knowledge and Future Directions. J. Nutr. Metab. 2019, 2019, 3480718. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, L.; Cantisani, V.; Anania, C.; Bonaiuto, E.; Martino, F.; Pascone, R.; Chiesa, C. Serum uric acid and its association with metabolic syndrome and carotid atherosclerosis in obese children. Eur. J. Endocrinol. 2009, 160, 45–52. [Google Scholar] [CrossRef]
- Demiray, A.; Afsar, B.; Covic, A.; Kuwabara, M.; Ferro, C.J.; Lanaspa, M.A.; Johnson, R.J.; Kanbay, M. The Role of Uric Acid in the Acute Myocardial Infarction: A Narrative Review. Angiology 2022, 73, 9–17. [Google Scholar] [CrossRef]
- Loeffler, L.F.; Navas-Acien, A.; Brady, T.M.; Miller, E.R., III; Fadrowski, J.J. Uric Acid Level and Elevated Blood Pressure in US Adolescents: National Health and Nutrition Examination Survey, 1999–2006. Hypertension 2012, 59, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Lanaspa, M.A.; Gaucher, E.A. Uric Acid: A Danger Signal From the RNA World That May Have a Role in the Epidemic of Obesity, Metabolic Syndrome, and Cardiorenal Disease: Evolutionary Considerations. Semin. Nephrol. 2011, 31, 394–399. [Google Scholar] [CrossRef]
- Ishiro, M.; Takaya, R.; Mori, Y.; Takitani, K.; Kono, Y.; Okasora, K.; Kasahara, T.; Tamai, H. Association of uric acid with obesity and endothelial dysfunction in children and early adolescents. Ann. Nutr. Metab. 2013, 62, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Özalp Kızılay, D.; Şen, S.; Ersoy, B. Associations Between Serum Uric Acid Levels and Cardiometabolic Risk, Renal İnjury in Obese and Overweight Children. J. Clin. Res. Pediatr. Endocrinol. 2019, 11, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Lurbe, E.; Torro, M.I.; Alvarez-Pitti, J.; Redon, J.; Borghi, C.; Redon, P. Uric acid is linked to cardiometabolic risk factors in overweight and obese youths. J. Hypertens. 2018, 36, 1840–1846. [Google Scholar] [CrossRef]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and Development; Vital and Health Statistics Series 11; Department of Health and Human Services: Washington, DC, USA, 2002; Volume 246, pp. 1–190. [Google Scholar]
- da Silva, R.C.; Miranda, W.L.; Chacra, A.R.; Dib, S.A. Metabolic syndrome and insulin resistance in normal glucose tolerant Brazilian adolescents with family history of type 2 diabetes. Diabetes Care 2005, 28, 716–718. [Google Scholar] [CrossRef]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Greer, F.R.; Committee on Nutrition. Lipid screening and cardiovascular health in childhood. Pediatrics 2008, 122, 198–208. [Google Scholar] [CrossRef]
- King, C.; Lanaspa, M.A.; Jensen, T.; Tolan, D.R.; Sánchez-Lozada, L.G.; Johnson, R.J. Uric Acid as a Cause of the Metabolic Syndrome. Contrib. Nephrol. 2018, 192, 88–102. [Google Scholar]
- Berry, C.E.; Hare, J.M. Xanthine oxidoreductase and cardiovascular disease: Molecular mechanisms and pathophysiological implications. J. Physiol. 2004, 555, 589–606. [Google Scholar] [CrossRef] [PubMed]
- Shahid, R.; Hussain, M.; Ghori, M.U.; Bilal, A.; Awan, F.R. Association of hyperuricemia with metabolic syndrome and its components in an adult population of Faisalabad, Pakistan. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 1554–1558. [Google Scholar] [CrossRef]
- Tang, X.; Liu, S.; Qiu, X.; Su, L.; Huang, D.; Liang, J.; Yang, Y.; Tan, J.H.J.; Zeng, X.; Xie, Y. High prevalence of hyperuricemia and the association with metabolic syndrome in the rural areas of Southwestern China: A structural equation modeling based on the Zhuang minority cohort. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 497–505. [Google Scholar] [CrossRef] [PubMed]
- de Magalhães, E.L.; Juvanhol, L.L.; da Silva, D.C.; Ferreira, F.G.; Roberto, D.M.; Hinnig, P.D.F.; Longo, G.Z. Uric acid: A new marker for metabolic syndrome? Results of a population-based study with adults. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2077–2080. [Google Scholar] [CrossRef] [PubMed]
- Banik, S.D.; Avila-Nava, A.; Lugo, R.; Aké, R.C.; Solis, A.L.G. Association Between Low-Grade Inflammation and Hyperuricemia in Adults With Metabolic Syndrome in Yucatán, México. Can. J. Diabetes 2022, 46, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Haueisen Sander Diniz, M.F.; Beleigoli, A.M.; Galvão, A.I.R.; Telles, R.W.; Schmidt, M.I.; Duncan, B.B.; Benseñor, I.M.; Ribeiro, A.L.P.; Vidigal, P.G.; Barreto, S.M. Serum uric acid is a predictive biomarker of incident metabolic syndrome at the Brazilian longitudinal study of adult Health (ELSA—Brasil). Diabetes Res. Clin. Pract. 2022, 191, 110046. [Google Scholar] [CrossRef]
- Ortega-Cortes, R.; Trujillo, X.; López, E.F.H.; Beltrán, A.L.L.; Rodríguez, C.C.; Barrera-de Leon, J.C.; Tlacuilo-Parra, A. Models Predictive of Metabolic Syndrome Components in Obese Pediatric Patients. Arch. Med. Res. 2016, 47, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Meshkani, R.; Zargari, M.; Larijani, B. The relationship between uric acid and metabolic syndrome in normal glucose tolerance and normal fasting glucose subjects. Acta Diabetol. 2011, 48, 79–88. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D.; Dong, L.; Gurka, M.J. Racial/ethnic and sex differences in the relationship between uric acid and metabolic syndrome in adolescents: An analysis of National Health and Nutrition Survey 1999–2006. Metabolism 2012, 61, 554–561. [Google Scholar] [CrossRef]
- Ishihara, A.; Inoue, T.; Ohya, Y.; Kinjo, K.; Kohagura, K.; Nagahama, K. Hyperuricemia predicts future metabolic syndrome: A 4-year follow-up study of a large screened cohort in Okinawa, Japan. Hypertens. Res. 2013, 37, 232–238. [Google Scholar]
- Huang, S.; Liu, X.; Li, H.; Xu, W.; Jia, H. Sex difference in the association of serum uric acid with metabolic syndrome and its components: A cross-sectional study in a Chinese Yi population. Postgrad. Med. 2017, 129, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Charchar, F.J. Establishment of sex difference in circulating uric acid is associated with higher testosterone and lower sex hormone-binding globulin in adolescent boys. Sci. Rep. 2021, 11, 17323. [Google Scholar] [CrossRef]
- Genoni, G.; Menegon, V.; Secco, G.G.; Sonzini, M.; Martelli, M.; Castagno, M.; Ricotti, R.; Monzani, A.; Aronici, M.; Grossini, E.; et al. Insulin resistance, serum uric acid and metabolic syndrome are linked to cardiovascular dysfunction in pediatric obesity. Int. J. Cardiol. 2017, 249, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Sautin, Y.Y.; Nakagawa, T.; Zharikov, S.; Johnson, R.J. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am. J. Physiol. Cell Physiol. 2007, 293, C584–C596. [Google Scholar] [CrossRef] [PubMed]
- Seyed-Sadjadi, N.; Berg, J.; Bilgin, A.A.; Grant, R. Visceral fat mass: Is it the link between uric acid and diabetes risk? Lipids Health Dis. 2017, 16, 142. [Google Scholar] [CrossRef] [PubMed]
- de Ritter, R.; Sep, S.J.S.; van Greevenbroek, M.M.J.; Kusters, Y.H.A.M.; Vos, R.C.; Bots, M.L.; Kooi, M.E.; Dagnelie, P.C.; Eussen, S.J.P.M.; Schram, M.T.; et al. Sex differences in body composition in people with prediabetes and type 2 diabetes as compared with people with normal glucose metabolism: The Maastricht Study. Diabetologia 2023, 66, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A. Uric acid-induced pancreatic β-cell dysfunction. BMC Endocr. Disord. 2021, 21, 24. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Xu, C.; Lin, Y.; Lu, C.; Li, D.; Sang, J.; He, H.; Liu, X.; Li, Y.; Yu, C. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. J. Hepatol. 2016, 64, 925–932. [Google Scholar] [CrossRef]
- Wang, H.P.; Xu, Y.Y.; Xu, B.L.; Lu, J.; Xia, J.; Shen, T.; Fang, J.; Lei, T. Correlation Between Abdominal Fat Distribution and Serum Uric Acid in Patients Recently Diagnosed with Type 2 Diabetes. Diabetes Metab. Syndr. Obes. 2023, 16, 3751–3762. [Google Scholar] [CrossRef]
All | Female | Male | ||
---|---|---|---|---|
(n = 391) | (n = 186) | (n = 205) | p | |
Median (Interquartile Range) | ||||
Age (years) | 12.0 (10.0, 15.0) | 13.5 (11.0, 15.0) | 12.0 (10.0, 14.0) | 0.001 |
Female sex * | 186 (47.6) | |||
Score Z del IMC | 2.2 (1.9, 2.4) | 2.0 (1.8, 2.3) | 2.2 (2.0, 2.4) | 0.001 |
Waist circumference (cm) | 94.9 (87.0, 102.0) | 92.7 (86.0, 101.0) | 97.0 (88.0, 102.0) | 0.036 |
Puberty * | 0.006 | |||
Prepubertal | 33 (8.4) | 10 (5.4) | 23 (11.2) | |
Pubertal | 358 (91.6) | 176 (94.6) | 182 (88.8) | |
Uric acid (mg/dL) | 5.9 (4.8, 6.9) | 5.5 (4.6, 6.5) | 6.1 (5.0, 7.0) | <0.001 |
Glucose (mg/dL) | 91.0 (85.0, 98.0) | 88.5 (84.0, 96.0) | 92.0 (87.0, 99.0) | <0.001 |
Total Cholesterol (mg/dL) | 160.0 (138.0, 179.0) | 159.0 (141.0, 180.0) | 160.0 (138.0, 176.0) | 0.771 |
Triglycerides (mg/dL) | 141.0 (98.0, 175.0) | 141.5 (100.0, 174.0) | 140.0 (98.0, 175.0) | 0.956 |
HDL Cholesterol (mg/dL) | 37.0 (32.0, 42.0) | 37.0 (33.0, 42.0) | 37.0 (32.0, 42.0) | 0.710 |
LDL Cholesterol (mg/dL) | 93.2 (75.0, 109.0) | 93.0 (76.0, 110.0) | 93.6 (73.6, 108.0) | 0.659 |
Insulin (µu/mL) | 14.9 (8.2, 23.8) | 15.4 (9.9, 23.8) | 14.9 (6.9, 23.8) | 0.099 |
HOMA-IR | 3.4 (1.9, 5.8) | 3.4 (2.1, 5.8) | 3.3 (1.6, 5.8) | 0.150 |
Abdominal obesity | 306 (78.3) | 138 (74.2) | 168 (81.9) | 0.063 |
Hyperglycemia * | 79 (20.2) | 29 (15.6) | 50 (24.4) | 0.030 |
Hypertriglyceridemia * | 174 (44.5) | 83 (44.6) | 91 (44.4) | 0.963 |
Altered HDL * | 310 (79.2) | 170 (91.4) | 140 (68.3) | <0.001 |
Insulin resistance * | 212 (54.2) | 107 (57.5) | 105 (51.2) | 0.211 |
Hypertension * | 20 (5.1) | 7 (3.8) | 13 (6.3) | 0.248 |
Metabolic syndrome * | 153 (39.1) | 75 (40.3) | 78 (38.0) | 0.645 |
Serum Uric Acid Tertile | p | |||
---|---|---|---|---|
T1 <5.20 mg/dL (n = 135) | T2 5.21–6.40 mg/dL (n = 130) | T3 >6.41 mg/dL (n = 126) | ||
Median (Interquartile Range) | ||||
Female sex * | 79 (58.5) | 59 (45.4) | 48 (38.1) | 0.004 |
Male sex | 56 (41.5) | 71 (54.6) | 78 (61.9) | |
Score Z del IMC | 2.0 (1.8, 2.4) | 2.2 (2.0, 2.4) | 2.2 (2.0, 2.4) | 0.026 |
Waist circumference (cm) | 91.2 (84.0, 100.0) | 93.2 (87.0, 101.0) | 98.0 (91.5, 105.0) | <0.001 |
Glucose (mg/dL) | 87.0 (83.0, 94.0) | 91.2 (86.0, 98.0) | 93.0 (88.0, 101.0) | <0.001 |
Total Cholesterol (mg/dL) | 157.0 (138.0, 173.0) | 160.0 (138.0, 180.0) | 159.5 (140.0, 180.0) | 0.453 |
Triglycerides (mg/dL) | 134.0 (91.0, 165.0) | 137.0 (98.0, 170.0) | 160.0 (108.0, 194.0) | 0.006 |
HDL Cholesterol (mg/dL) | 37.8 (34.0, 43.0) | 36.5 (32.0, 41.0) | 37.0 (32.0, 42.0) | 0.129 |
LDL Cholesterol (mg/dL) | 93.6 (74.8, 107.0) | 94.0 (74.2, 110.0) | 93.0 (75.6, 110.0) | 0.918 |
Insulin (µu/mL) | 14.3 (9.1, 21.2) | 14.9 (8.4, 23.8) | 16.1 (7.4, 28.5) | 0.366 |
HOMA-IR | 3.0 (2.0, 4.7) | 3.5 (2.9, 6.0) | 3.6 (1.8, 6.6) | 0.143 |
Abdominal obesity | 98 (72.6) | 100 (76.9) | 108 (85.7) | 0 033 |
Hyperglycemia | 17 (12.6) | 24 (18.5) | 38 (30.2) | 0.002 |
Hypertriglyceridemia | 49 (36.3) | 55 (42.3) | 70 (55.6) | 0.006 |
Altered HDL * | 109 (80.7) | 100 (76.9) | 101 (80.2) | 0.714 |
Insulin resistance | 67 (49.6) | 74 (56.9) | 71 (56.3) | 0.415 |
Hypertension | 5 (3.7) | 5 (3.8) | 10 (7.9) | 0.217 |
Metabolic syndrome | 42 (31.1) | 46 (35.4) | 65 (51.6) | 0.002 |
Female (n = 186) | Male (n = 205) | |||||
---|---|---|---|---|---|---|
Serum Uric Acid Tertile | Serum Uric Acid Tertile | |||||
T1–T2 <6.10 mg/dL (n = 126) | T3 ≥6.11 mg/dL (n = 60) | p | T1–T2 <6.53 mg/dL (n = 135) | T3 ≥6.54 mg/dL (n = 70) | p | |
Median (Interquartile Range) | Median (Interquartile Range) | |||||
Score Z del IMC | 2.0 (1.8, 2.3) | 2.1 (2.0, 2.4) | 0.002 | 2.2 (2.0, 2.5) | 2.2 (2.0, 2.4) | 0.608 |
Waist circumference (cm) | 89.8 (84.8, 98.0) | 98 (91.6, 105.0) | <0.001 | 94.5 (86.1, 101.0) | 99.0 (93.0, 106.0) | <0.001 |
Glucose (mg/dL) | 87.0 (83.0, 95.0) | 92.0 (87.0, 100.0) | 0.002 | 91.0 (86.0, 98.0) | 94.0 (89.0, 102.0) | 0.071 |
Total Cholesterol (mg/dl) | 159.5 (140.0, 180.0) | 158.0 (145.0, 179.1) | 0.895 | 158.0 (138.0, 172.0) | 165.0 (140.0, 184.0) | 0.101 |
Triglycerides (mg/dL) | 136.5 (92.0, 174.0) | 156.0 (111.0, 174.5) | 0.234 | 129.0 (91.0, 164.0) | 166.0 (111.0, 231.0) | <0.001 |
HDL Cholesterol (mg/dL) | 37.0 (33.0, 42.0) | 36.5 (32.0, 41.5) | 0.440 | 37.0 (33.0, 42.0) | 37.0 (30.0, 43.0) | 0.682 |
LDL Cholesterol (mg/dL) | 94.0 (75.0, 111.0) | 93.0 (81.5, 106.2) | 0.774 | 93.4 (73.0, 105.1) | 95.0 (77.0, 110.0) | 0.260 |
Insulin (µu/mL) | 16.3 (11.0, 23.0) | 15.0 (6.5, 27.9) | 0.426 | 13.5 (6.6, 21.2) | 18.2 (7.4, 29.2) | 0.117 |
HOMA-IR | 3.5 (2.3, 5.1) | 3.3 (1.5, 6.3) | 0.552 | 3.0 (1.5, 4.8) | 4.4 (1.8, 7.1) | 0.072 |
Abdominal obesity * | 84 (66.7) | 54 (90.0) | 0.001 | 110 (81.5) | 58 (82.9) | 0.808 |
Hyperglycemia * | 13 (10.3) | 16 (26.7) | 0.004 | 27 (20.0) | 23 (32.9) | 0.042 |
Hypertriglyceridemia * | 52 (41.3) | 31 (51.7) | 0.182 | 49 (36.3) | 42 (60.0) | <0.001 |
Altered HDL* | 115 (91.3) | 55 (91.7) | 0.928 | 90 (66.7) | 50 (71.4) | 0.487 |
Insulin resistance * | 73 (57.9) | 34 (56.7) | 0.870 | 66 (48.9) | 39 (55.7) | 0.354 |
Hypertension * | 5 (4.0) | 2 (3.3) | 0.596 | 6 (4.4) | 7 (10.0) | 0.122 |
Metabolic syndrome * | 43 (34.1) | 32 (53.3) | 0.013 | 42 (31.1) | 36 (51.4) | 0.004 |
Cardiometabolic Factor | Sensitivity, % | Specificity, % | Correct Classification, % | Area Under the ROC Curve |
---|---|---|---|---|
Hyperglycemia | 41.7 | 78.1 | 70.7 | 0.6292 |
Hypertriglyceridemia | 36.4 | 82.5 | 62.0 | 0.6032 |
Altered HDL | 26.2 | 75.3 | 36.4 | 0.5012 |
Insulin resistance | 24.4 | 71.7 | 42.1 | 0.5001 |
Hypertension | 35.0 | 74.5 | 72.5 | 0.5947 |
Metabolic syndrome | 38.8 | 82.2 | 65.3 | 0.6601 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villasis-Keever, M.A.; Zurita-Cruz, J.N.; Alcaraz-Hurtado, I.A.; Klünder-Klünder, M.; Vilchis-Gil, J.; Romero-Guerra, A.L.; López-Beltran, A.L.; Delgadillo-Ruano, M.A. Association of Serum Uric Acid Levels with Cardiometabolic Factors in Adolescents with Obesity: A Cross-Sectional Study. Metabolites 2025, 15, 237. https://doi.org/10.3390/metabo15040237
Villasis-Keever MA, Zurita-Cruz JN, Alcaraz-Hurtado IA, Klünder-Klünder M, Vilchis-Gil J, Romero-Guerra AL, López-Beltran AL, Delgadillo-Ruano MA. Association of Serum Uric Acid Levels with Cardiometabolic Factors in Adolescents with Obesity: A Cross-Sectional Study. Metabolites. 2025; 15(4):237. https://doi.org/10.3390/metabo15040237
Chicago/Turabian StyleVillasis-Keever, Miguel Angel, Jessie Nallely Zurita-Cruz, Iris Alejandra Alcaraz-Hurtado, Miguel Klünder-Klünder, Jenny Vilchis-Gil, Ana Laura Romero-Guerra, Ana Laura López-Beltran, and Martha Alicia Delgadillo-Ruano. 2025. "Association of Serum Uric Acid Levels with Cardiometabolic Factors in Adolescents with Obesity: A Cross-Sectional Study" Metabolites 15, no. 4: 237. https://doi.org/10.3390/metabo15040237
APA StyleVillasis-Keever, M. A., Zurita-Cruz, J. N., Alcaraz-Hurtado, I. A., Klünder-Klünder, M., Vilchis-Gil, J., Romero-Guerra, A. L., López-Beltran, A. L., & Delgadillo-Ruano, M. A. (2025). Association of Serum Uric Acid Levels with Cardiometabolic Factors in Adolescents with Obesity: A Cross-Sectional Study. Metabolites, 15(4), 237. https://doi.org/10.3390/metabo15040237