Review: Piglets’ (Re)Feeding Patterns, Mineral Metabolism, and Their Twisty Tail
Abstract
1. Introduction
2. Influence of Digestion Kinetics and Eating Patterns on Minerals
3. Feed and Water Intake of Nursery Piglets
4. Refeeding Syndrome
5. Hypophosphatemia
6. A Twisty Tail
7. Recommendations for Diet Formulation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Research Council. Nutrient Requirements of Swine, 1st ed.; The National Academies Press: Washinton, DC, USA, 2012.
- Van Kempen, T.A.T.G.; Pujol, S.; Tibble, S.; Balfagon, A. In vitro characterization of starch digestion and its implications for pigs. In Paradigms in Pig Science; Wiseman, J., Varley, M.A., McOrist, S., Kemp, B., Eds.; Nottingham University Press: Nottingham, UK, 2007; pp. 515–526. [Google Scholar]
- Van Kempen, T.A.T.G.; Regmi, P.R.; Matte, J.J.; Zijlstra, R.T. In vitro starch digestion kinetics, corrected for estimated gastric emptying, predict portal glucose appearance in pigs. J. Nutr. 2010, 140, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 8th ed.; Macmillan Learning: New York, NY, USA, 2021; ISBN 9781319322342. [Google Scholar]
- Van Erp, R.J.J. Nutrient Yield from Starch in Pigs: Consequences for Energy Balance and Meal Patterns. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2019. [Google Scholar]
- Boumans, I.J.M.M.; de Boer, I.J.M.; Hofstede, G.J.; la Fleur, S.E.; Bokkers, E.A.M. The importance of hormonal circadian rhythms in daily feeding patterns: An illustration with simulated pigs. Horm. Behav. 2017, 93, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Van Cauter, E.; Shapiro, E.T.; Tillil, H.; Polonsky, K.S. Circadian modulation of glucose and insulin responses to meals: Relationships to cortisol rhythm. Am. J. Physiol. Endocrinol. Metab. 1992, 262, E467–E475. [Google Scholar] [CrossRef] [PubMed]
- Van Erp, R.J.J.; de Vries, S.; van Kempen, T.A.T.G.; den Hartog, L.A.; Gerrits, W.J.J. Circadian misalignment imposed by nocturnal feeding tends to increase fat deposition in pigs. Br. J. Nutr. 2020, 123, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Marinella, M.A. The refeeding syndrome and hypophosphatemia. Nutr. Rev. 2003, 61, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Gout, E.; Rébeillé, F.; Douce, R.; Bligny, R. Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg2+ in cell respiration. Proc. Natl. Acad. Sci. USA 2014, 111, E4560–E4567. [Google Scholar] [CrossRef] [PubMed]
- Bikker, P.; Blok, M.C. Phosphorus and Calcium Requirements of Growing Pigs and Sows; Federatie Nederlandse Diervoerketen: Wageningen, The Netherlands, 2017; p. 424780. [Google Scholar] [CrossRef]
- Van Kempen, T.A.T.G.; Deixler, E.; Crook, M.A. Hypophosphatemia as a key factor in sudden infant death syndrome (SIDS)? Upsala J. Med. Sci. 2013, 118, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Lavoue, S.; Dagorne, M.; Morvan, H.; Madec, F.; Durigon, M. Is the piglet a useful animal model of sudden infant death syndrome? Biol. Neonate 1994, 65, 310–316. [Google Scholar] [CrossRef] [PubMed]
- De Bethmann, O.; Relier, J.P. Sudden infant death. Family and socio-cultural state and psycho-affective balance. Biomed. Pharmacother. 1987, 41, 178–182. [Google Scholar] [PubMed]
- Hunt, C.E.; Hauck, F.R. Sudden infant death syndrome. CMAJ 2006, 174, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Van Kempen, T. Key influencing factors on voluntary feed intake of piglets. In VI Congresso Latino-Americano de Nutrição Animal; Colégio Brasileiro de Nutrição Animal: São Pedro, Sao Paulo, Brasil, 2014. [Google Scholar]
- Strey, K. Water as a standard substance of a logarithmic poison scale. J. Biosci. Med. 2024, 12, 86–92. [Google Scholar] [CrossRef]
- Schloerb, P.R.; Wood, J.G.; Casillan, A.J.; Tawfik, O.; Udobi, K. Bowel necrosis caused by water in jejunal feeding. J. Parenter. Enteral Nutr. 2004, 28, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.A. Rats. Sci. Am. 1967, 216, 78–85. [Google Scholar] [CrossRef]
- Roura, E.; Navarro, M. Physiological and metabolic control of diet selection. Anim. Prod. Sci. 2018, 58, 613–626. [Google Scholar] [CrossRef]
- Roura, E.; Humphrey, B.; Tedó, G.; Ipharragerre, I. Unfolding the codes of short-term feed appetence in farm and companion animals. A comparative oronasal nutrient sensing biology review. Can. J. Anim. Sci. 2008, 88, 535–558. [Google Scholar] [CrossRef]
- Knochel, J.P. Hypophosphatemia. West. J. Med. 1981, 134, 15–26. [Google Scholar] [PubMed]
- Keys, A.; Brožek, J.; Henschel, A.; Mickelsen, O.; Taylor, H.L. The Biology of Human Starvation: Volume, I; University of Minnesota Press: Minneapolis, MN, USA, 1950. [Google Scholar]
- Korbonitz, M.; Blaine, D.; Elia, M.; Powell-Tuck, J. Metabolic and hormonal changes during the refeeding period of prolonged fasting. Eur. J. Endocrinol. 2007, 157, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Van Kempen, T.A.T.G.; Hulshof, T.G.; Gerrits, W.J.J.; Zijlstra, R.T. Review: The amazing gain-to-feed ratio of newly weaned piglets: Sign of efficiency or deficiency? Animal 2023, 17, 100987. [Google Scholar] [CrossRef] [PubMed]
- Tumbleson, M.E.; Kalish, P.R. Serum biochemical and hematological parameters in crossbred swine from birth through eight weeks of age. Can. J. Comp. Med. 1971, 26, 202–209. [Google Scholar]
- National Institute of Health (NIH). Phosphorus. Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Phosphorus-HealthProfessional (accessed on 20 October 2024).
- Bohr, C.; Hasselbalch, K.; Krogh, A. Concerning a biologically important relationship–The influence of carbon dioxide content of blood on its oxygen binding. Skand. Arch. Physiol. 1904, 16, 401–412. [Google Scholar]
- Hill, A.V. The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. J. Physiol. 1910, 40, 4–7. [Google Scholar]
- MacIntyre, N.R. Tissue hypoxia: Implications for the respiratory clinician. Respir. Care 2014, 59, 1590–1596. [Google Scholar] [CrossRef] [PubMed]
- Cochran-Black, D.L.; Cowan, L.D.; Neas, B.R. The relationship between newborn hemoglobin F fractions and risk factors for sudden infant death syndrome. Arch. Pathol. Lab. Med. 2001, 125, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Lauer, A.N.; Scholtysik, R.; Beineke, A.; Baums, C.G.; Klose, K.; Valentin-Weigand, P.; Ishikawa, H.; Schroten, H.; Klein-Hitpass, L.; Schwerk, C. A comparative transcriptome analysis of human and porcine choroid plexus cells in response to Streptococcus suis serotype 2 infection points to a role of hypoxia. Front. Cell. Infect. Microbiol. 2021, 11, 639620. [Google Scholar] [CrossRef] [PubMed]
- Loudenot, A.; Michot, C.; Alberti, C.; Armoogum, P.; Tsapis, M.; Dauger, S. High prevalence of hypophosphatemia at PICU admission in non-malnourished children. Intensive Care Med. 2010, 36, 1443–1444. [Google Scholar] [CrossRef] [PubMed]
- Kalambokis, G.N.; Tsatsoulis, A.A.; Tsianos, E.V. The edematogenic properties of insulin. Am. J. Kidney Dis. 2004, 44, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Whittemore, C.T.; Taylor, H.M.; Henderson, R.; Wood, J.D.; Brock, D.C. Chemical and dissected composition changes in weaned piglets. Anim. Prod. 1981, 32, 203–210. [Google Scholar] [CrossRef]
- Tordoff, M.G. Phosphorus taste involves T1R2 and T1R3. Chem. Senses 2017, 42, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Elshahawy, I.I.; Aly, M.A. Some studies on deviated appetite (pica) in cattle. Alex. J. Vet. Sci. 2016, 51, 97–101. [Google Scholar] [CrossRef]
- Zaborowski, G. Quelques vices singuliers provoques chez les animaux et chez l’hommme par des carences alimentaires. Bull. Soc. Sci. Hyg. Aliment. 1931, 19, 24–28. [Google Scholar]
- Qureshi, A.S.; Deeba, F. Phosphorus dynamics in ruminants—An overview. EC Vet. Sci. 2019, 4, 426–438. [Google Scholar]
- Czycholl, I.; Büttner, K.; Becker, D.; Schwennen, C.; Baumgärtner, W.; Otten, W.; Wendt, M.; Puff, C.; Krieter, J. Are biters sick? Health status of tail biters in comparison to control pigs. Porc. Health Manag. 2023, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Palander, P.A.; Heinonen, M.; Simpura, I.; Edwards, S.A.; Valros, A.E. Jejunal morphology and blood metabolites in tail biting victim and control pigs. Animal 2013, 7, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Giannoglou, G.D.; Chatzizisis, Y.S.; Misirli, G. The syndrome of rhabdomyolysis: Pathophysiology and diagnosis. Eur. J. Intern. Med. 2007, 18, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Amanzadeh, J.; Reilly Jr., R. F. Hypophosphatemia: An evidence-based approach to its clinical consequences and management. Nat. Clin. Pract. Nephrol. 2006, 2, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Isern-Kebschull, J.; Laveglia, V.; Serrano, E.; García-Díez, A.I.; Tomás, X. What rhabdomyolysis looks like in refeeding syndrome? J. Pediatr. Gastroenterol. Nutr. Rep. 2020, 22, e048. [Google Scholar] [CrossRef] [PubMed]
- Visweswaran, P.; Guntupalli, J. Rhabdomyolysis. Crit. Care Clin. 1999, 15, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.K.H. Abnormal liver function tests associated with severe rhabdomyolysis. World J. Gastroenterol. 2020, 26, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Junge, R.E.; Miller, R.E. Suspected nutritional myopathy in Vietnamese potbellied pigs (Sus. scrofa). J. Zoo. Wildl. Med. 1989, 20, 478–481. [Google Scholar]
- Munsterhjelm, C.; Simola, O.; Keeling, L.; Valros, A.; Heinonen, M. Health parameters in tail biters and bitten pigs in a case-control study. Animal 2013, 7, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Zonderland, J.J.; Schepers, F.; Bracke, M.; Den Hartog, L.; Kemp, B.; Spoolder, H. Characteristics of biter and victim piglets apparent before a tail-biting outbreak. Animal 2011, 5, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, R.C.; McConnell, E.E.; Imes, G.D.; Schmidt, J.M. A review of exertional rhabdomyolysis in wild and domestic animals and man. Vet. Pathol. 1977, 14, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Solà-Oriol, D.; Roura, E.; Torrallardona, D. Feed preference in pigs: Effect of selected protein, fat and fiber sources at different inclusion rates. J. Anim. Sci. 2011, 89, 3219–3227. [Google Scholar] [CrossRef] [PubMed]
- Cemin, S.; Hart, M.; Hansen, S.A.; Soto, J.A.; Hansen, E.L. Effects of increasing available phosphorus for 6 to 16 kg pigs fed diets containing phytase. J. Anim. Sci. 2024, 102 (Suppl. 2), 157–158. [Google Scholar] [CrossRef]
- Coulthard, M.G. Oedema in kwashiorkor is caused by hypoalbuminaemia. Paediatr. Int. Child. Health 2015, 35, 83–89. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Kempen, T.; Roura, E. Review: Piglets’ (Re)Feeding Patterns, Mineral Metabolism, and Their Twisty Tail. Metabolites 2025, 15, 480. https://doi.org/10.3390/metabo15070480
van Kempen T, Roura E. Review: Piglets’ (Re)Feeding Patterns, Mineral Metabolism, and Their Twisty Tail. Metabolites. 2025; 15(7):480. https://doi.org/10.3390/metabo15070480
Chicago/Turabian Stylevan Kempen, Theo, and Eugeni Roura. 2025. "Review: Piglets’ (Re)Feeding Patterns, Mineral Metabolism, and Their Twisty Tail" Metabolites 15, no. 7: 480. https://doi.org/10.3390/metabo15070480
APA Stylevan Kempen, T., & Roura, E. (2025). Review: Piglets’ (Re)Feeding Patterns, Mineral Metabolism, and Their Twisty Tail. Metabolites, 15(7), 480. https://doi.org/10.3390/metabo15070480