Relationship of Ageing to Insulin Resistance and Atherosclerosis
Abstract
1. Introduction
2. Theories on the Mechanisms of Aging and Measures to Delay Aging
2.1. Mechanisms of Ageing Doctrine
2.1.1. Somatic Cell Mutation Theory
2.1.2. Free Radical Theory
2.1.3. Immunological Theory
2.1.4. Telomere Theory
2.1.5. Neuroendocrine Theory
2.2. Measures to Mitigate Ageing
2.2.1. Targeting Senescent Cells
2.2.2. Delayed Telomere Shortening
2.2.3. Metabolic Intervention
2.2.4. Gut Microbiome Interventions
2.2.5. Lifestyle Interventions
3. Insulin Resistance
3.1. Insulin Signaling Pathway
3.2. Mechanisms of IR
3.3. IR Related Diseases
3.4. The Relationship Between Aging and IR
4. Atherosclerosis
4.1. Mechanisms of Atherosclerosis
4.2. The Relationship Between Aging and Atherosclerosis
4.3. Relationship Between IR and Atherosclerosis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IR | Insulin resistance |
LDL | Low-density lipoproteins |
VLDL | Very-low-density lipoprotein |
HDL | High-density lipoprotein |
LPO | Lipid peroxides |
ROS | Reactive oxygen species |
IGF-1 | Serum Insulin-like Growth Factor 1 |
SASP | Senescence-associated secretory phenotype |
PIP2 | Phosphatidylinositol 4,5-diphosphate |
PIP3 | Phosphatidylinositol (3,4,5)-trisphosphate |
GLP-1 | Glucagon-like peptide 1 receptor |
SGLT-2 | Sodium-glucose co-transporter protein |
PUFAs | Polyunsaturated fatty acid |
O2 | Oxygen |
IRS2 | Insulin Receptor Substrate 2 |
NAD+ | Nicotinamide adenine dinucleotide |
NAMPT | Nicotinamide phosphoribosyltransferase |
SCN | Suprachiasmatic Nucleus |
FFAs | Free Fatty Acids |
NADP | Nicotinamide adenine dinucleotide phosphate |
NO | Nitric oxide |
ET-1 | Endothelin-1 |
TyG | Triglyceride–glucose index |
AMPK | Adenosine Monophosphate-activated Protein Kinase |
TP53 | Tumor Protein p53 |
KRAS | Kirsten Rat Sarcoma Viral Oncogene Homolog |
O2•− | Superoxide Anion |
H2O2 | Hydrogen Peroxide |
·OH | Hydroxyl Radical |
NO· | Nitric Oxide |
IL-6 | Interleukin-6 |
TNF-α | Tumor Necrosis Factor Alpha |
NLRP3 | NOD-, LRR- and Pyrin Domain-Containing Protein 3 |
IL-1β | Interleukin-1 Beta |
TLR4 | Toll-Like Receptor 4 |
NF-κB | Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells |
LPS | Lipopolysaccharide |
CAR-T | Chimeric Antigen Receptor T-Cell Therapy |
TERT | Telomerase Reverse Transcriptase |
p16INK4a | Cyclin-Dependent Kinase Inhibitor 2A |
mTOR | Mechanistic Target of Rapamycin |
FMT | Fecal Microbiota Transplantation |
Shc | Src Homology and Collagen Homology |
Grb2 | Growth Factor Receptor-Bound Protein 2 |
PI3K | Phosphoinositide 3-Kinase |
Ras | Rat Sarcoma virus |
Raf | Rapidly Accelerated Fibrosarcoma |
MEK | Mitogen-Activated Protein Kinase Kinase |
ERK1/2 | Extracellular Signal-Regulated Kinase 1 and 2 |
GSK3β | Glycogen Synthase Kinase 3 Beta |
FOXO1 | Forkhead box protein O1 |
AS160 | Akt Substrate of 160 kDa |
CREB | CAMP Response Element-Binding protein |
mTORC1 | Mammalian Target Of Rapamycin Complex 1 |
PEPCK | Phosphoenolpyruvate carboxykinase |
G6Pase | Glucose-6-Phosphatase |
GLUT4 | Glucose Transporter type 4 |
SREBP1c | Sterol Regulatory Element-Binding Protein 1c |
VCAM-1 | Vascular Cell Adhesion Molecule-1 |
PDGF | Platelet-Derived Growth Factor |
ox-LDL | Oxidized Low-Density Lipoprotein |
References
- Kritsilis, M.; Rizou, S.V.; Koutsoudaki, P.N.; Evangelou, K.; Gorgoulis, V.G.; Papadopoulos, D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int. J. Mol. Sci. 2018, 19, 2937. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Shmulevich, R.; Krizhanovsky, V. Cell Senescence, DNA Damage, and Metabolism. Antioxid. Redox Signal. 2021, 34, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sun, H.S.; Wang, X.; Dumont, A.S.; Liu, Q. Cellular senescence, DNA damage, and neuroinflammation in the aging brain. Trends Neurosci. 2024, 47, 461–474. [Google Scholar] [CrossRef] [PubMed]
- Ou, H.L.; Schumacher, B. DNA damage responses and p53 in the aging process. Blood 2018, 131, 488–495. [Google Scholar] [CrossRef]
- Obradovic, D. Five-factor theory of aging and death due to aging. Arch. Gerontol. Geriatr. 2025, 129, 105665. [Google Scholar] [CrossRef]
- Thevis, M.; Thomas, A.; Schänzer, W. Insulin. Handb. Exp. Pharmacol. 2010, 195, 209–226. [Google Scholar]
- Petersen, K.F.; Dufour, S.; Savage, D.B.; Bilz, S.; Solomon, G.; Yonemitsu, S.; Cline, G.W.; Befroy, D.; Zemany, L.; Kahn, B.B.; et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc. Natl. Acad. Sci. USA 2007, 104, 12587–12594. [Google Scholar] [CrossRef]
- Muniyappa, R.; Montagnani, M.; Koh, K.K.; Quon, M.J. Cardiovascular actions of insulin. Endocr. Rev. 2007, 28, 463–491. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.G.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature 2001, 414, 782–787. [Google Scholar] [CrossRef]
- Basatemur, G.L.; Jørgensen, H.F.; Clarke, M.C.H.; Bennett, M.R.; Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 2019, 16, 727–744. [Google Scholar] [CrossRef]
- Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Chen, L.; Li, Q.; Zhao, Y.; Yin, D.; Sun, S. Relationship between Serum FGF21 and vWF Expression and Carotid Atherosclerosis in Elderly Patients with Hypertension. J. Healthc. Eng. 2022, 2022, 6777771. [Google Scholar] [CrossRef]
- Zhao, F.; Yu, P.; Lv, X.; Pang, M.; Zhao, L.; Zhang, X.; Zhao, L. Value of thromboelastography combined with anticoagulant detection in patients over 60 years of age with cardiovascular or cerebrovascular disease. Ann. Palliat. Med. 2021, 10, 5407–5416. [Google Scholar] [CrossRef]
- Zha, Y.; Zhuang, W.; Yang, Y.; Zhou, Y.; Li, H.; Liang, J. Senescence in Vascular Smooth Muscle Cells and Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 910580. [Google Scholar] [CrossRef]
- Dzięgielewska-Gęsiak, S.; Stołtny, D.; Brożek, A.; Muc-Wierzgoń, M.; Wysocka, E. Are insulin-resistance and oxidative stress cause or consequence of aging. Exp. Biol. Med. 2020, 245, 1260–1267. [Google Scholar] [CrossRef]
- Kurauti, M.A.; Soares, G.M.; Marmentini, C.; Bronczek, G.A.; Branco, R.C.S.; Boschero, A.C. Insulin and aging. Vitam. Horm. 2021, 115, 185–219. [Google Scholar]
- Li, X.; Wang, J.; Zhang, M.; Li, X.; Fan, Y.; Zhou, X.; Sun, Y.; Qiu, Z. Biological aging mediates the associations of metabolic score for insulin resistance with all-cause and cardiovascular disease mortality among US adults: A nationwide cohort study. Diabetes Obes. Metab. 2024, 26, 3552–3564. [Google Scholar] [CrossRef]
- Milholland, B.; Suh, Y.; Vijg, J. Mutation and catastrophe in the aging genome. Exp. Gerontol. 2017, 94, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Szilard, L. ON THE NATURE OF THE AGING PROCESS. Proc. Natl. Acad. Sci. USA 1959, 45, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Cagan, A.; Baez-Ortega, A.; Brzozowska, N.; Abascal, F.; Coorens, T.H.H.; Sanders, M.A.; Lawson, A.R.J.; Harvey, L.M.R.; Bhosle, S.; Jones, D.; et al. Somatic mutation rates scale with lifespan across mammals. Nature 2022, 604, 517–524. [Google Scholar] [CrossRef]
- Garger, D.; Meinel, M.; Dietl, T.; Hillig, C.; Garzorz-Stark, N.; Eyerich, K.; de Angelis, M.H.; Eyerich, S.; Menden, M.P. The impact of the cardiovascular component and somatic mutations on ageing. Aging Cell 2023, 22, e13957. [Google Scholar] [CrossRef]
- Abascal, F.; Harvey, L.M.R.; Mitchell, E.; Lawson, A.R.J.; Lensing, S.V.; Ellis, P.; Russell, A.J.C.; Alcantara, R.E.; Baez-Ortega, A.; Wang, Y.; et al. Somatic mutation landscapes at single-molecule resolution. Nature 2021, 593, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Wyman, M.J.; Sella, G.; Przeworski, M. Interpreting the Dependence of Mutation Rates on Age and Time. PLoS Biol. 2016, 14, e1002355. [Google Scholar] [CrossRef]
- Robinson, P.S.; Coorens, T.H.H.; Palles, C.; Mitchell, E.; Abascal, F.; Olafsson, S.; Lee, B.C.H.; Lawson, A.R.J.; Lee-Six, H.; Moore, L.; et al. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nat. Genet. 2021, 53, 1434–1442. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Zhang, J.; Vijg, J. Somatic mutations in aging and disease. Geroscience 2024, 46, 5171–5189. [Google Scholar] [CrossRef]
- Harman, D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Pomatto, L.C.D.; Davies, K.J.A. Adaptive homeostasis and the free radical theory of ageing. Free Radic. Biol. Med. 2018, 124, 420–430. [Google Scholar] [CrossRef]
- Wickens, A.P. Ageing and the free radical theory. Respir. Physiol. 2001, 128, 379–391. [Google Scholar] [CrossRef]
- Robert, K.A.; Brunet-Rossinni, A.; Bronikowski, A.M. Testing the ‘free radical theory of aging’ hypothesis: Physiological differences in long-lived and short-lived colubrid snakes. Aging Cell 2007, 6, 395–404. [Google Scholar] [CrossRef]
- Ali, S.S.; Xiong, C.; Lucero, J.; Behrens, M.M.; Dugan, L.L.; Quick, K.L. Gender differences in free radical homeostasis during aging: Shorter-lived female C57BL6 mice have increased oxidative stress. Aging Cell 2006, 5, 565–574. [Google Scholar]
- Hekimi, S.; Lapointe, J.; Wen, Y. Taking a “good” look at free radicals in the aging process. Trends Cell Biol. 2011, 21, 569–576. [Google Scholar] [CrossRef]
- Harman, D. The free radical theory of aging. Antioxid. Redox Signal. 2003, 5, 557–561. [Google Scholar] [PubMed]
- de Toda, I.M.; Ceprián, N.; Díaz-Del Cerro, E.; De la Fuente, M. The Role of Immune Cells in Oxi-Inflamm-Aging. Cells 2021, 10, 2974. [Google Scholar] [CrossRef]
- Feehan, J.; Tripodi, N.; Apostolopoulos, V. The twilight of the immune system: The impact of immunosenescence in aging. Maturitas 2021, 147, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T.; Larbi, A.; Hirokawa, K.; Cohen, A.A.; Witkowski, J.M. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin. Immunopathol. 2020, 42, 521–536. [Google Scholar] [CrossRef]
- Barbé-Tuana, F.; Funchal, G.; Schmitz, C.R.R.; Maurmann, R.M.; Bauer, M.E. The interplay between immunosenescence and age-related diseases. Semin. Immunopathol. 2020, 42, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Di Benedetto, S.; Pawelec, G. The Immune System and Its Dysregulation with Aging. Subcell. Biochem. 2019, 91, 21–43. [Google Scholar]
- Wang, Y.; Dong, C.; Han, Y.; Gu, Z.; Sun, C. Immunosenescence, aging and successful aging. Front. Immunol. 2022, 13, 942796. [Google Scholar] [CrossRef]
- Finn, O.J. Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer. Ann. Oncol. 2012, 23, viii6–viii9. [Google Scholar] [CrossRef]
- Candeias, S.M.; Gaipl, U.S. The Immune System in Cancer Prevention, Development and Therapy. Anticancer Agents Med. Chem. 2016, 16, 101–107. [Google Scholar] [CrossRef]
- Lian, J.; Yue, Y.; Yu, W.; Zhang, Y. Immunosenescence: A key player in cancer development. J. Hematol. Oncol. 2025, 13, 151, Correction in J. Hematol. Oncol. 2025, 18, 25. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Brenes, I.A.; Peskin, C.S. Quantitative theory of telomere length regulation and cellular senescence. Proc. Natl. Acad. Sci. USA 2010, 107, 5387–5392. [Google Scholar] [CrossRef]
- Blasco, M.A. Telomere length, stem cells and aging. Nat. Chem. Biol. 2007, 3, 640–649. [Google Scholar] [CrossRef]
- Fathi, E.; Charoudeh, H.N.; Sanaat, Z.; Farahzadi, R. Telomere shortening as a hallmark of stem cell senescence. Stem Cell Investig. 2019, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Bernadotte, A.; Mikhelson, V.M.; Spivak, I.M. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging 2016, 8, 3–11. [Google Scholar] [CrossRef]
- Wang, Q.; Zhan, Y.; Pedersen, N.L.; Fang, F.; Hägg, S. Telomere Length and All-Cause Mortality: A Meta-analysis. Ageing Res. Rev. 2018, 48, 11–20. [Google Scholar] [CrossRef]
- Ye, Q.; Apsley, A.T.; Etzel, L.; Hastings, W.J.; Kozlosky, J.T.; Walker, C.; Wolf, S.E.; Shalev, I. Telomere length and chronological age across the human lifespan: A systematic review and meta-analysis of 414 study samples including 743,019 individuals. Ageing Res. Rev. 2023, 90, 102031. [Google Scholar] [CrossRef]
- Schmidt, T.T.; Tyer, C.; Rughani, P.; Haggblom, C.; Jones, J.R.; Dai, X.; Frazer, K.A.; Gage, F.H.; Juul, S.; Hickey, S.; et al. High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer. Nat. Commun. 2024, 15, 5149. [Google Scholar] [CrossRef]
- Sanchez, S.E.; Gu, Y.; Wang, Y.; Golla, A.; Martin, A.; Shomail, W.; Hockemeyer, D.; Savage, S.A.; Artandi, S.E. Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease. Nat. Commun. 2024, 15, 5148. [Google Scholar] [CrossRef]
- Mariotti, S.; Franceschi, C.; Cossarizza, A.; Pinchera, A. The aging thyroid. Endocr. Rev. 1995, 16, 686–715. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Fang, B.; Wang, Z.; Chen, Y.; Dong, Y. The Timing Sequence and Mechanism of Aging in Endocrine Organs. Cells 2023, 12, 982. [Google Scholar] [CrossRef]
- Cappola, A.R.; Auchus, R.J.; El-Hajj Fuleihan, G.; Handelsman, D.J.; Kalyani, R.R.; McClung, M.; Stuenkel, C.A.; Thorner, M.O.; Verbalis, J.G. Hormones and Aging: An Endocrine Society Scientific Statement. J. Clin. Endocrinol. Metab. 2023, 108, 1835–1874. [Google Scholar] [CrossRef]
- Rosén, T.; Wirén, L.; Wilhelmsen, L.; Wiklund, I.; Bengtsson, B.A. Decreased psychological well-being in adult patients with growth hormone deficiency. Clin. Endocrinol. 1994, 40, 111–116. [Google Scholar] [CrossRef]
- Rudman, D.; Feller, A.G.; Nagraj, H.S.; Gergans, G.A.; Lalitha, P.Y.; Goldberg, A.F.; Schlenker, R.A.; Cohn, L.; Rudman, I.W.; Mattson, D.E. Effects of human growth hormone in men over 60 years old. N. Engl. J. Med. 1990, 323, 1–6. [Google Scholar] [CrossRef]
- Xing, Y.; Xuan, F.; Wang, K.; Zhang, H. Aging under endocrine hormone regulation. Front. Endocrinol. 2023, 14, 1223529. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Ostan, R.; Mariotti, S.; Monti, D.; Vitale, G. The Aging Thyroid: A Reappraisal Within the Geroscience Integrated Perspective. Endocr. Rev. 2019, 40, 1250–1270. [Google Scholar] [CrossRef]
- Baker, D.J.; Wijshake, T.; Tchkonia, T.; LeBrasseur, N.K.; Childs, B.G.; Van De Sluis, B.; Kirkland, J.L.; Van Deursen, J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011, 479, 232–236. [Google Scholar] [CrossRef]
- Gasek, N.S.; Kuchel, G.A.; Kirkland, J.L.; Xu, M. Strategies for Targeting Senescent Cells in Human Disease. Nat. Aging 2021, 1, 870–879. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Nakagami, H.; Hayashi, H.; Ikeda, Y.; Sun, J.; Tenma, A.; Tomioka, H.; Kawano, T.; Shimamura, M.; Morishita, R.; et al. The CD153 vaccine is a senotherapeutic option for preventing the accumulation of senescent T cells in mice. Nat. Commun. 2020, 11, 2482. [Google Scholar] [CrossRef]
- de Jesus, B.B.; Blasco, M.A. Telomerase at the intersection of cancer and aging. Trends Genet. 2013, 29, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Schellnegger, M.; Hofmann, E.; Carnieletto, M.; Kamolz, L.P. Unlocking longevity: The role of telomeres and its targeting interventions. Front. Aging 2024, 5, 1339317. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Wu, G. Targeting mTOR for Anti-Aging and Anti-Cancer Therapy. Molecules 2023, 28, 3157. [Google Scholar] [CrossRef]
- Zoncu, R.; Efeyan, A.; Sabatini, D.M. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12, 21–35. [Google Scholar] [CrossRef]
- Weichhart, T. mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review. Gerontology 2018, 64, 127–134. [Google Scholar] [CrossRef]
- Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef]
- Yoon, M.S. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients 2017, 9, 1176. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Peng, D.; Cai, Z.; Lin, H.K. AMPK signaling and its targeting in cancer progression and treatment. Semin. Cancer Biol. 2022, 85, 52–68. [Google Scholar] [CrossRef]
- Penugurti, V.; Mishra, Y.G.; Manavathi, B. AMPK: An odyssey of a metabolic regulator, a tumor suppressor, and now a contextual oncogene. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188785. [Google Scholar] [CrossRef]
- Stancu, A.L. AMPK activation can delay aging. Discoveries 2015, 3, e53. [Google Scholar] [CrossRef]
- Penugurti, V.; Manne, R.K.; Bai, L.; Kant, R.; Lin, H.K. AMPK: The energy sensor at the crossroads of aging and cancer. Semin. Cancer Biol. 2024, 106–107, 15–27. [Google Scholar] [CrossRef]
- Tissenbaum, H.A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 2015, 59, 59–63. [Google Scholar] [CrossRef]
- Hu, D.; Xie, F.; Xiao, Y.; Lu, C.; Zhong, J.; Huang, D.; Chen, J.; Wei, J.; Jiang, Y.; Zhong, T. Metformin: A Potential Candidate for Targeting Aging Mechanisms. Aging Dis. 2021, 12, 480–493. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-K.; Cheng, K.-C.; Mgbeahuruike, M.O.; Lin, Y.-H.; Wu, C.-Y.; Wang, H.-M.D.; Yen, C.-H.; Chiu, C.-C.; Sheu, S.-J. New Insight into the Effects of Metformin on Diabetic Retinopathy, Aging and Cancer: Nonapoptotic Cell Death, Immunosuppression, and Effects beyond the AMPK Pathway. Int. J. Mol. Sci. 2021, 22, 9453. [Google Scholar] [CrossRef]
- De Haes, W.; Frooninckx, L.; Van Assche, R.; Smolders, A.; Depuydt, G.; Billen, J.; Braeckman, B.P.; Schoofs, L.; Temmerman, L. Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc. Natl. Acad. Sci. USA 2014, 111, E2501–E2509. [Google Scholar] [CrossRef]
- Fang, J.; Yang, J.; Wu, X.; Zhang, G.; Li, T.; Wang, X.; Zhang, H.; Wang, C.; Liu, G.; Wang, L. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell 2018, 17, e12765. [Google Scholar] [CrossRef]
- Karnewar, S.; Neeli, P.K.; Panuganti, D.; Kotagiri, S.; Mallappa, S.; Jain, N.; Jerald, M.K.; Kotamraju, S. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: Relevance in age-associated vascular dysfunction. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014, 24, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Haigis, M.C.; Sinclair, D.A. Mammalian sirtuins: Biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5, 253–295. [Google Scholar] [CrossRef]
- Tennen, R.I.; Chua, K.F. Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem. Sci. 2011, 36, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Guarente, L.; Sinclair, D.A.; Kroemer, G. Human trials exploring anti-aging medicines. Cell Metab. 2024, 36, 354–376. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, K.M.; Mills, K.F.; Satoh, A.; Imai, S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 2008, 7, 78–88. [Google Scholar] [CrossRef]
- O’Toole, P.W.; Jeffery, I.B. Gut microbiota and aging. Science 2015, 350, 1214–1215. [Google Scholar] [CrossRef]
- Kim, S.; Jazwinski, S.M. The Gut Microbiota and Healthy Aging: A Mini-Review. Gerontology 2018, 64, 513–520. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Chen, Y.; Chen, W.; Xu, J.; Gao, L. Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clin. Interv. Aging 2023, 18, 963–986. [Google Scholar] [CrossRef]
- Ueda, A.; Shinkai, S.; Shiroma, H.; Taniguchi, Y.; Tsuchida, S.; Kariya, T.; Kawahara, T.; Kobayashi, Y.; Kohda, N.; Ushida, K.; et al. Identification of Faecalibacterium prausnitzii strains for gut microbiome-based intervention in Alzheimer’s-type dementia. Cell Rep. Med. 2021, 2, 100398. [Google Scholar] [CrossRef]
- Luqman, A.; Hassan, A.; Ullah, M.; Naseem, S.; Ullah, M.; Zhang, L.; Din, A.U.; Ullah, K.; Ahmad, W.; Wang, G. Role of the intestinal microbiome and its therapeutic intervention in cardiovascular disorder. Front. Immunol. 2024, 15, 1321395. [Google Scholar] [CrossRef]
- Bradley, E.; Haran, J. The human gut microbiome and aging. Gut Microbes 2024, 16, 2359677. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Liu, X.; Cheng, Y.; Yan, X.; Wu, S. Gut microbiota and aging. Crit. Rev. Food Sci. Nutr. 2022, 62, 3509–3534. [Google Scholar] [CrossRef] [PubMed]
- Eloe-Fadrosh, E.A.; Brady, A.; Crabtree, J.; Drabek, E.F.; Ma, B.; Mahurkar, A.; Ravel, J.; Haverkamp, M.; Fiorino, A.-M.; Botelho, C.; et al. Functional dynamics of the gut microbiome in elderly people during probiotic consumption. mBio 2015, 6, e00231-15. [Google Scholar] [CrossRef] [PubMed]
- Donati Zeppa, S.; Agostini, D.; Ferrini, F.; Gervasi, M.; Barbieri, E.; Bartolacci, A.; Piccoli, G.; Saltarelli, R.; Sestili, P.; Stocchi, V. Interventions on Gut Microbiota for Healthy Aging. Cells 2022, 12, 34. [Google Scholar] [CrossRef]
- Hou, S.; Yu, J.; Li, Y.; Zhao, D.; Zhang, Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. Adv. Sci. 2025, 12, e2413197. [Google Scholar] [CrossRef]
- Lobo, F.; Haase, J.; Brandhorst, S. The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients 2022, 14, 5086. [Google Scholar] [CrossRef]
- Longo, V.D.; Anderson, R.M. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022, 185, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.D.; Panda, S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell Metab. 2016, 23, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 2017, 39, 46–58. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial. JAMA Intern. Med. 2017, 177, 930–938. [Google Scholar] [CrossRef]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet In Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef]
- Mattis, J.; Sehgal, A. Circadian Rhythms, Sleep, and Disorders of Aging. Trends Endocrinol. Metab. 2016, 27, 192–203. [Google Scholar] [CrossRef]
- Arendt, J. Biological rhythms during residence in polar regions. Chronobiol. Int. 2012, 29, 379–394. [Google Scholar] [CrossRef]
- Hood, S.; Amir, S. The aging clock: Circadian rhythms and later life. J. Clin. Investig. 2017, 127, 437–446. [Google Scholar] [CrossRef]
- Farajnia, S.; Michel, S.; Deboer, T.; vanderLeest, H.T.; Houben, T.; Rohling, J.H.T.; Ramkisoensing, A.; Yasenkov, R.; Meijer, J.H. Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J. Neurosci. 2012, 32, 5891–5899. [Google Scholar] [CrossRef]
- Hastings, M.H.; Reddy, A.B.; Maywood, E.S. A clockwork web: Circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 2003, 4, 649–661. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, F.; Zhou, H.; Zheng, X.; Huo, Z.; Yang, M.; Xu, Z.; Liu, R.; Wang, L.; Wang, X.; et al. Systematic assessment of transcriptomic and metabolic reprogramming by blue light exposure coupled with aging. PNAS Nexus 2023, 2, pgad390. [Google Scholar] [CrossRef]
- Guan, Q.; Wang, Z.; Cao, J.; Dong, Y.; Tang, S.; Chen, Y. Melatonin restores hepatic lipid metabolic homeostasis disrupted by blue light at night in high-fat diet-fed mice. J. Pineal Res. 2024, 76, e12963. [Google Scholar] [CrossRef]
- Lyssenko, V.; Nagorny, C.L.; Erdos, M.R.; Wierup, N.; Jonsson, A.; Spégel, P.; Bugliani, M.; Saxena, R.; Fex, M.; Pulizzi, N.; et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 2009, 41, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Maroufi, N.F.; Ashouri, N.; Mortezania, Z.; Ashoori, Z.; Vahedian, V.; Amirzadeh-Iranaq, M.T.; Fattahi, A.; Kazemzadeh, H.; Bizzarri, M.; Akbarzadeh, M.; et al. The potential therapeutic effects of melatonin on breast cancer: An invasion and metastasis inhibitor. Pathol. Res. Pract. 2020, 216, 153226. [Google Scholar] [CrossRef]
- Cardinali, D.P. Melatonin and healthy aging. Vitam. Horm. 2021, 115, 67–88. [Google Scholar] [PubMed]
- Szablewski, L. Changes in Cells Associated with Insulin Resistance. Int. J. Mol. Sci. 2024, 25, 2397. [Google Scholar] [CrossRef] [PubMed]
- Le, T.K.C.; Dao, X.D.; Nguyen, D.V.; Luu, D.H.; Bui, T.M.H.; Le, T.H.; Nguyen, H.T.; Le, T.N.; Hosaka, T.; Nguyen, T.T.T. Insulin signaling and its application. Front. Endocrinol. 2023, 14, 1226655. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 8, 2133–2223. [Google Scholar] [CrossRef]
- Shaw, L.M. The insulin receptor substrate (IRS) proteins: At the intersection of metabolism and cancer. Cell Cycle 2011, 10, 1750–1756. [Google Scholar] [CrossRef]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell 2007, 129, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Kolterman, O.G.; Gray, R.S.; Griffin, J.; Burstein, P.; Insel, J.; Scarlett, J.A.; Olefsky, J.M. Receptor and postreceptor defects contribute to the insulin resistance in noninsulin-dependent diabetes mellitus. J. Clin. Investig. 1981, 68, 957–969. [Google Scholar] [CrossRef]
- Horita, S.; Nakamura, M.; Suzuki, M.; Satoh, N.; Suzuki, A.; Seki, G. Selective Insulin Resistance in the Kidney. BioMed Res. Int. 2016, 2016, 5825170. [Google Scholar] [CrossRef]
- Ashraf, A.; Palakkott, A.; Ayoub, M.A. Anti-Insulin Receptor Antibodies in the Pathology and Therapy of Diabetes Mellitus. Curr. Diabetes Rev. 2021, 17, 198–206. [Google Scholar] [CrossRef]
- Hall, C.; Yu, H.; Choi, E. Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp. Mol. Med. 2020, 52, 911–920. [Google Scholar] [CrossRef]
- Taniguchi, C.M.; Emanuelli, B.; Kahn, C.R. Critical nodes in signalling pathways: Insights into insulin action. Nat. Rev. Mol. Cell Biol. 2006, 7, 85–96. [Google Scholar] [CrossRef]
- Ginsberg, H.; Olefsky, J.M.; Reaven, G.M. Further evidence that insulin resistance exists in patients with chemical diabetes. Diabetes 1974, 23, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.; Kimmerling, G.; Olefsky, J.M.; Reaven, G.M. Demonstration of insulin resistance in untreated adult onset diabetic subjects with fasting hyperglycemia. J. Clin. Investig. 1975, 55, 454–461. [Google Scholar] [CrossRef]
- Reaven, G.M. Relationships among insulin resistance, type 2 diabetes, essential hypertension, and cardiovascular disease: Similarities and differences. J. Clin. Hypertens. 2011, 13, 238–243. [Google Scholar] [CrossRef]
- Warram, J.H.; Martin, B.C.; Krolewski, A.S.; Soeldner, J.S.; Kahn, C.R. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann. Intern. Med. 1990, 113, 909–915. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Zerdan, M.B.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Cheng, T.O. Cardiac syndrome X versus metabolic syndrome, X. Int. J. Cardiol. 2007, 119, 137–138. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Guo, S. Insulin signaling, resistance, and the metabolic syndrome: Insights from mouse models into disease mechanisms. J. Endocrinol. 2014, 220, T1–T23. [Google Scholar] [CrossRef]
- Guo, S.; Copps, K.D.; Dong, X.; Park, S.; Cheng, Z.; Pocai, A.; Rossetti, L.; Sajan, M.; Farese, R.V. Morris F White The Irs1 branch of the insulin signaling cascade plays a dominant role in hepatic nutrient homeostasis. Mol. Cell Biol. 2009, 29, 5070–5083. [Google Scholar] [CrossRef] [PubMed]
- Kubota, N.; Kubota, T.; Itoh, S.; Kumagai, H.; Kozono, H.; Takamoto, I.; Mineyama, T.; Ogata, H.; Tokuyama, K.; Ohsugi, M.; et al. Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab. 2008, 8, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Xu, Z.; Zhu, Q.; Thomas, C.; Kumar, R.; Feng, H.; Dostal, D.E.; White, M.F.; Baker, K.M.; Guo, S. Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes 2013, 62, 3887–3900. [Google Scholar] [CrossRef] [PubMed]
- Avagimyan, A.; Fogacci, F.; Pogosova, N.; Kakrurskiy, L.; Kogan, E.; Urazova, O.; Kobalava, Z.; Mikhaleva, L.; Vandysheva, R.; Zarina, G.; et al. Diabetic Cardiomyopathy: 2023 Update by the International Multidisciplinary Board of Experts. Curr. Probl. Cardiol. 2024, 49, 102052. [Google Scholar] [CrossRef] [PubMed]
- Chiefari, E.; Mirabelli, M.; La Vignera, S.; Tanyolaç, S.; Foti, D.P.; Aversa, A.; Brunetti, A. Insulin Resistance and Cancer: In Search for a Causal Link. Int. J. Mol. Sci. 2021, 22, 11137. [Google Scholar] [CrossRef]
- Barzilai, N.; Ferrucci, L. Insulin resistance and aging: A cause or a protective response? J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 1329–1331. [Google Scholar] [CrossRef]
- Rieusset, J. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles? Diabetes Metab. 2015, 41, 358–368. [Google Scholar] [CrossRef]
- Kolb, H.; Kempf, K.; Martin, S. Insulin and aging—A disappointing relationship. Front. Endocrinol. 2023, 14, 1261298. [Google Scholar] [CrossRef]
- Tucker, L.A. Insulin Resistance and Biological Aging: The Role of Body Mass, Waist Circumference, and Inflammation. BioMed Res. Int. 2022, 2022, 2146596. [Google Scholar] [CrossRef]
- Ropelle, E.R.; Pauli, J.R.; Cintra, D.E.; da Silva, A.S.; Souza, C.T.D.; Guadagnini, D.; Carvalho, B.M.; Caricilli, A.M.; Katashima, C.K.; Carvalho-Filho, M.A.; et al. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. Diabetes 2013, 62, 466–470. [Google Scholar] [CrossRef]
- Kahn, S.E.; Larson, V.G.; Schwartz, R.S.; Beard, J.C.; Cain, K.C.; Fellingham, W.G.; Stratton, J.R.; Cerqueira, M.D.; Abrasset, I.B. Exercise training delineates the importance of B-cell dysfunction to the glucose intolerance of human aging. J. Clin. Endocrinol. Metab. 1992, 74, 1336–1342. [Google Scholar]
- Ahrén, B.; Pacini, G. Age-related reduction in glucose elimination is accompanied by reduced glucose effectiveness and increased hepatic insulin extraction in man. J. Clin. Endocrinol. Metab. 1998, 83, 3350–3356. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef]
- Wojtasińska, A.; Frąk, W.; Lisińska, W.; Sapeda, N.; Młynarska, E.; Rysz, J.; Franczyk, B. Novel Insights into the Molecular Mechanisms of Atherosclerosis. Int. J. Mol. Sci. 2023, 24, 13434. [Google Scholar] [CrossRef] [PubMed]
- Grebe, A.; Hoss, F.; Latz, E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ. Res. 2018, 122, 1722–1740. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Kou, Y.; Shen, L.; Wang, H.; Wang, Y.; Ma, R.; Wu, T.; Yang, X.; Gu, Y.; et al. Mechanisms and treatment of atherosclerosis: Focus on macrophages. Front. Immunol. 2024, 15, 1490387. [Google Scholar] [CrossRef]
- Karpathiou, G.; Dumollard, J.M.; Camy, F.; Sramek, V.; Dridi, M.; Picot, T.; Mobarki, M.; Peoc’h, M. Senescence, immune microenvironment, and vascularization in cardiac myxomas. Cardiovasc. Pathol. 2021, 52, 107335. [Google Scholar] [CrossRef]
- Hemling, P.; Zibrova, D.; Strutz, J.; Sohrabi, Y.; Desoye, G.; Schulten, H.; Findeisen, H.; Heller, R.; Godfrey, R.; Waltenberger, J. Hyperglycemia-induced endothelial dysfunction is alleviated by thioredoxin mimetic peptides through the restoration of VEGFR-2-induced responses and improved cell survival. Int. J. Cardiol. 2020, 308, 73–81. [Google Scholar] [CrossRef]
- Joshi, M.S.; Tong, L.; Cook, A.C.; Schanbacher, B.L.; Huang, H.; Han, B.; Ayers, L.W.; Bauer, J.A. Increased myocardial prevalence of C-reactive protein in human coronary heart disease: Direct effects on microvessel density and endothelial cell survival. Cardiovasc. Pathol. 2012, 21, 428–435. [Google Scholar] [CrossRef]
- Mungmunpuntipantip, R.; Wiwanitkit, V. Cardiac inflammation associated with COVID-19 mRNA vaccination and previous myocarditis. Minerva Cardiol. Angiol. 2024, 72, 214–215. [Google Scholar] [CrossRef] [PubMed]
- Jafar Haeri, S.M.; Dashti, G.; Mardani, M.; Rashidi, B.; Nikgoftar Fathi, A.; Al-Sadat Haeri, N. Effect of Vitamin E on Apoptosis of the Endothelial Cells of the Carotid Arteries in Hypercholesterolemic Male Rabbits. ARYA Atheroscler. 2023, 19, 10–17. [Google Scholar]
- Heshmat-Ghahdarijani, K.; Jangjoo, S.; Amirpour, A.; Najafian, J.; Khosravi, A.; Heidarpour, M.; Hekmat, M.; Shafie, D. Endothelial dysfunction in patients with lone atrial fibrillation. ARYA Atheroscler. 2020, 16, 278–283. [Google Scholar]
- Young, I.S.; McEneny, J. Lipoprotein oxidation and atherosclerosis. Biochem. Soc. Trans. 2001, 29, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Kisugi, R. Mechanisms of LDL oxidation. Clin. Chim. Acta 2010, 411, 1875–1882. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Li, Y.; Ren, X.; Zhang, X.; Hu, D.; Gao, Y.; Xing, Y.; Shang, H. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front. Physiol. 2017, 8, 600. [Google Scholar] [CrossRef]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid. Med. Cell. Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Panahi, Y.; Johnston, T.P.; Sahebkar, A. Antidiabetic drugs and oxidized low-density lipoprotein: A review of anti-atherosclerotic mechanisms. Pharmacol. Res. 2021, 172, 105819. [Google Scholar] [CrossRef]
- Videla, L.A.; Valenzuela, R.; Del Campo, A.; Zúñiga-Hernández, J. Omega-3 Lipid Mediators: Modulation of the M1/M2 Macrophage Phenotype and Its Protective Role in Chronic Liver Diseases. Int. J. Mol. Sci. 2023, 24, 15528. [Google Scholar] [CrossRef]
- Truthe, S.; Klassert, T.E.; Schmelz, S.; Jonigk, D.; Blankenfeldt, W.; Slevogt, H. Role of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 in Inflammation and Pathogen-Associated Interactions. J. Innate Immun. 2024, 16, 105–132. [Google Scholar] [CrossRef] [PubMed]
- Nedkoff, L.; Briffa, T.; Zemedikun, D.; Herrington, S.; Wright, F.L. Global Trends in Atherosclerotic Cardiovascular Disease. Clin. Ther. 2023, 45, 1087–1091. [Google Scholar] [CrossRef]
- Fyhrquist, F.; Saijonmaa, O.; Strandberg, T. The roles of senescence and telomere shortening in cardiovascular disease. Nat. Rev. Cardiol. 2013, 10, 274–283. [Google Scholar] [CrossRef]
- Bonello-Palot, N.; Simoncini, S.; Robert, S.; Bourgeois, P.; Sabatier, F.; Levy, N.; Dignat-George, F.; Badens, C. Prelamin A accumulation in endothelial cells induces premature senescence and functional impairment. Atherosclerosis 2014, 237, 45–52. [Google Scholar] [CrossRef]
- Ghamar Talepoor, A.; Doroudchi, M. Immunosenescence in atherosclerosis: A role for chronic viral infections. Front. Immunol. 2022, 13, 945016. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, H.; Shen, Z.; Wang, X.; Yu, X. Association between TyG index and risk of carotid atherosclerosis in NAFLD patients: A retrospective cohort study. Front. Endocrinol. 2024, 15, 1448359. [Google Scholar] [CrossRef] [PubMed]
- Vezza, T.; Díaz-Pozo, P.; Canet, F.; de Marañón, A.M.; Abad-Jiménez, Z.; García-Gargallo, C.; Roldan, I.; Solá, E.; Bañuls, C.; López-Domènech, S.; et al. The Role of Mitochondrial Dynamic Dysfunction in Age-Associated Type 2 Diabetes. World J. Men’s Health 2022, 40, 399–411. [Google Scholar] [CrossRef]
- World, C.; Spindel, O.N.; Berk, B.C. Thioredoxin-interacting protein mediates TRX1 translocation to the plasma membrane in response to tumor necrosis factor-α: A key mechanism for vascular endothelial growth factor receptor-2 transactivation by reactive oxygen species. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1890–1897. [Google Scholar] [CrossRef]
- Yi, J.; Qu, C.; Li, X.; Gao, H. Insulin resistance assessed by estimated glucose disposal rate and risk of atherosclerotic cardiovascular diseases incidence: The multi-ethnic study of atherosclerosis. Cardiovasc. Diabetol. 2024, 23, 349. [Google Scholar] [CrossRef]
- Ding, X.; Wang, X.; Wu, J.; Zhang, M.; Cui, M. Triglyceride-glucose index and the incidence of atherosclerotic cardiovascular diseases: A meta-analysis of cohort studies. Cardiovasc. Diabetol. 2021, 20, 76. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, M.; Zeng, T.; Hu, R.; Xu, Y.; Xu, M.; Zhao, Z.; Chen, Y.; Wang, S.; Lin, H.; et al. Association Between Insulin Resistance and Cardiovascular Disease Risk Varies According to Glucose Tolerance Status: A Nationwide Prospective Cohort Study. Diabetes Care 2022, 45, 1863–1872. [Google Scholar] [CrossRef]
- Che, B.; Zhong, C.; Zhang, R.; Pu, L.; Zhao, T.; Zhang, Y.; Han, L. Triglyceride-glucose index and triglyceride to high-density lipoprotein cholesterol ratio as potential cardiovascular disease risk factors: An analysis of UK biobank data. Cardiovasc. Diabetol. 2023, 22, 34. [Google Scholar] [CrossRef]
- Cui, C.; Liu, L.; Zhang, T.; Fang, L.; Mo, Z.; Qi, Y.; Zheng, J.; Wang, Z.; Xu, H.; Yan, H.; et al. Triglyceride-glucose index, renal function and cardiovascular disease: A national cohort study. Cardiovasc. Diabetol. 2023, 22, 325. [Google Scholar] [CrossRef]
- Singh, A.; Schurman, S.H.; Bektas, A.; Kaileh, M.; Roy, R.; Wilson, D.M., 3rd; Sen, R.; Ferrucci, L. Aging and Inflammation. Cold Spring Harb. Perspect. Med. 2024, 14, a041197. [Google Scholar] [CrossRef] [PubMed]
- Avagimyan, A.; Pogosova, N.; Fogacci, F.; Aghajanova, E.; Djndoya, Z.; Patoulias, D.; Sasso, L.L.; Bernardi, M.; Faggiano, A.; Mohammadifard, N.; et al. Triglyceride-glucose index (TyG) as a novel biomarker in the era of cardiometabolic medicine. Int. J. Cardiol. 2025, 418, 132663. [Google Scholar] [CrossRef] [PubMed]
- Araújo, S.P.; Juvanhol, L.L.; Bressan, J.; Hermsdorff, H.H.M. Triglyceride glucose index: A new biomarker in predicting cardiovascular risk. Prev. Med. Rep. 2022, 29, 101941. [Google Scholar] [CrossRef] [PubMed]
Doctrines | Mechanisms | Direction of Intervention |
---|---|---|
Somatic cell mutation theory | Oxidative damage, Replication errors, Spontaneous hydrolysis—DNA damage and mutation accumulation—Functional gene inactivation, Mitochondrial DNA mutations, Epigenetic disorders—Fixing system degradation—Reduced repair enzyme activity, Telomere depletion | Activate pathways, such as AMPK/SIRT1, to indirectly enhance cellular stress resistance and DNA repair capacity. Removal of senescent cells with high mutational load Reduction in ROS-induced mutations |
Free radical theory | Lipid peroxidation—Attacking unsaturated fatty acids in cell membranes—Decreased membrane fluidity and increased permeability Protein oxidation—Disrupts the activity of enzymes, receptors, and other proteins—Formation of protein cross-links or aggregates DNA damage—Causes base modification, strand breaks—Mutation or apoptosis Mitochondrial damage—Damage to mitochondrial DNA—Energy metabolism disorder | Reducing free radical production: improving mitochondrial function, lifestyle modifications Enhancement of antioxidant defense system: supplementation of exogenous antioxidants, activation of endogenous antioxidant pathways Repairing oxidative damage: removing damaged molecules and enhancing DNA repair Regulation of intestinal flora Related gene therapy |
Immunological theory | Thymus atrophy—Decreased T-cell production—Memory T cell accumulation—Decreased immune response capacity Decreased B-cell function—Reduced antibody diversity—Diminished vaccine response Decreased NK cell activity—Decreased clearance of viral infections and tumour cells Abnormal macrophage and dendritic cell function—Decreased antigen presentation capacity and imbalance in inflammatory regulation Cellular senescence—Senescent cells secrete pro-inflammatory factors (SASP, IL-6, TNF-α) Mitochondrial dysfunction—Increased activation of NLRP3 inflammatory vesicles by ROS—IL-1β release Intestinal flora imbalance—Age-related changes in flora—Endotoxin (LPS) into the blood—Activation of the TLR4-NF-κB pathway Autoantigen accumulation—Protein misfolding and oxidative damage—Triggering an autoimmune response | Enhancement of immune system function: thymus regeneration, immune cell therapy, vaccine optimization Suppression of chronic inflammation: removal of senescent cells, application of anti-inflammatory drugs Regulates intestinal flora Metabolic and nutritional interventions |
Telomere theory | Telomere shortening to critical length (Hayflick limit)—Activation of the p53/p16INK4a pathway—Cell cycle arrest Loss of telomere function—Chromosome fusion, breakage—Increased risk of cancer promotion Shortening of telomeres in hematopoietic stem cells, intestinal epithelial stem cells—Decreased tissue regeneration Secretion of SASP by senescent cells—Chronic inflammation | Activation of telomerase: TERT gene therapy, small molecule activators Antioxidant and telomere protection: NAD+ enhancers, telomere-targeting antioxidants, dietary interventions Removal of senescent cells with shortened telomeres Improvement of lifestyle Gene editing and cell therapy: CRISPR gene editing, iPSC technology |
Neuroendocrine theory | Hypothalamic-pituitary-target gland axis hypofunction—(1) Decrease in hypothalamic growth hormone-releasing hormone (GHRH) and senescence of pituitary GH-secreting cells—Muscle loss, Fat accumulation, Skin thinning, Decreased tissue repair (2) Cortisol dysregulation, decreased DHEA—Promotes inflammation and muscle breakdown, affects immune and cognitive functions (3) Decrease in sex hormones—Osteoporosis, Reduced vascular elasticity, Muscle loss, Cognitive decline (4) Decreased melatonin—Pineal gland failure—Sleep disorders, decreased antioxidant capacity Dysregulation of hypothalamic centres of ageing and metabolic regulation—(1) Hypothalamic neural stem cell depletion—Affects body temperature, appetite, and circadian rhythm regulation (2) Leptin and insulin resistance—Obesity and metabolic syndrome Neuroendocrine-immune interactions—Chronic inflammation—Cortisol resistance, Decreased GH/IGF-1 | Hormone replacement therapy: growth hormone, sex hormones, DHEA supplementation Targeting hypothalamic function modulation: senolytics remove senescent cells, NAD+ enhancers, rapamycin Melatonin and circadian regulation: exogenous melatonin, light therapy Lifestyle and nutritional interventions: intermittent fasting, resistance training, Mediterranean diet Emerging therapies: stem cell therapy, gene therapy |
Author | Type of Experiment | Experimental Conditions | Theory | Result |
---|---|---|---|---|
Cagan [21] | animal experimentation | Isolation of 208 individual intestinal crypts from 56 individuals of 16 species and study of somatic mutations using standard whole genome sequencing | somatic cell mutation theory | Significant accumulation of somatic mutations with age |
Garger [22] | database analysis | Obtaining data from public databases to construct phylogenetic tree sets for linear modeling analysis | somatic cell mutation theory | Somatic cell mutation rate is highly correlated with longevity |
Abascal [23] | cellular experiment | Development of nano-rate sequencing (NanoSeq) to achieve an error rate of less than 5 per billion base pairs in a single DNA molecule in a population of cells | somatic cell mutation theory | Somatic cell mutation rate is independent of cell division rate |
Robinson [25] | clinical research | Fourteen individuals aged between 17 and 72 years each carried one of four different germline extracellular ribozyme structural domain mutations in POLE or POLD1 | somatic cell mutation theory | Significantly elevated mutation load in somatic cells with unique mutational features that do not exhibit premature senescence |
Robert [30] | animal experimentation | Metabolic rates, locomotor performance, cellular metabolic rates, and oxidative stress potentials were measured in six snake species with varying lifespans | free radical theory | Short-lived species exhibit lower ROS production |
Ali [31] | animal experimentation | Exploring the association between oxidative stress and sex-specific aging in C57BL6 mice, ROS were measured in young and old mice by confocal imaging of DHE oxidation in the brain and EPR spectroscopy of isolated brain mitochondria | free radical theory | Sex differences in free radical homeostasis as a determinant of longevity |
Wang [48] | meta-analysis | Twenty-five studies were included, 21 used quantitative PCR and 4 used SB | telomere theory | Telomere shortening is associated with increased all-cause mortality in the general population |
Ye [49] | meta-analysis | In total, 236 studies comprising 341 samples across 720,078 subjects were included as cross-sectional samples, and 46 studies comprising 73 samples across 22,941 subjects were included as longitudinal samples | telomere theory | Telomere length decreases with actual age |
Sanchez [51] | cohort study | The potential of DTM as a clinical research tool was demonstrated by examining telomere length distributions in cross-sections of 63 healthy and diseased human samples | telomere theory | Distribution scores for shorter telomere composition increase with age |
Rosen [55] | cohort study | Using a self-rating questionnaire, the results were compared with those of 86 controls matched for age, sex, marital status, and socioeconomic class | neuroendocrine theory | Growth hormone therapy can lead to increased energy and emotional stability in older adults. |
Methods | Measures |
---|---|
Targeting Senescent Cells | Remove senescent cells: Senolytics (senescent cell lyser)—Dasatinib + Quercetin, Fisetin, Navitoclax (ABT-263) SASP inhibition: Senomorphics (Phenotypic modulators of senescent cells)—Rapamycin, JAK inhibitors, metformin Enhancement of the immune system: CAR-T cell therapy, development of senescent cell-specific antigen grafts Gene cell therapy: p16INK4a modulation, stem cell therapy |
Delayed telomere shortening | Activation of telomerase: TERT mRNA therapy, small molecule telomerase activators Telomere protection: application of antioxidants, NAD+ enhancers Improve lifestyle to delay telomere shortening |
Metabolic intervention | Optimizing Energy Metabolism: NAD+ Supplements Regulation of nutrient-sensing pathways: inhibition of mTOR overactivation, activation of AMPK, optimization of insulin sensitivity Reduction in advanced glycation end-products (AGEs): low AGEs diet, AGEs blockers Promoting metabolic waste removal: autophagy and detoxification |
Gut microbial interventions | Supplementation with prebiotics, probiotics Fecal Microbiota Transplantation (FMT) |
Lifestyle interventions | Calorie restriction and intermittent diet, proper exercise, better sleep, stress relief |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Tu, S.; Pan, D.; Liao, W.; Yang, L.; Wang, S.; Sun, G. Relationship of Ageing to Insulin Resistance and Atherosclerosis. Metabolites 2025, 15, 613. https://doi.org/10.3390/metabo15090613
Hao X, Tu S, Pan D, Liao W, Yang L, Wang S, Sun G. Relationship of Ageing to Insulin Resistance and Atherosclerosis. Metabolites. 2025; 15(9):613. https://doi.org/10.3390/metabo15090613
Chicago/Turabian StyleHao, Xiaoyu, Siying Tu, Da Pan, Wang Liao, Ligang Yang, Shaokang Wang, and Guiju Sun. 2025. "Relationship of Ageing to Insulin Resistance and Atherosclerosis" Metabolites 15, no. 9: 613. https://doi.org/10.3390/metabo15090613
APA StyleHao, X., Tu, S., Pan, D., Liao, W., Yang, L., Wang, S., & Sun, G. (2025). Relationship of Ageing to Insulin Resistance and Atherosclerosis. Metabolites, 15(9), 613. https://doi.org/10.3390/metabo15090613