Steroids Static Postural Balance Changes After Exercise Intervention Correlate with Steroidome in Elderly Female
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Medical History
2.3. Assessment of Body Composition
2.4. Postural Balance Examination
2.5. Blood Sampling
2.6. Intervention
2.7. Statistical Analysis
2.8. Steroid Analysis
- Mixed Models
- We accounted for between-subject variability, which allowed for a more precise estimation of the intervention effect.
- The mixed model demonstrated significant changes in DLLL-DSM and BMI, although the limited sample size affected the precision of estimates.
- Bayesian Analysis
2.9. Terminology of Steroid Polar Conjugates
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Platz, T.; Brown, R.G.; Marsden, C.D. Training improves the speed of aimed movements in Parkinson’s disease. Brain 1998, 121 Pt 3, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, A.; Hortobagyi, T.; Beurskens, R.; Granacher, U. Effects of supervised vs. unsupervised training programs on balance and muscle strength in older adults: A systematic review and meta-analysis. Sports Med. 2017, 47, 2341–2361. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.E.; Lengyel, A.; Bendikova, E. Theory of health, movement and lifestyle of human beings. Hung. Educ. Res. J. 2018, 8, 120–125. [Google Scholar]
- Krejci, M.; Psotta, R.; Hill, M.; Kajzar, J.; Jandova, D.; Hošek, V. A short-term yoga-based intervention improves balance control, body composition, and some aspects of mental health in elderly men. Acta Gymnica 2020, 50, 16–27. [Google Scholar] [CrossRef]
- Naessen, T.; Lindmark, B.; Larsen, H.C. Hormone therapy and postural balance in elderly women. Menopause 2007, 14, 1020–1024. [Google Scholar] [CrossRef]
- Iruthayanathan, M.; Zhou, Y.H.; Childs, G.V. Dehydroepiandrosterone restoration of growth hormone gene expression in aging female rats, in vivo and in vitro: Evidence for actions via estrogen receptors. Endocrinology 2005, 146, 5176–5187. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Akishita, M.; Fukai, S.; Ogawa, S.; Yamaguchi, K.; Matsuyama, J.; Kozaki, K.; Toba, K.; Ouchi, Y. Effects of dehydroepiandrosterone supplementation on cognitive function and activities of daily living in older women with mild to moderate cognitive impairment. Geriatr. Gerontol. Int. 2010, 10, 280–287. [Google Scholar] [CrossRef]
- Im, J.Y.; Bang, J.S.; Seo, D.Y. The effects of 12 weeks of a combined exercise program on physical function and hormonal status in elderly Korean women. Int. J. Environ. Res. Public Health 2019, 16, 4196. [Google Scholar] [CrossRef]
- Hwang, A.C.; Liu, L.K.; Lee, W.J.; Chen, L.Y.; Lin, M.H.; Peng, L.N.; Won, C.W.; Chen, L.K. Association of androgen with skeletal muscle mass and muscle function among men and women aged 50 years and older in Taiwan: Results from the I-Lan longitudinal aging study. Rejuvenation Res. 2013, 16, 453–459. [Google Scholar] [CrossRef]
- Voznesensky, M.; Walsh, S.; Dauser, D.; Brindisi, J.; Kenny, A.M. The association between dehydroepiandrosterone and frailty in older men and women. Age Ageing 2009, 38, 401–406. [Google Scholar] [CrossRef]
- Furtado, G.E.; Carvalho, H.M.; Loureiro, M.; Patricio, M.; Uba-Chupel, M.; Colado, J.C.; Hogervorst, E.; Ferreira, J.P.; Teixeira, A.M. Chair-based exercise programs in institutionalized older women: Salivary steroid hormones, disabilities, and frailty changes. Exp. Gerontol. 2020, 130, 110790. [Google Scholar] [CrossRef] [PubMed]
- Bateni, H. Changes in balance in older adults based on use of physical therapy vs the Wii Fit gaming system: A preliminary study. Physiotherapy 2012, 98, 211–216. [Google Scholar] [CrossRef]
- Sulcova, J.; Hill, M.; Hampl, R.; Starka, L. Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulphate in normal subjects. J. Endocrinol. 1997, 154, 57–62. [Google Scholar] [CrossRef]
- Honcu, P.; Hill, M.; Bicikova, M.; Jandova, D.; Velikova, M.; Kajzar, J.; Kolatorova, L.; Bestak, J.; Macova, L.; Kancheva, R.; et al. Activation of adrenal steroidogenesis and an improvement of mood balance in postmenopausal females after spa treatment based on physical activity. Int. J. Mol. Sci. 2019, 20, 3687. [Google Scholar] [CrossRef]
- Bicikova, M.; Macova, L.; Kolatorova, L.; Hill, M.; Novotny, J.; Jandova, D.; Starka, L. Physiological changes after spa treatment—A focus on endocrinology. Physiol. Res. 2018, 67, S525–S530. [Google Scholar] [CrossRef]
- Seccia, T.M.; Caroccia, B.; Gomez-Sanchez, E.P.; Gomez-Sanchez, C.E.; Rossi, G.P. The biology of normal zona glomerulosa and aldosterone-producing adenoma: Pathological implications. Endocr. Rev. 2018, 39, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Vinson, G.P. Functional zonation of the adult mammalian adrenal cortex. Front. Neurosci. 2016, 10, 238. [Google Scholar] [CrossRef]
- Ibanez, L.; Potau, N.; Marcos, M.V.; de Zegher, F. Corticotropin-releasing hormone: A potent androgen secretagogue in girls with hyperandrogenism after precocious pubarche. J. Clin. Endocrinol. Metab. 1999, 84, 4602–4606. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, L.; Potau, N.; Marcos, M.V.; de Zegher, F. Corticotropin-releasing hormone as adrenal androgen secretagogue. Pediatr. Res. 1999, 46, 351–353. [Google Scholar] [CrossRef]
- Sirianni, R.; Mayhew, B.A.; Carr, B.R.; Parker, C.R., Jr.; Rainey, W.E. Corticotropin-releasing hormone (CRH) and urocortin act through type 1 CRH receptors to stimulate dehydroepiandrosterone sulfate production in human fetal adrenal cells. J. Clin. Endocrinol. Metab. 2005, 90, 5393–5400. [Google Scholar] [CrossRef]
- Dharia, S.; Slane, A.; Jian, M.; Conner, M.; Conley, A.J.; Brissie, R.M.; Parker, C.R., Jr. Effects of aging on cytochrome b5 expression in the human adrenal gland. J. Clin. Endocrinol. Metab. 2005, 90, 4357–4361. [Google Scholar] [CrossRef] [PubMed]
- Gutenbrunner, C.; Ward, A.; Chamberlain, M. White Book on Physical and Rehabilitation Medicine in Europe. J. Rehabil. Med. 2007, 6, 6–47. [Google Scholar] [CrossRef]
- Springer, B.A.; Marin, R.; Cyhan, T.; Roberts, H.; Gill, N.W. Normative values for the unipedal stance test with eyes open and closed. J. Geriatr. Phys. Ther. 2007, 30, 8–15. [Google Scholar] [CrossRef]
- Hopkins, S.; Smith, C.; Toms, A.; Brown, M.; Welsman, J.; Knapp, K. Evaluation of a dual-scales method to measure weight-bearing through the legs, and effects of weight-bearing inequalities on hip bone mineral density and leg lean tissue mass. J. Rehabil. Med. 2013, 45, 206–210. [Google Scholar] [CrossRef]
- Jandová, D.; Formanová, P.; Morávek, O. Presenium as a preparing period for senium—Benefits of spa stay in the Priessnitz’s spa, Ltd. in Jesenik for clients 50+. Acta Salus Vitae 2018, 6, 42–50. [Google Scholar]
- Maheshwarananda, P.S. Yoga in Daily Life: The System; Ibera Verlag/European University Press: Vienna, Austria, 2000. [Google Scholar]
- Kornatovská, Z.; Hill, M.; Krejčí, M.; Zwierzchowska, A. Effects of a short-term wheelchair yoga intervention on balance in elderly women with neurodegenerative diseases: A preliminary study. Biomed. Hum. Kinet. 2024, 22, 238–246. [Google Scholar] [CrossRef]
- Krejčí, M. Intervenční program Život v rovnováze [Intervention program Life in Balance]. In Základní Výzkum Xměn Rovnováhy Seniorů; Krejčí, M., Hošek, V., Hill, M., Jandová, D., Kajzar, J., Bláha, P., Eds.; College of Physical Education and Sports Palestra: Prague, Czech Republic, 2019; pp. 235–258. Available online: https://drive.google.com/file/d/1yVhe9QN_JAfST1VcyMWu2cWL0-T_KYxn/view (accessed on 9 February 2025).
- Trygg, J.; Holmes, E.; Lundstedt, T. Chemometrics in metabonomics. J. Proteome Res. 2007, 6, 469–479. [Google Scholar] [CrossRef]
- Madsen, R.; Lundstedt, T.; Trygg, J. Chemometrics in metabolomics—A review in human disease diagnosis. Anal. Chim. Acta 2010, 659, 23–33. [Google Scholar] [CrossRef]
- Czech, C.; Berndt, P.; Busch, K.; Schmitz, O.; Wiemer, J.; Most, V.; Hampel, H.; Kastler, J.; Senn, H. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. PLoS ONE 2012, 7, e31501. [Google Scholar] [CrossRef]
- Parizek, A.; Hill, M.; Duskova, M.; Vitek, L.; Velikova, M.; Kancheva, R.; Simjak, P.; Koucky, M.; Kokrdova, Z.; Adamcova, K.; et al. A comprehensive evaluation of steroid metabolism in women with intrahepatic cholestasis of pregnancy. PLoS ONE 2016, 11, e0159203. [Google Scholar] [CrossRef]
- Hill, M.; Hana, V., Jr.; Velikova, M.; Parizek, A.; Kolatorova, L.; Vitku, J.; Skodova, T.; Simkova, M.; Simjak, P.; Kancheva, R.; et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019, 68, 179–207. [Google Scholar] [CrossRef] [PubMed]
- Brochu, M.; Belanger, A. Comparative study of plasma steroid and steroid glucuronide levels in normal men and in men with benign prostatic hyperplasia. Prostate 1987, 11, 33–40. [Google Scholar] [CrossRef]
- Sanchez-Guijo, A.; Oji, V.; Hartmann, M.F.; Traupe, H.; Wudy, S.A. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS. J. Lipid Res. 2015, 56, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Labrie, F.; Belanger, A.; Cusan, L.; Gomez, J.L.; Candas, B. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J. Clin. Endocrinol. Metab. 1997, 82, 2396–2402. [Google Scholar] [CrossRef]
- Brochu, M.; Belanger, A.; Dupont, A.; Cusan, L.; Labrie, F. Effects of flutamide and aminoglutethimide on plasma 5 alpha-reduced steroid glucuronide concentrations in castrated patients with cancer of the prostate. J. Steroid Biochem. 1987, 28, 619–622. [Google Scholar] [CrossRef]
- Abu-Hayyeh, S.; Papacleovoulou, G.; Lovgren-Sandblom, A.; Tahir, M.; Oduwole, O.; Jamaludin, N.A.; Ravat, S.; Nikolova, V.; Chambers, J.; Selden, C.; et al. Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype. Hepatology 2013, 57, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.J.; Reyes, H.; Axelson, M.; Palma, J.; Hernandez, I.; Ribalta, J.; Sjovall, J. Progesterone metabolites and bile acids in serum of patients with intrahepatic cholestasis of pregnancy: Effect of ursodeoxycholic acid therapy. Hepatology 1997, 26, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Tokushige, K.; Hashimoto, E.; Kodama, K.; Tobari, M.; Matsushita, N.; Kogiso, T.; Taniai, M.; Torii, N.; Shiratori, K.; Nishizaki, Y.; et al. Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J. Gastroenterol. 2013, 48, 1392–1400. [Google Scholar] [CrossRef]
- Marmot, M.G.; Fuhrer, R.; Ettner, S.L.; Marks, N.F.; Bumpass, L.L.; Ryff, C.D. Contribution of psychosocial factors to socioeconomic differences in health. Milbank Q. 1998, 76, 403–448. [Google Scholar] [CrossRef]
- Zettergren, K.K.; Lubeski, J.M.; Viverito, J.M. Effects of a yoga program on postural control, mobility, and gait speed in community-living older adults: A pilot study. J. Geriatr. Phys. Ther. 2011, 34, 88–94. [Google Scholar] [CrossRef]
- Bloem, L.M.; Storbeck, K.H.; Schloms, L.; Swart, A.C. 11β-hydroxyandrostenedione returns to the steroid arena: Biosynthesis, metabolism, and function. Molecules 2013, 18, 13228–13244. [Google Scholar] [CrossRef] [PubMed]
- Penning, T.M. AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Mol. Cell. Endocrinol. 2019, 489, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Whitnall, M.H.; Elliott, T.B.; Harding, R.A.; Inal, C.E.; Landauer, M.R.; Wilhelmsen, C.L.; McKinney, L.; Miner, V.L.; Jackson, W.E.R.; Loria, R.M.; et al. Androstenediol stimulates myelopoiesis and enhances resistance to infection in gamma-irradiated mice. Int. J. Immunopharmacol. 2000, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sterzl, I.; Hill, M.; Starka, L.; Velikova, M.; Kanceva, R.; Jemelkova, J.; Czernekova, L.; Kosztyu, P.; ZadraZil, J.; Matousovic, K.; et al. Patients with IgA nephropathy have altered levels of immunomodulatory C19 steroids. Glucocorticoid therapy with addition of adrenal androgens may be the choice. Physiol. Res. 2017, 66, S433–S442. [Google Scholar] [CrossRef]
Variable | Initial Values | Post-Intervention Changes | p-Value b |
---|---|---|---|
DLLL-DSM a [% of body weight] | 7.69 (4.26, 13) | −2.56 (−7.53, 0) | <0.001 |
Age [years] | 58 (55, 61) | ----- | ----- |
Height [cm] | 164 (160, 170) | ----- | ----- |
BMI [kg/m2], BMI change [%] | 25.5 (23.7, 31.2) | −1.2 (−2.68, 0) | 0.001 |
Pregnenolone [nM] | 0.935 (0.717, 1.18) | 0.207 (−0.0894, 0.426) | 0.017 |
Pregnenolone sulfate [nM] | 79.6 (53.1, 106) | 7.29 (−7.94, 18.6) | 0.028 |
17-Hydroxypregnenolone [nM] | 1.62 (1.09, 3.02) | 0.47 (−0.087, 3.07) | 0.010 |
17-Hydroxypregnenolone sulfate [nM] | 3.21 (2.18, 5.68) | 0.925 (−0.36, 2.9) | 0.020 |
Dehydroepiandrosterone (DHEA) [nM] | 6.75 (4.3, 8) | 1.78 (−0.306, 3.71) | 0.007 |
Androstenediol [nM] | 1.29 (1.02, 1.97) | 0.139 (−0.1, 0.39) | 0.045 |
17-Hydroxyprogesterone [nM] | 0.77 (0.502, 1.22) | 0.175 (−0.209, 0.882) | 0.034 |
16α-Hydroxyprogesterone [nM] | 0.458 (0.287, 1.01) | 0.196 (−0.125, 0.51) | 0.039 |
Androstenedione [nM] | 3.11 (1.98, 4.16) | 0.608 (−0.405, 2.01) | 0.034 |
Conjugated epipregnanolone [nM] | 1.56 (0.837, 2.43) | 0.14 (−0.165, 0.445) | 0.027 |
Conjugated 5α-pregnane-3α,20α-diol [nM] | 4.69 (3.43, 8.02) | −0.366 (−1.4, 0.372) | 0.009 |
5α-Pregnane-3α,17α,20α-triol [nM] | 0.201 (0.122, 0.385) | −0.0485 (−0.131, 0.0307) | 0.014 |
5β-Pregnane-3α,17α-20α-triol [nM] | 2.41 (1.05, 4.63) | −0.159 (−1.43, 0.152) | 0.049 |
Epietiocholanolone sulfate [nM] | 43.6 (23.5, 65.3) | 4.49 (−0.694, 14.2) | 0.008 |
Conjugated 5β-androstane-3α,17β-diol [nM] | 0.721 (0.389, 1.14) | 0.139 (−0.0561, 0.326) | 0.012 |
Cortisol [nM] | 413 (291, 472) | 84.6 (−29.2, 189) | 0.029 |
Corticosterone [nM] | 12.6 (6.72, 17.5) | 4.26 (−1.91, 13.7) | 0.006 |
11β-Hydroxyandrostenedione [nM] | 136 (84, 201) | 8.79 (−11.8, 48.6) | 0.031 |
Predictive Component OPLS | Multiple Regression | ||||||
---|---|---|---|---|---|---|---|
Variable | Component Loading | t-Statistic | R a | Regression Coefficient | t-Statistic | ||
Androstenediol sulfate | −0.301 | −13.23 | −0.805 | ** | −0.033 | −2.73 | * |
Conjugated epipregnanolone | −0.266 | −7.39 | −0.711 | ** | −0.033 | −1.92 | * |
Androsterone sulfate | −0.297 | −5.37 | −0.796 | ** | −0.029 | −1.48 | |
Epiandrosterone sulfate | −0.331 | −12.05 | −0.888 | ** | −0.035 | −2.08 | * |
Etiocholanolone sulfate | −0.305 | −6.50 | −0.816 | ** | −0.029 | −1.84 | |
Epietiocholanolone sulfate | −0.319 | −20.95 | −0.854 | ** | −0.033 | −1.98 | * |
Conjugated 5α-androstane-3α,17β-diol | −0.308 | −5.25 | −0.824 | ** | −0.045 | −2.68 | * |
Conjugated 5α-androstane-3β,17β-diol | −0.325 | −10.72 | −0.870 | ** | −0.036 | −1.73 | |
Conjugated 5β-androstane-3α,17β-diol | −0.330 | −10.10 | −0.884 | ** | −0.045 | −2.41 | * |
Conjugated 5β-androstane-3β,17β-diol | −0.270 | −5.75 | −0.724 | ** | −0.041 | −1.97 | * |
11β-Hydroxyandrosterone sulfate | −0.298 | −7.93 | −0.798 | ** | −0.037 | −2.59 | * |
DLLL-DSM b | 1.000 | 2.21 | 0.323 | * | |||
Explained variability | 10.5% (5.6% after cross-validation) |
Variable | Component Loading | t-Statistic | R b | Regression Coefficient | t-Statistic | |||
---|---|---|---|---|---|---|---|---|
Relevant predictors (matrix X) | Age | 0.246 | 2.30 | 0.352 | * | 0.313 | 4.34 | ** |
BMI | 0.205 | 2.56 | 0.292 | * | 0.186 | 2.04 | * | |
DLLL-DSM a | 0.538 | 3.04 | 0.767 | ** | 0.665 | 10.81 | ** | |
Pregnenolone | 0.166 | 4.40 | 0.237 | ** | 0.096 | 1.51 | ||
17-Hydroxypregnenolone sulfate | 0.169 | 2.13 | 0.241 | * | 0.010 | 0.11 | ||
7-oxo-Dehydroepiandrosterone | 0.118 | 2.10 | 0.168 | * | 0.027 | 0.27 | ||
Androstenedione | 0.186 | 2.57 | 0.265 | * | 0.076 | 0.73 | ||
Isopregnanolone sulfate | 0.152 | 2.25 | 0.216 | * | −0.003 | −0.04 | ||
Conjugated 5β-pregnane-3α,20α-diol | 0.182 | 2.15 | 0.260 | * | 0.034 | 0.43 | ||
5α-Pregnane-3α,17,20α-triol | 0.230 | 2.05 | 0.328 | * | −0.019 | −0.41 | ||
5α-Pregnane-3β,17,20α-triol | 0.232 | 1.91 | 0.331 | * | 0.071 | 0.63 | ||
5β-Pregnane-3α,17,20α-triol | 0.184 | 1.83 | 0.262 | 0.058 | 0.89 | |||
Etiocholanolone | 0.220 | 1.46 | 0.315 | 0.210 | 1.97 | * | ||
11β-Hydroxyandrosterone | 0.145 | 1.73 | 0.207 | −0.054 | −0.56 | |||
11β-Hydroxyepiandrosterone | 0.195 | 2.37 | 0.278 | * | 0.030 | 0.42 | ||
11β-Hydroxyetiocholanolone | 0.166 | 1.65 | 0.237 | 0.026 | 0.57 | |||
Δ20α-Dihydropregnenolone sulfate | −0.157 | −2.35 | −0.224 | * | −0.109 | −1.67 | ||
ΔDehydroepiandrosterone (DHEA) | −0.119 | −2.77 | −0.171 | * | 0.082 | 0.90 | ||
Δ16α-Hydroxyprogesterone | −0.137 | −3.07 | −0.195 | ** | 0.005 | 0.04 | ||
ΔEpiandrosterone | −0.132 | −2.14 | −0.188 | * | 0.091 | 1.05 | ||
ΔEpietiocholanolone sulfate | 0.208 | 1.88 | 0.298 | 0.124 | 1.90 | * | ||
ΔCorticosterone | −0.196 | −5.56 | −0.279 | ** | −0.039 | −0.69 | ||
(matrix Y) | ΔDLLL-DSM | −1.000 | −9.45 | −0.910 | ** | |||
Explained variability | 79.7% (60.9% after cross-validation) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kornatovská, Z.; Hill, M.; Jandová, D.; Krejčí, M.; Zwierzchowska, A. Steroids Static Postural Balance Changes After Exercise Intervention Correlate with Steroidome in Elderly Female. Metabolites 2025, 15, 239. https://doi.org/10.3390/metabo15040239
Kornatovská Z, Hill M, Jandová D, Krejčí M, Zwierzchowska A. Steroids Static Postural Balance Changes After Exercise Intervention Correlate with Steroidome in Elderly Female. Metabolites. 2025; 15(4):239. https://doi.org/10.3390/metabo15040239
Chicago/Turabian StyleKornatovská, Zuzanna, Martin Hill, Dobroslava Jandová, Milada Krejčí, and Anna Zwierzchowska. 2025. "Steroids Static Postural Balance Changes After Exercise Intervention Correlate with Steroidome in Elderly Female" Metabolites 15, no. 4: 239. https://doi.org/10.3390/metabo15040239
APA StyleKornatovská, Z., Hill, M., Jandová, D., Krejčí, M., & Zwierzchowska, A. (2025). Steroids Static Postural Balance Changes After Exercise Intervention Correlate with Steroidome in Elderly Female. Metabolites, 15(4), 239. https://doi.org/10.3390/metabo15040239